Invited Paper

32-bit Microprocessors Based on the TRON
Architecture Specification

KEN SAKAMURA* and TATsUYA ENoMoTO**

1. Introduction

Various general-purpose 32-bit microprocessors are
being designed and manufactured on the basis of the
TRON (the realtime operating system nucleus) specifica-
tion developed in a TRON subproject. These chips,
which will utilize advanced VLSI technologies of the
1990’s to the limit, are to be optimized for operating
systems based on TRON specifications developed in
other TRON subprojects, and will act as a powerful
engine for the entire TRON project.

The chip architecture of the TRON specification has
been designed as part of the total architecture, in
parallel with the design of the TRON specifications for
operating systems. Anyone is and will be allowed to
develop new microprocessors freely and independently
on the basis of suggested external specifications. This
open architecture constitutes an epoch-making advance
over existing microprocessor architectures.

Although there are a number of general-purpose 32-
bit microprocessors already on the market, the chip ar-
chitecture of the TRON specification has been newly
designed from scratch, and several semiconductor
manufacturers are now developing microprocessors
with the new architecture. It should be noted that the
development of these chips has been triggered by a
recognition that a new architecture will be required to
match the fields in which microprocessors will be ap-
plied in the 1990’s; one that will allow the most advanc-
ed VLSI technology to be fully implemented, rather
than one bound by the need for compatibility with ex-
isting architectures.

The first half of this paper gives a brief overview of
the TRON project, the design philosophy of the TRON
specification for the VLSI CPU, and the chip architec-
ture of the TRON specification, in Sections 2, 3, and 4,
respectively. The second half describes the technologies
involved in its realization and examples of products. In
Section 5, VLSI implementation based on the TRON ar-
chitecture specification is described in the case of the
Gwmicro/ 100. Since related development tools and
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operating systems are necessary for a microprocessor
with a new architecture to have practical applications,
these will be mentioned in addition to related VLSIs.
Results of the evaluation of the Guicro/ 100 and related
development tools are also described in Section 5. An ex-
ample of an implementation of a realtime operating
system running on the Gcro/ 100 and based on the
ITRON specification is described in Section 6 in order
to show that the TRON architecture is designed as a
total architecture.

2. Overview of the TRON Project

The TRON project aims at establishing a new com-
puter architecture that covers microprocessors,
operating systems (OSs), man-machine interface (MMI)
and networking [1].

The ultimate goal of the TRON project is to realize a
Highly Functional Distributed System (HFDS) in which
a tremendous number of computers and computer-con-
trolled objects are connected and work cooperatively to
perform various services. An HFDS is a heterogeneous
loosely-coupled computer network, whose nodes in-
clude both computers and computer-controlled objects.
Since a single architecture cannot meet various
demands arising from the full range of applications in-
cluded in the HFDS, the TRON project has several sub-
projects whose goal is to design a series of different com-
puter architectures one by one.

Industrial- TRON (ITRON) is a realtime, multitask
OS architecture for embedded computer systems. Its
major objective is to minimize the task dispatching
time. The subproject has involved the design of a set of
micro-ITRON specifications for an OS that is adapted
for each microprocessor used in the system, rather than
standardized according to the ITRON specification, in
order to get the best realtime response in a small
embedded computer system. The OS based on the
micro-ITRON specification can be executed even on 8-
bit and 16-bit single-chip microcomputers with limited-
capacity memories, because its object size can be made
as compact as possible.

Business-TRON (BTRON) is a specification of an OS
and MMI for high-performance workstations, which
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Fig. 1 Overview of a system based on the TRON architecture.

will be used as machines for communicating with other
people and machines. The BTRON subproject aims to
establish a guideline for the design of MMI. The MMI
thus created will be made consistent, so that users can
move from one system to another without running into
difficulty with incompatible MMI’s. The BTRON sub-
project is also designing a set of micro-BTRON
specifications for very small specialized computers to be
used as ‘‘electronic stationery goods.”” This will meet
the rapidly growing demands for such personal-use com-
puters.

Central-TRON (CTRON ) is a specification of an OS
for servers and gateways on the HFDS. Although the
CTRON-based OS allows multiple users, it has no
direct MMI; this is provided by the BTRON-based
machine.

Macro-TRON (MTRON) is the key to the realization
of the HFDS. It is a network architecture that will con-
trol distributed systems based on ITRON, BTRON, and
CTRON architectures (Fig. 1).

A TRON VLSI CPU architecture has also been
designed to support these OS’s and applications
efficiently.

The TRON project itself was born in 1984, and is still
under way, with the final objective of creating real im-
plementations of HFDS’s. Some prototype systems
based on ITRON, BTRON, and CTRON architectures
have already been built. The current status of 32-bit
microprocessors based on the TRON specification will
be described later in this paper.

3. Design Philosophy of the TRON Specification for
VLSI CPUs [2, 3]

3.1 Design Considerations of the TRON Specification

The first motivation for designing a new chip architec-
ture for the TRON specification is the assessment that
microprocessors of the 1990’s will require a new ar-
chitecture that will take account of applications and
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VLSI technologies to be realized during the decade.
Many of the currently marketed 32-bit microprocessors
have architectures largely derived from those of the
preceding 8-bit and 16-bit microprocessors. Com-
patibility with previous architectures is important from
the point of view of allowing the use of existing soft-
ware, but architectures become obsolete with time and
will no longer be suitable for applications in a new era.

In the TRON project, two operating systems are con-
sidered as being the most appropriate to the fields in
which microprocessors will be applied in the 1990’s: one
is based on the ITRON specification for real-time and
embedded systems, and the other is based on the
BTRON specification for personal-use computers. The
chip architecture has been designed in such a way as to
maximize the efficiency of these operating systems. That
is, we are attempting to make it possible to construct
high-performance systems by adopting a ‘‘total-ar-
chitecture’’ approach.

