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Phase-Lag Analysis of
Diagonally Implicit Runge-Kutta Methods

TosHIYukl KoTto*

This paper concerns an approximation property of diagonally implicit Runge-Kutta methods when they are
applied to a system of ordinary differential equations with periodic solutions. In order to characterize the pro-
perty, phase errors are studied for a certain class of rational approximations to exp (z) and several conditions
for reducing the phase error are derived. A-acceptability is also considered for the rational approximations in
the same class and higher order A-acceptable rational approximations with reduced phase errors are obtained.

1. Introduction

We discuss an approximation property of implicit
Runge-Kutta methods when they are applied to a
system of ordinary differential equations (ODEs) of the
form

du__ _ 1
E—f(t, u), u(t)=uo 1.1

with periodic solutions. More specifically, we analyze
the phase errors introduced by the methods when the
linear test equation

du .

- iwu,
is integrated. A similar analysis of numerical methods
for second order ODEs is well known and called phase-
lag analysis (cf. [2], [4], [5], [6), {7), [12], [13], [14],
(16).

The phase-lag analysis of an implicit Runge-Kutta
method is, as far as the test equation (1.2) is concerned,
equivalent to an analysis of its stability function, a ra-
tional approximation to the exponential function. In
Section 2, the phase error in the numerical solution of
the test equation (1.2) is represented by the stability
function and expanded as

we R. (1.2)

o(y)= ZO Cr iy, (1.3)

where y=wh and h>0 is the step-size. Then, a new
order of the method is defined as an integer g satisfying
Cp, ;=0 for j=0, 1, ..., g and Cp+#0. This g is
called a phase order and plays a character significant for
the accuracy with respect to the phase component.

In Section 3, we give a relation between the phase
order g and the usual order p defined for the stability
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function. It is shown that g is equal to p if p is even and
q is an even integer greater than or equal to p+1if pis
odd. That is, g is determined only by p if p is even but it
is not so if p is odd. Another condition is hence derived
to estimate ¢ when p is odd.

In Section 4, we study the phase order of diagonally
implicit Runge-Kutta (DIRK) methods [1], which are
characterized by the fact that the stability function has
the form

Prn(z)
a—=z/A
Here m is the stage-number and P,(z) is a polynomial
of degree at most m. For a rational approximation of
the form (1.4), the attainable order of approximation is
equal to m+1 [10], and, in this case, the phase order is
determined as g=m+1if mis odd and g=m+2if mis
even. However, the highest order approximation is not
necessarily the best with respect to the phase order. In
fact, Van der Houwen and Sommeijer [15] show that
there are rational approximations with higher phase
order: (i) m=2, p=1, g=6, (ii) m=3, p=3, g=6 and
(iii) m=4, p=3, g=8. Furthermore, they have con-
structed A-stable DIRK methods in the cases (ii) and
(iii).

We give a generalization of their results: If m(>1) is
odd, then there is a rational approximation of the form
(1.4) with p=m and g=m+3. If mis even, then there is
a rational approximation of the form (1.4) with
p=m-—1 and g=m+4.

In Section 5, we investigate the A-acceptability of
such rational approximations with reduced phase er-
rors. As a result, we obtain new A-acceptable rational
approximations in the cases: m=5, p=5, ¢g=8 and
m=6, p=5, g=10.

R(z)= AeR. (1.4)

2. Preliminaries

For the system of ODEs (1.1), an m-stage implicit
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Runge-Kutta method is written as

Un=tn-1+h 2 bif (a1t cih, U)
j=1

U=up1+h 3 auf(ta-1+cch, U),
k=
' j=1,2,...,m, (.1

where a;, b; and ¢; are real numbers. When a;,=0 for
j<k, the method is said to be semi-implicit. Further-
more, if @, ; is constant for j=1, 2, . . . , m, the semi-
implicit method is said to be diagonally implicit [1, 3].
Let A and A*, m X m matrices, be defined by
A=@) (=), k=m)
and
A*=(@x—b) (=), k=m),

respectively. When the method (2.1) is applied to the
linear equation ‘

du
E={u, (e C, (2.2)
the numerical solution is given by
ur=Ra@tin 1, Rn@=28 2D o _p 23
det(/—zA)

(cf., e.g., [11]). Here R,(2) is the stability function,
which is a rational approximation to the exponential
function and plays an important role in the stability

~ analysis of Runge-Kutta methods [3]. In particular, the
stability function of a diagonally implicit method has
the form (1.4).