The second aim of the new architecture is to realize
an architecture that makes the best use of the advan-
tages of the von Neumann-type computer. Because of
its general-purpose capability and extreme technical
refinement, the von Neumann-type computer will un-
doubtedly be the primary computer used in the 1990’s.

The von Neumann computer must satisfy two impor-
tant features: direct and free access to a large address
space and excellent basic performance. To fully exploit
these qualities, the TRON specification aims to achieve
as large a linear address space as possible. Thus,
although the specification originally called for
microprocessors with 32-bit addressing, the architecture
is being designed to allow for expandability up to 64-bit
processors, with full upward compatibility. Considera-
tion is also given to the high-speed execution of fre-
quently-used basic instructions, in addition to the or-
thogonality and increased functionality of instructions.

The third aim of the new architecture is to provide a
standard instruction set as an open architecture. The in-
terface is to be the same, but there will be freedom in
the actual method of implementation. While maintain-
ing compatibility, manufacturers are free to compete
with each other; this will allow the technology to pro-
gress. Use of a standard instruction set will increase the
effectiveness of education for the wusers of the
microprocessors and the preparation of development
support systems.

For continued progress and widespread use of the
microprocessors, it is essential to have an open architec-
ture that can be used freely by anyone. The TRON
specification is intended to respond to such needs.

3.2 RISC and CISC

Reduced Instruction Set Computer (RISC) architec-
ture has been gaining popularity for VLSI processors
and is being increasingly used in engineering worksta-
tions.

The objective of RISC is to make the instruction
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cycle time as fast as possible by reducing the functions
supported by the hardware. The features of RISC chips
are a small number of machine instructions, fixed-
length instructions, one-cycle execution, limited
addressing modes, load-store architecture, wired logic
control instead of microprogram control, and on-chip
large-capacity registers. Since RISC processors use a
reduced instruction set, the object size and instruction
traffic are greater than in Complex Instruction Set Com-
puter (CISC) processors. For this reason, they require a
high memory bandwidth, large capacity cache
memories, good optimizing compilers, and so on, in
order to take full advantage of their features.

RISC chips will probably continue to play an impor-
tant role in engineering workstations and minicom-
puters, but they are specialized for high-level languages
and limited applications. If their on-chip large-capacity
registers can be utilized appropriately, data traffic can
be reduced and these processors are then well suited to
applications such as scientific and engineering computa-
tions, where registers are fully used. However, it takes
longer for these chips to execute complicated and fre-
quent handling of external data. Furthermore, they do
not provide high-level instructions that are useful for
high-speed execution of critical operations in real-time
applications, in spite of their high-speed execution of
basic instructions. They contain some barriers to the
design of low-cost systems. It is thus difficult to imagine
that they will find applications in more general areas,
such as popular personal-use computers with good
price-performance ratio, or embedded systems that put
emphasis on real-time performance.

In contrast, equipping CISC chips with appropriate
registers and cache memories allows them to function
effectively and gives them the ability to deal with com-
plicated applications. Furthermore, not only RISC but
also CISC chips tend to adopt techniques such as one-
cycle execution and wired logic control to achieve high-
speed execution of basic instructions, and the perfor-
mance gap between them is getting smaller.

The application of microprocessors will be very wide.
In the TRON project, attention is focused on two ap-
plication fields, namely, high-performance personal-use
computers and real-time embedded systems. It is ideal
to use just one family of general-purpose microproces-
sors to build personal-use computers, computer-con-
trolled objects, and other future computer systems.
This is because the manufacturers can cut down the
development of VLSI microprocessors by sharing the
basic design among the microprocessor family, and soft-
ware development systems including compilers can be
shared. The users will also find it convenient to deal
with only one architecture. The TRON specification has
been designed with this generality in mind.

The TRON specification, while providing high-level
instructions for compilers and operating systems, has
emphasized reducing the object length of frequently
used basic instructions. The result is that, in principle,
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instructions that manage simple processes can be ex-
ecuted at the same speed as in RISC chips. That is,
chips based on the TRON specification incorporate the
best of CISC and RISC, and will find use in a wide
range of applications from high-end workstations to
small-scale embedded systems.

4. The Architecture of the TRON Instruction Set [2,
3]

4.1 Basic Instruction Set Architecture

4.1.1 Instruction Format

In the TRON specification, the instruction format is
determined in such a way as to achieve both a reduction
in instruction length and high orthogonality of the in-
struction set. Shortening the instruction length and mak-
ing the object size as compact as possible allows the
structuring of systems with limited memory sizes and
high-speed program execution. The orthogonality of
the instruction set here means that there are few con-
straints on the combinations of elements that make up
an individual instruction (for example, instruction func-
tion, addressing mode, and operand size); this makes it
easy to develop high-quality compilers and contributes
to improved software productivity.

Generally, these two objectives must be traded off
against each other; it is difficult to achieve both at the
same time. However, in the TRON specification, the in-
struction length is reduced while the orthogonality is
preserved by providing two classes of instruction for-
mats: a general format with good orthogonality and
high-level functions, and a short format with limited-
level functions but short instructions. The short format
in the TRON specification is distinguished by the fact
that the functions of the general format instruction and
the corresponding short format instruction, if it exists,
are the same, including the changes of flags and excep-
tions. Only the addressing modes, the range of im-
mediate operands (literals), and the operand size are
subsets of those of the general format. Moreover, the
short format has been introduced for many of the in-
structions in a unified way. Figure 2 shows the general
and short formats of the MOV instruction as an exam-
ple.

It should be noted that the length of each instruction
is variable in multiples of two bytes. Excluding the
addressing extension portion, the length of the short for-
mat is two bytes, while that of the general format is
four bytes.

4.1.2 Register Set

Figure 3 shows the general register set. In the 32-bit
specification, there are sixteen 32-bit general registers
(RO to R15). The 64-bit version will have sixteen 64-bit
general registers. A general register can be used to hold
either data or base address, and as an index register.
The stack pointer (SP) and frame pointer (FP) are in-
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MOV:S (an example of a short format)

REARREKEN

function: transfer from register to memory

src: register of source operand (4-bit code)

dest: addressing mode of destination operand (6-bit code)
sy: size of destination operand (2-bit code)

MOV:G (an example of a general format)

|1|1 |°|1|0|°ISIY] WAL AET! ]110108111015)/' 1 .‘{efi 11 J
function: transfer from memory to memory

src: addressing mode of source operand (8-bit code)

dest: addressing mode of destination operand (8-bit code)
sx: size of source operand (2-bit code)

sy: size of destination operand (2-bit code)

Fig. 2 Examples of instruction formats of the MOV instruction.

data size

longword

bit 0 31 word

bit 0 15 .
! ° halfword

it 0 7 by
bi byte

i *‘[ [ [ Jw
o [ [ [ Jm

| R3

A [ L

] 1 1
| | rasises

The chip has a memory protection scheme using four-level
rings. SP is prepared for each ring {0to 3) and for interrupt
processing, and switched automatically.

J RI14(FP)

Fig. 3 General register set of a microprocessor based on the
TRON specification.

cluded in the general registers, R15 being assigned to
the SP and R14 to the FP. The program counter (PC) is
not included in the general registers but in the control
registers. These general registers can support byte (B),
half-word (H) and word (W) data sizes in the 32-bit ver-
sion.

Figure 4 shows examples of the control registers. The
program counter (PC) and the processor status word
(PSW) are included as basic control registers. The PSW
is a 4-byte register that is used for setting and indicating
the current processor status and processing mode.

4.1.3 Data Types

The so-called ‘‘big-endian’’ is employed. That is,
MSB is assigned as the lowest number (address) of both
bit number and byte address, as shown in Fig. 2. Sup-
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0 31
[ PSW (Processor Status Word) |
[ PC (Program Counter) ]
| omes (Context Control Biook Base) ]
| CSW (Context Status Word) ]
[ SPn (Stack Pointer n-th level) |
[ SPI (Interrupt Stack Pointer) |

[UATB (Unshared Semi-space Address Transiation Base) |

| SATB (Shared Semi-space Address Transtation Base) |

[ DIR (Delayed Interrupt Request) |

| EITVB (EIT Vector Base) ]

[ JRNGVB (Jump o Ring Vedtor Base) |

Fig. 4 Examples of control registers in a microprocessor
based on the TRON specification.

Table 1. Instruction set of TRON architecture.

Transfer Instructions

Compare Instructions

Arithmetic Instructions

Logic Instructions

Shift Instructions

Bit Manipulation Instructions
Fixed-length Bit Field Instructions
Variable-length Bit Field Instructions
Decimal Arithmetic Instructions
String Instructions

Queue Manipulation Instructions
Jump Instructions

Multiprocessor Instructions

Control Space and Physical Space Instructions
OS-related Instructions
MMU-related Instructions

ported data types include integers, floating points,
decimals, bits, bit fields, strings, and queues.

4.1.4 Instruction Set

With two-operand instructions as a base, the instruc-
tion set ranges from basic instructions to high-level in-
structions designed for the operating systems of the
TRON specifications. Classes of supported functions
are listed in Table 1. Section 4.3 describes the high-level
instructions.

4.1.5 Addressing Modes

Table 2 shows the supported addressing modes. In-
cluding the assignment of registers, the addressing
modes are specified by using six bits with the short for-
mat and eight bits with the general format. Of these
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Table 2. Addressing modes of the chip architecture based on the
TRON specification.

Addressing mode Notation Note
Register direct Rn

Register indirect @Rn

Register relative indirect @f(exp:16, Rn)

(16-bit displacement)

Register relative indirect @(exp:32, Rn) *
(32-bit displacement)

Immediate #exp

Absolute @cxp:16

(16-bit address)

Absolute @exp:32

(32-bit address)

PC relative indirect @(exp:16, PC)

(16-bit displacement)

PC relative indirect @(exp:32, PC)

(32-bit displacement)

Stack pop @SP+

Stack push @-SP

Register based chained @. .@(Rn, —) *
PC based chained @. .@PC, —)
Absolutely chained @. .@0, —)

*not supported in the short format.

modes, the chained addressing provided by the TRON
specification is a generalized indirect addressing func-
tion. The chained addressing mode allows a number of
addressing primitives to be combined freely to generate
a complex addressing mode. These addressing
primitives include addition, scaling operation, and in-
direct memory reference. The addressing mode can be
valuable for artificial intelligence applications and
modular programming.

4.2 Memory Management

In the TRON architecture, address translation and
memory management are implemented in the hardware.
With embedded systems and similar applications,
however, a memory management unit (MMU) is fre-
quently not required. A two-bit field (address transla-
tion mode) is therefore provided in the PSW to indicate
whether or not the MMU is used and whether or not ad-
dress translation is carried out. By writing in this field,
one can declare whether the address translation and
memory protection are necessary or not.

The features of memory management in the TRON
architecture are (1) virtual memory support to provide a
logical space larger than the installed physical memory
size, (2) a multiple logical space management function
to maintain independence between contexts (tasks and
processes) and thereby to facilitate program productivi-
ty, and (3) a ring protection function to provide
memory protection between the operating system and
user programs, and between shared data and user-
specific data.

In order to achieve these functions, address transia-
tion is performed by two-level paging each time the
memory is accessed. With the 32-bit chips, the 4G-byte
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logical address space is partitioned into two regions ac-
cording to the S bit (MSB of the logical address). One is
a 2G-byte unshared semi-space (US) and the other is a
2G-byte shared semi-space (SS). Each semi-space is fur-
ther divided into 4M-byte sections, and each section
divided into 4K-byte pages. By considering the logical
address as a signed number, and allocating the SS to the
negative (S=1) address region and the US to the
positive (S=0) address region, continuity is guaranteed
for each region when extending to a 64-bit address
space.