In order to characterize a property of Runge-Kutta
methods for a system of ODEs with periodic solutions,
we give several definitions for a rational approximation
to the exponential function.

A rational approximation R(z) to exp () is said to be
of order p if

C=0 for j=0,1,...,p and C,. %0 (2.4)

for the coefficients of the Taylor expansion of exp (z)

]
exp (2)—R(2)= Zo Ciz'. 2.5)
When the rational approxi'm;tion is the stability func-
tion of a Runge-Kutta method, the order is called the
linear order of the Runge-Kutta method.
Definition. For a rational approximation R(z) to
exp (), the function '

&d(y)=y—arg (R(iy)),

is called a phase error function.

Since @(y) is real-analytic in a neighborhood of the
origin, it is expanded as (1.3). Based on the expansion,
another order is defined as follows.

Definition. A rational approximation R(z) to exp

ye R, (2.6)

T. Koto

(2) is said to be of phase order ¢ if
Cp,j=0 for j=0, 1, ey q and Cp‘q+|?50 (27)

in (1.3).
The phase order of the Runge-Kutta method can be also

- defined as the phase order g of its stability function.

3. Fundamental Property of Phase Order

Let ¥(y)=tan (y)—(Im (R(iy))/Re (R(iy))). Then,
¥(y) can be expanded as

‘I’(y)=2)cr,,-y’. 3.1
=

Lemma 1. The phase order of the rational approx-
imation R(z) to exp (2) is equal to g if and only if

Cr;=0 for j=0,1,...,q and Cr4+:#0.(3.2)
Proof. Using the addition theorem, we have
Im (R(iy))
—)} 3.3)
Re (R(iy))

Since tan (z)=z+ O(z?), it follows from (3.3) that (3.2)
is equivalent to (2.4).
Q.E.D.

The following lemma gives a fundamental relation be-
tween the linear order and the phase order.

Lemma 2. Let p be the order of the rational approx-
imation R(z). Then, the phase order q is equal to p if p
is even and g is an even integer greater than or equal to
p+1if pisodd.

Proof. ¥(y) is rewritten as

Re C ~ .
w(y)= (R (ly){Rsm (y). Im (R(iy)) cos (») G4
e (R(iy)) cos ()
Since (2.5) together with the Taylor expansions of sin
(») and cos () yields

Re (R(iy)) sin (y) —Im (R(iy)) cos (¥)

tan (()=¥(») / {l +tan (y)

=§%(—”k{,gé(zkcij;})!_(2k¥§;{+1)!}y2k+' @3
and
Re (R() c0s (5)= 33 (= 1f {zg
(@)@ 7 @0
¥(y) is expanded in the form
Y’(y)=§) Crax+1 V¥, 3.7

Hence, the phase order ¢ is always even. Furthermore,
if (2.7) is satisfied, it follows from (3.5) and (3.6) that

PO)=(—1)Cpr1y**'+O(y**?) (3.8)
when p is even, and
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P = (= D(Cor2= Cpen)y”?+ O™ (3.9

when p is odd, where / is the integral part of (p+1)/2.
The result thus follows from Lemma 1.
Q.E.D.

Lemma 2 shows that g is determined only by p if p is
even, but it is not so if p is odd. Thus, other conditions
are required to determine ¢ when p is odd. On a general
method to estimate g, refer to [9]. Here, we describe
simple characterization of the phase order ¢ when the
order p is odd.

From (3.5) and (3.6) the precise estimate of ¥(y) is
expressed as

PN =Cr.p+2¥" 2+ Cr pray?H+ O(y7*),
(- l)k(cpﬂ_cpﬂ),

CT.p+4=(_l)k+l(Cp+4_ p+3+Cp+2/2
—Cpi i/ 6+ (— DHCps2— Coe )1+ C), (3.10)

when p is odd. Therefore, by the same argument as in
the proof of Lemma 2, we conclude that

Crpea=

if Cp12—C,p+1=0, then g=p+3 @3.11)
and
if Cpya—Cps=0 3.12)
and
Cpr4a— Cpr3+ Cpe2/2—Cp11/6=0,
then g=p+S5.

4. Phase order of DIRK Methods

In this section, we study the phase order of rational
approximations of the form (1.4) in order to
characterize that of DIRK methods.