There is an address translation table base register for
each semi-space; these are called UATB and SATB, and
are shown in Fig. 4. Only the UATB is changed
whenever context switching takes place, thereby realiz-
ing a multiple logical space for each context. That is, a
different physical space is allocated for each context,
and the US is therefore used mainly by user programs.
On the other hand, in the SS a common physical space
is allocated for all contexts, and it is thus mainly used
by the operating system and the interrupt handler.

In the TRON specification, memory is protected by a
four-level ring. Protected information is specified for
each page independently of SS/US classifications. If no
MMU exists, page-based memory protection cannot
take place. However, four-ring memory protection can
be performed on addresses as an option.

4.3 High-Level Instructions Supporting OSs and
High-Level Languages

In the TRON project, the chip architecture has been
designed in conjunction with the operating system ar-
chitectures of ITRON and BTRON specifications, on
the basis of the total architecture concept. High-level in-
structions are provided for high-speed execution of
system software. This approach ensures efficient execu-
tion of these operating systems on microprocessors
based on the TRON specification, thereby improving
the overall performance of TRON-based computer
systems.

High-level instructions implemented for the
operating system of the ITRON specification include
context switching instructions (LDCTX and STCTX)
and queue manipulation instructions (QSCH, QINS,
and QDEL), while those for the operating system of the
BTRON specification include variable-length bit field
manipulation instructions (BVPAT, BVMAP, and
BVCPY) and string instructions (SSCH, SMOV,
SCMP, and SSTR).

The introduction of high-level instructions and the
high-speed execution of frequently-used basic instruc-
tions are both important, but in different ways. Increas-
ing the execution speed of the basic instructions does
contribute to the average overall performance, but does
not significantly improve the performance in critical
situations. In realtime applications such as those in
which an operating system is based on the ITRON
specification, what is important is the response time of
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the critical points rather than the overall performance.
The introduction of high-level instructions is essential
to improving the performance of these critical points.
For example, the QSCH instruction can be used in the
operating system of the ITRON specification when inser-
ting a task that has just been made executable into the
ready queue, and this point has a particularly strong in-
fluence on the response time in realtime applications.

Besides, variable-length bit field (bitmap) manipula-
tion instructions make it possible to transfer a bit-block
of any length, and are effective for executing high-speed
window operation that will make a significant contribu-
tion to man-machine interface in the BTRON specifica-
tion.

The bitmap instructions manipulate lines of bits.
They read source bits and destination bits, perform
logical functions on them, and store the results in the
destination bit fields, as shown in Fig. 5. Successive bit
pairs are obtained by scanning the source bit line and
the destination bit line forward from the heads or
backward from the tails. An additional feature of the
TRON specification is that the scanning direction can
be specified as either forward or backward. This is
useful when the source bit field and the destination bit
field are partly overlapped.

If the execution times of bitmap manipulation instruc-
tions are compared with a loop program for repeating
32-bit data transfer by the MOV instruction, the bitmap
instructions are often two to four times as fast as the
loop program. In addition to having a superior perfor-
mance, the bitmap instructions are more flexible, becau-
se they can manipulate bit lines of any length at any
position [4].

Software productivity is becoming more and more im-
portant. Any new microprocessor should provide an in-
struction set on which high-quality compilers for high-
level languages can be built. In the TRON specification,
great emphasis is placed on enabling compilers to
generate efficient object codes. The provision of
sufficient numbers of general registers and of a general
instruction format with high orthogonality are two ex-
amples of such features. In addition, functions for
operations on different data sizes and subroutine call in-
structions (ENTER and EXITD) are also provided for
high-level languages. The subroutine calls in high-level
languages require not only that the return address
should be saved, but also that the frame pointer should
be set, the local variable area created, and the general
registers saved. These processes are, however, all con-
tained within the one ENTER instruction. Similarly,
those processes that must be carried out when exiting a
subroutine call are all carried out by the EXITD instruc-
tion.

4.4 Exception, Interrupt, and Trap (EIT)

EIT processing occurs asynchronously with the nor-
mal execution of a program and requires the currently
running program to be discontinued and another pro-
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Fig. 5 Function of variable-length bit field (bitmap) instructions.

gram to be executed. EIT stands for an exception, an in-
terrupt, and a trap. An exception takes place because of
an error or violation when an instruction is executed.
The original program is restarted by re-executing the in-
struction that caused the exception from the beginning.
An interrupt is independent of the program context,
and may be raised by an external hardware signal or by
a request from software. Certain traps take place in the
same way as exceptions. Others are raised by the pro-
grammer to invoke system calls. The original program
is restarted from the instruction next to the one that
caused the trap. )

Since EIT functions have a significant influence on
the structure of an operating system and its perfor-
mance, careful consideration is needed in designing the
EIT specification.

In the TRON specification, the occurrence of EIT’s
causes the processor to shift to an EIT processing state.
In EIT processing, the processor fetches an EIT handler
address and an EIT handler information from the EIT
vector table (EITVT), and then sets the PC and part of
the PSW according to this information. The PC-and
PSW at the time of the EIT occurrence and EIT-related
information are saved on a stack. The format of these
informations saved on a stack is determined according
to EIT types by considering which information is
necessary for system recovery. The program flow is then
transferred to the EIT handler (software), which takes
care of the cause of EIT. The EIT handler is a program
that is built into and is part of the normal operating
system. The execution of the return instruction (REIT)
at the end of the EIT handler restores the PC and PSW
that were saved in the stack and invokes the original pro-
gram flow that was interrupted at the time of EIT occur-
rence.

EIT types are classified in detail and the vector
number which is used to refer to the EIT vector table is
assigned to each EIT type. Examples are shown in
Table 3.

One of the features of the TRON specification is that
not only the PC but also part of the PSW can be up-



136

Table 3. EIT types specified by TRON architecture.

Address offset

EIT name
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Remarks

Vector number

System error

Operation is stopped with
EIT processing.

1
*2

*2

*2

*1

n is specified by the TRAPA
instruction.

n is specified by the CPID
in the PSW.

n corresponds to an interrupt

level number.
n corresponds to an interrupt
level number.

00 000 Reset interrupt
10 080 Self debug exception/trap
i1 088 Bus access exception
Bus access trap
12 090 Address translation exception
Address translation trap
13 098 Page out exception
Page out trap
14 0a0 Reserved instruction exception
15 0a8 Privileged instruction violation exception
16 0b0 Reserved function exception
17 0b8 Reserved stack format exception
18 0cO Ring transition violation exception
19 0c8 Odd address jump exception/trap
la 0do Zero divide trap
Ib 0d8 Invalid operand exception
If 0f8 Conditional TRAP instruction
20(n=0) to 2f(n=15) 100 to 178 TRAPA instruction »
(n=0 tol?5)
30(n=0) to 37(n=17) 180 to 1b8 Coprocessor disconnection exception
CPID n(n=0t07)
38 1c0 Coprocessor execution exception
39 1c8 Coprocessor command exception
40(n=0) to 4e(n=14) 200 to 270 External interrupt INT »n
(n=01to0 14)
50(n=0) to Se(n=14) 280 to 2f0 Delayed interrupt DI »
(n=0to 14)
5f 28 Delayed context trap
80 to fe 400 to 7f0 External interrupt

*1 changes, depending on the implementation.
*2 can be either, depending on the implementation.

dated according to the entry in the EITVT at the start of
the EIT handler. What this means is that it is possible to
re-write the PSW bits that indicate interrupt mask, ad-
dress translation specification field, and debugging
mode, and then to start the EIT handler. This function
allows flexible processing by the EIT handler. For exam-
ple, it is possible to mask uninteresting interrupts
automatically and to disable address translation tem-
porarily.

Other useful features of the TRON specification are a
delayed interrupt and a delayed context trap, both of
which occur as a result of software. A delayed interrupt
is used when registering a processing request not related
to the user context or during a serialized processing se-
quence. An example of its application is the post-pro-
cessing of an external interrupt. The delayed interrupt
occurs when an interrupt request level is set by software
in the DIR register shown in Fig. 4. When the request
level is not higher than the IMASK level in the PSW
register, the interrupt request is not accepted, and is
held until the IMASK value is changed so that the accep-
tance condition is satisfied.

A delayed context trap is used to register a processing
request for a user asynchronous event or during a

The vector number is supplied
externally for EIT processing.

serialized processing sequence.
5. VLSI Implementation the Guycro/ 100

Currently six manufacturers are developing eight
kinds of 32-bit microprocessor chip that are based on
the TRON architecture specification and have software
compatibility. Features of these chips are summarized
in Table 4. There are now three chips for the Gmicro
series: the GMICRO/ 100, GMlCRo/ZOO, and GMlCR0/3OO.
The Gwmicro/200 is a standard microprocessor chip with
on-chip MMU and cache memory. Binary coded
decimal (BCD) arithmetic instructions and a
coprocessor interface are also supported [5, 6]. The
Gwmicro/ 300 has a larger on-chip cache memory and
more functions. Designed with a view to application in
business workstations, it supports enhanced BCD
arithmetic instructions, so that COBOL could be
efficiently supported without much hardware [7]. As
with the Gmicro/ 100, the TX1 and MN10400 are aimed
at real memory systems [8, 9]. The O32 processor is im-
plemented by utilizing a 0.8-micron CMOS process,
and is noted for its aim of supporting fault-tolerant
functions. In addition to its six-stage pipeline, a branch
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CHIP NAME TX1 TX3 Gumicro/ 100 Gyicro/200  Gyicro/ 300 MNI10400
CLOCK (MHz) 23 33 20, 25 20, 25 20, 25 20 33
MIPS
PEAK 12.5 33 12.5* 12.5* 25* 20 15
AVERAGE 5 15 8* 8* 17* 8 10
DHRYSTONE NA NA 16 K* 16 K* 34K* NA NA
No. of Inst. 92 138 92 122 133 95 102
MMU NO YES NO YES YES NO YES
CACHE NO 8 KB (I) 256 B (1) 1KB (1) 2KB (I) 1KB (I) 1KB (I)
8 KB (D) 128 B (Stack) 2 KB (D) 1KB (D)
TRANSISTOR 450K 1.2M 340K 730K 900 K 400 K 700 K
TECHNOLOGY 1 um 0.8 um 1 um 1 um 1 um 1.2 um 0.8 um
PACKAGE 155 PGA 155 PGA 135 PGA 135 PGA 179 PGA 144 PGA 176 PGA
160 QFP
*at 25 MHz

prediction table, an instruction cache, and a data cache,
it also has features such as a processor bus comparator,
a stack boundary check function, and a partial cache in-
validation function [10].

The Gwmicro/200 uses the technique known as
distributed cache, by which even a comparatively small
cache memory is distributed and allocated to locations
where there are likely to be bottlenecks in fetching and
executing instructions. A block diagram is shown in
Fig. 6. In fact, besides 1 K bytes allocated as an instruc-
tion cache and 128 bytes as a stack cache, the chip also
has a four-entry branch window and a one-entry store
buffer. The instruction cache has 64 entries and four
words per entry, or a total of 1 K bytes. The stack cache
is built in to improve the speed of the processes required
for such stack operations as procedure calls and context
switching. Despite its relatively small size, it can be ex-
pected to achieve a high hit rate. Each entry of the
branch window has two values written to it: the head ad-
dress of the branch instruction at the branch target ad-
dress, and the address value, which is the branch target
address plus four.

This section describes features of Gmicro/100 and
some considerations in the design of the chip, as well as
evaluation results.

5.1 Design Objectives of the Gmicro/100 [11]

High performance, specifically high-speed operation,
is the primary objective of Gmicro/ 100 design. The pro-
mising application of Gmicro/ 100 includes high-perfor-
mance and low-cost personal workstations supporting
real me mory system and embedded industrial control
equipments. A five-stage pipeline structure has been
adopted to meet this requirement, in conjunction with a
pre-jump processing scheme. The Gmicro/ 100 does not
have an on-chip MMU, cache, or FPU. Even the co-pro-
cessor interface was removed. Hence, the die size of the
Gwmicro/ 100 can be made relatively small, and this gives
it the potential to be used as a core processor in an ap-
plication specific IC (ASIC) processor. The Gwicro/ 100
also supports some higher-level instructions such as

variable-length bit field manipulation. These instruc-
tions are effective not only for bitmap processing but
also for implementation of operating systems based on
the ITRON specification. The block diagram of the
Gmxcgo/loo is shown in F]g 7.

5.2 Pipeline Scheme

Pipelining is one of the most efficient technologies for
implementing a high-speed microprocessor. A five-stage
pipeline, as shown in Fig. 8, was adopted for the
Gwmicro/ 100 [12]. The stages are IF (instruction fetch),
D (instruction decode), A (operand address generation),
OF (operand fetch), and E (execution). Each stage per-
forms one operation in two clock cycles. The effective
execution rate of basic instructions is two clock cycles
per instruction, and thus the peak performance of the
chip is 12.5 MIPS (million instructions per second) at a
clock rate of 25 MHz. The functions of each pipeline
stage are as follows:

IF-stage: The IF-stage contains an instruction queue
(16 bytes) and a branch buffer (256 bytes). The branch
buffer is a special purpose instruction cache with a
direct-mapping scheme. When the queue holds no in-
structions, the branch buffer stores the instructions
fetched from an external memory. For example, when
the queue is flushed by execution of a branch instruc-
tion, the branch buffer caches the instruction that is
called by the jump instruction. The branch buffer is also
available for use as a general cache memory. The IF-
stage fetches instructions from the external memory or
the branch buffer and stores the instructions in the in-
struction queue. These instructions are sent to the D-
stage via the instruction queue.

D-stage: The D-stage decodes the operation code of
the instruction into a control code (D-code), which
specifies an operation. Using an address offset and
addressing mode in the instruction, an operand address
code (A-code) is generated and sent to the A-stage.
When two operands are fetched from the external
memory for a memory-to-memory instruction, the D-
stage sends the A-code twice.
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Fig. 7 Block diagram of the Gyycro/ 100.

A-stage: Operand address generation and the second
decoding of the instruction are performed in parallel in
the A-stage. An operand address is generated from the
A-code and sent to the OF-stage as an F-code. The D-

tion without waiting for the completion of its memory
write cycle.

5.3 Pre-jump Processing Mechanism

Pipelining increases performance by executing multi-
ple instructions in parallel. However, jump instructions
work against an increase in performance. When a jump
instruction is executed at the execution stage of a
pipeline, any instruction stream in the pipe should be
flushed, and a new instruction stream fetched. Since the
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Gwuicro/ 100 uses a multi-stage pipelining scheme, the
performance loss caused by jump instructions has to be
improved. An advanced pre-jump mechanism was ap-
plied to minimize the penalties related to jump instruc-
tions [13]. The pre-jump mechanism of Gwicro/ 100 was
built into the D-stage of the pipeline. There are two
types of pre-jump processing: pre-branch for branch in-
structions, and pre-return for return instructions from
subroutines.

5.3.1 Pre-branch Processing

The pre-branch processing for BRA (branch always)
and BSR (branch to subroutine) instructions is simple.
When these instructions are decoded in the D-stage,
pre-branch is always taken. The branch address is
calculated by adding the branch displacement to the PC
value, using the PC adder. As for a conditional branch
instruction (Bcc), a dynamic branch prediction
mechanism is used. Pre-branch is taken in accordance
with the branch history. The Gmicro/100 contains a
branch prediction table for the pre-branch processing
of a Bec instruction. This branch prediction table is con-
structed by a 1-bit X 256-entry direct mapping con-
figuration according to the lower nine bits of a Bcc in-
struction address (the lowest bit is always 0). A predic-
tion as to whether the Bcc instruction will or will not
take a branch is made on the basis of the history of the
most recently executed branch instruction.

ACB (add, compare, and branch) and SCB (subtract,
compare, and branch) instructions have a high probabil-
ity of branching, since these instructions are used for
loop sequence controls. Therefore, the Gmicro/100
always execute the pre-branch processing for these in-
structions.

5.3.2 Pre-return Processing

For RTS (return from subroutine) and EXITD (exit
and deallocate stack frame) instructions, the
Gwmicro/ 100 takes pre-return at the D-stage, using an

on-chip PC stack. The PC stack is the stack memory,
consisting of a 32-bit X 8-entry configuration. The
return address of the instructions depends on the in-
struction that calls the subroutine. Consequently, the
abovementioned method of using the branch history is
not effective. When a subroutine call instruction, such
as a BSR instruction, is executed, the PC that specifies
the return address is saved in the stack on the external
memory. The Gumicro/ 100 stores the return address in
the on-chip PC stack as well as in the external stack.
When an RTS instruction is decoded, the on-chip PC
stack is popped up to obtain the return address (PCl)
and a pre-return operation is performed. In detail, the
chip pre-fetches the instruction specified by the address
obtained from the on-chip PC stack. At the operand
fetch stage, the return address (PC2) is fetched from the
memory by popping the external stack. The value of
PCl1 is compared with the value of PC2 at the execution
stage. If both values coincide, the pre-return is suc-
cessful and jump processing is not required at the execu-
tion stage. Otherwise, jump processing is performed.
As a result, the instruction stream on the pipeline is
flushed and a new instruction specified by PC2 is fetch-
ed.

5.4 Microprogram Design

The pipeline scheme is effective for simple instruc-
tions that remain in every stage for the same number of
clock cycles. However, it is not effective for com-
plicated instructions such as bitmap instructions,
because they spend most of the execution time in the E-
stage. For them to be fast, the E-stage must be fast.

The Gmicro/ 100 achieves fast execution of the bit-
map instructions by pipelining the micro-operations in
the E-stage [4]. Figure 9 is an illustration of the micro-
operation loop in the BYMAP (manipulate of variable-
length bit field) execution sequence, in which the source
and the destination bit lines are processed by the 32-bit
block repeatedly. The loop consists of eight micro-
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Fig. 9 Micro-operation Loop in the BVMAP Execution
Sequence.

operations: OP1 and OP3 are shift operations; OP2,
OP6, and OP8 are memory access operations; and
OP4, OP5, and OP7 are ALU operations.

If the loop is programmed directly, it takes five
microinstruction steps, as follows:

Step 1: OP1 and OP2 (n)
Step 2: OP3 and OP4 (n)
Step 3 Op5 and Opé6 (n)
Step 4: OP7 (n)
Step S OP8 (n)

Unrol'lmg the loop and pipelining micro operations
of the (n+ 1)-th cycle of the loop, the three-step loop is
constructed as follows:

Step 1: oP7 (n-1)
OP1 and Op2 (n)
Step 2: OPS8 (n-1)
OP3 and OP4 (n)
Step 3: OPS5 and OP6 (n)
Step4: OP7 (n)
=Step 1 OP1 and OP2 (n+1)
Step: OPS8 (n)
=Step: Op3 and Op4 (n+1)

The three-step loop is optimal because the memory
bus is busy at every step. The BVCPY (copy variable-
length bit field) and the BVMAP are optimized by the
same method and achieve optimum use of the memory
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Fig. 11 Microphotograph of the Gycro/ 100 chip.

bus.

The microprogram was designed in the environment
shown in Fig. 10 [14-16]). The procedure for
microprogram development was as follows:

1) The microprogram was designed on the assump-
tion that any two micro-operations may run in parallel
if they do not use the same function unit.

2) The microprogram was stored in a relational
database management system, in which a micro-instruc-
tion word was stored in a record and a micro-operation
was stored in the record’s field. The INGRES data base
management system was used for this purpose.

3) The database management system was used to
retrieve a set of micro-operations in a field, and a set of
micro-operation combinations in some fields. Based on
the results of the retrievals, the micro-instruction for-
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mat was designed to implement parallelisms required
for all the instructions, including high-level instructions
such as bitmap instructions, and to minimize the
number of micro-operation fields.

5.5 Physical Design

Figure 11 shows a microphotograph of the
Gwicro/ 100 fabricated by using 1.0 micron CMOS pro-
cess technology with two-level metalization. The chip is
partitioned into three major sections. The upper part
consists of the instruction fetch unit and the
microprogram ROM. The middle part contains the con-
trol logic. The lower part contains the 32-bit datapath
with 32-bit ALU, 32-bit barrel shifter, and the bus inter-
face units. The bus interface unit arbitrates between the
Gwmicro/ 100 and the external system bus, and sends and
receives addresses, data, and control signals to and
from other chips. The bus interface unit was divided
into two parts, which were placed at different locations.

Most parts of the chip, which include the data path,
branch buffer, ROM, and some decoder circuits, were
designed by hand so that a small die size could be ob-
tained. On the other hand, the control logic was design-
ed by standard cell methodology. This standard cell was
placed and routed automaticaily.

5.6 Evaluation

The characteristics of the chip are summarized in
Table S. The chip is housed in a 135-pin PGA package.
The power dissipation of the chip is less than 1.5 watts
in the worst case with a 25-MHz clock.

There are many benchmarks for evaluating
microprocessor performance. Dhrystone is one of the
most widely used. The fabricated Gmicro/ 100 was
operated on a single-board computer at a 25-MHz clock
frequency. The performance of the chip was evaluated
by the single-board computer, using the Dhrystone ver-
sion 1.1 program written in C language. The results of
the benchmark test showed 16,000 Dhrystones per sec-
ond at a 25-MHz clock rate with no wait state. Based on
the results, the average performance of the Gmicro/ 100
is 8 MIPS. Figure 12 shows the performance as a func-
tion of the memory wait cycle for two clock rates, 20
MHz and 25 MHz. A low-end computer system often
uses a relatively slow memory system. For one-wait
state access at 25 MHz, the benchmark showed 12,600
Dhrystones per second. Since the current C compiler is
still under development, the Dhrystone value is ex-
pected to be increased by improving the compiler op-
timization.

5.7 Total System for Gwyicro Products

In addition to microprocessor chips, the system pro-
vides versatile peripheral chips such as a floating-point
coprocessor, an interrupt controller, a direct-memory-
access controller, and a cache controller with cache
memory.

Since a microprocessor with a new architecture re-

CLOCK

Table 5. Specification of the Gycre/100.
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20 MHz, 25 MHz

PERFORMANCE
PEAK 12.5 MIPS(at 25 MHz)
AVERAGE 8 MIPS(at 25 MHz)
BUS
ADDRESS 32 BIT
DATA 32 BIT
MIN. BUS CYCLE 2 CLOCKS
PIPELINE 5-STAGE
BUFFER MEMORY
INSTRUCTION QUEUE 16 BYTE
BRANCH BUFFER 4-BYTE x 64 ENTRY
STORE BUFFER 4 BYTES

BRANCH PREDICTION TABLE 1-BIT x 256 ENTRY

TECHNOLOGY 1.0 MICRON CMOS
DOUBLE LEVEL METAL

DIE SIZE 11.47 x 8.89 mm

PACKAGE 135-PIN PGA, 160-PIN
QFP

POWER DISSIPATION

MAX. 1.5 W

25MHz
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Fig. 12 Results of the Dhrystone benchmark test of the

GMICR()/ 100.

quires related development tools in addition to related
VLSIs in order to have practical applications, cross soft-
ware such as assemblers, compilers, and a
simulator/debugger is also provided to allow the
development of application software. Application pro-
grams can be developed in C, Modula-2, or assembly
languages and then translated to object modules. Since
the Gwmicro/ 100 has a sophisticated pipeline structure,
branch prediction scheme, and high-level instructions,
the debugging environments require a function for
monitoring the processor’s internal states as well as one
for monitoring the external bus cycle. The emulator was
also developed by fully utilizing such debugging sup-
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Fig. 13 Functional structure of MR3200, a realtime
operating system based on the micro-ITRON
specification.

port functions of the Gmicro/ 100 as step execution and
the break function.

6. Implementation of a Realtime OS on the
GMICRO/ 100-the MR3200

Since a primary objective of the Gmicro chips is to
realize a high-speed computation environment in con-
junction with operating systems, an operating system
called MR3200 has been developed [17). This is based
on the micro-ITRON specification, which is a subset of
the ITRON specification. It is a realtime OS for embedd-
ed systems, and takes advantage of the Gumicro instruc-
tion-set architecture.

The functional structure of MR3200 is shown in Fig.
13. There are nine system modules. The task manage-
ment module supervises five task states, namely, RUN,
READY, WAIT, SUSPEND, and DORMANT.

6.1 Features of MR3200

Quick response to external requests is crucial in a
realtime system. The response time should be constant
so that it can be estimated by the application software
writer. The issue is thus to achieve a short and constant
interrupt masking time that does not depend on the
number of tasks or on the priority. Since the state of the
ready queue changes according to the number of tasks
and priority in general, a constant response time is hard
to obtain. However, through the use of specific instruc-
tions of the Gymicro/ 100 such as variable-length bit field
manipulation instructions and bit manipulation instruc-
tions, MR3200 enables task scheduling or dispatching
to be executed by a single instruction, resulting in a con-
stant response time.

The ready queue is constructed by a bidirectional
queue. It is managed by a bit field table with a size of
256 bits, each bit of which corresponds to the task
priority and indicates the existence of any priority
tasks. Dispatching means to search for the ready task
that has the highest priority, and then to switch the con-
text. It can be implemented by utilizing the BVSCH in-
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Table 6. Specification of MR3200.

TARGET PROCESSOR

Guncro SERIES

NUMBER OF TASKS 65535 MAX
PRIORITIES 1TO 255
NUMBER OF SYSTEM CALLS 53
OS CODE SIZE
MINIMUM SYSTEM 2100 bytes
MAXIMUM SYSTEM 11600 bytes
TASK SWITCHING
WAKE-UP TASK 18 usec
EVENT FLAG SET 26 usec
MAXIMUM INTERRUPT MASKING TIME
WAKE-UP TASK 9 usec
CHANGE PRIORITY 15 usec

struction, which is a variable-length bit field manipula-
tion instruction. This instruction searches for a specific
bit with the value ““1’’ from the bit field table. The task
can then be obtained from the ready queue. This gives a
more constant response time than using compare and
branch instructions repeatedly. The time required to
search for a bit from the bit field increases by steps of
0.2 usec every time a 32-bit boundary is passed. It takes
approximately 1.7 usec to search for a bit from the first
bit to the last 256th bit. Since a searching time of less
than 1.7 usec was obtained, a realtime response for the
external request was assured without the maximum
masking time for interrupt being affected.

In system call processing, a task is inserted into or
deleted from the ready queue. This scheduling can be
performed by using the BSET (set bit) and BCLR (clear
bit) instructions to set and clear the priority bit in accor-
dance with changes in the queue status. These instruc-
tions can set or clear any bit, and thus the ready queue
can be handled in a constant time independent of the
number of priorities.

6.2 Performance of MR3200

The performance of the realtime OS MR3200 was
evaluated with the Gmicro/ 100 microprocessor [18]. A
task was woken up in 18 usec by the wake-up-task
system call. The interrupt masking time for the system
call was 9 usec. The maximum interrupt masking time
was 15 usec for the change-priority system call. Since
MR3200 has a library structure, a system can be con-
figured by linking only system calls that should be used
in the application. The code size of the OS that utilizes
all the system calls is approximately 11,600 bytes, while
the size is 2,100 bytes when four basic system calls are
utilized to implement the smallest real-time systems
with multitask function. The specifications of MR3200
are summarized in Table 6.

7. Conclusion
The chip architecture of the TRON specification has

been designed as part of a total architecture in parallel
with the design of TRON specifications for operating
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systems. The instruction set architecture is optimized
for implementing a compiler as well as various
operating systems.

A 32-bit microprocessor, the Gwicro/ 100, based on
the TRON specification was implemented by using a
pipelining structure with a unique pre-jump scheme and
a new microprogram design strategy. The results of the
benchmark test showed 16,000 Dhrystones per second
at a 25-MHz clock rate. A realtime operating system,
MR3200, was also developed according to the micro-
ITRON specification. Thanks to the high-speed opera-
tion of the Gwmicro/ 100, a task wake-up time of 18 usec
was realized.

A number of semiconductor manufacturers have
started to supply samples of 32-bit general-purpose
microprocessors based on the TRON specification. It is
expected that both suppliers and users of the chip will
make and improve the support environment for efficient
development in cooperation and will compete freely
and fairly to sell their products based on this architec-
ture, resulting in increasingly widespread use of the
microprocessors and related application products. It is
essential for such activities that we should continue to
maintain rigidly the concept of an open architecture
that is not subject to limits imposed by any particular
manufacturers. We hope that this architecture will be of
great service as common property of mankind.
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