Let L,,(A) be the Laguerre polynomial of degree m,
1

La)=3 (=Y @.1)

m!

i=o (m=jNuHy*’

and, for a positive integer k, let L¥'(1) denote the kth

derivative of L,(A). For k=0, —1, —2, ..., define
L¥(2) inductively by

’)
LON)=Ln), Lam)=§ L&) dp,
0

k=—1, —=2,.... 4.2)

With this notation, the following equality holds.
Lemma 3. ([3], p. 246)

(I=z/3)" exp @=(~ 1" 3 LEPO)/ AY.  (43)
Jj=0

Using this lemma, we obtain an expression for the ra-
tional approximation of the form (1.4) with order p=m
P,(z)

MOy
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m

Pa()=(—1)" 3 LT (ANz/AY, Ae R, 4.9
i=0

with the error term

exp (2)—R(2)
:Cm+lzm+l+Cm+sz+

Corer =(= "L/ 27,

Crv2=(— D)"{L;PA)+mLi "(A)}/ Am*2,

2+ C,,,+3z'"”+0(z”'“),

Crar=(=1)" {L‘m"’(/l) +mLi()

m+1
== L‘m"’(l)} A3, @)
Furthermore, from standard identities involving
Laguerre polynomials (cf., e.g., [8]),
A
L MA)y= =~ Loai(D), (4.6)
and thereby the factor C,.+, is rewritten as
Crpri=(—1"*"! LR/ A" 4.7

+1

From this representation of C,+, it follows that the ra-
tional approximation (4.4) is of order m+1 if and only
if A is a root of L;,+(A).

For the rational approximations of order m+1, we
obtain the following characterization of the phase
order.

Theorem 1. Suppose that the order of a rational ap-
proximation of the form (1.4) is equal to m+1. Then,
the phase order g is equal to m+ 1 if m is odd and equal
to m+2 if m is even.

Proof. If mis odd then p=m+1 is even, and q is
thus equal to m+1 by Lemma 2. Let’s consider the case
m is even.

Using (4.6),

A
Ly 2‘(1)———Lm+z(,l) L,’,.H(/l) (4.8)

and
(=3) A 22
L= _—Tg Ly, +3()~)+ ) Li+2(4)
A
——TILmH(X), 4.9)
we obtain
Cm+3—cm+z=-—m+3 Lusi(A)/ Am2, 4.10)
Here we have also used
Ly y(A)=Lps1(A)—Lpysi(R) 4.11)
and so on.
Since all the roots of L,. (A1) are simple,

Cm+3—Cm+2#0 whenever L;,,1(A)=0, and ¢ is thus
equal to m+2.
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Q.E.D.

When m is an odd integer greater than 1, there are ra-
tional approximations of the form (1.4) which are of
order m but exceed the highest order approximation
with respect to the phase order.

Theorem 2. Let m(>1) be odd. Then, there is a ra-
tional approximation of the form (1.4) with p=m and
g=m+3, where p is the order and g is the phase order.

Proof. Let

1 m+1—24
fm('l)z_’;:_—z Loyol)——F— Lan(4).

m+1
Then, (4.6) and (4.8) imply that Cpi2—Cpn+1= —fm(A)
/A™*1, Thereby, if f.(4) has a real root Ao, (4.4) for
A=24, gives a rational approximation with p=m and
g=m-3. Hence, it suffices to show that f,,(4) has a real
root.

Using (4.11), we have

(4.12)

1
Saly=——r (4.13)
when L},+1(1)=0. Since L.+:(4) has a positive extremal
value if m=3, (4.13) implies that f,.(A) <0 for some 4.
On the other hand, since L,,(0)= —m for any m, f.(0)
=m>0. Thus, the polynomial f,.(1) has a real root if
mz3.

Q.E.D.

When m is even, the phase order g of the rational ap-
proximation of order m is equal to m by Lemma 2, and
thus it does not exceed that of the approximation of
order m+ 1. However, when the order is lower, there ex-
ist approximations with higher phase order.

When m is even, a rational approximation of the
form (1.4) with p=m—1 is written as

P,(2)
a-z/n"’

m—1

Pn(2)= 25 L7 (A)(2/ AY +uz/ ),

j=0
A, ue R,
where the error term is given by
exp (2) —R(@)=Cnz™+ Cns12™" ' + Cs22™ "’
+Cr+32™+ 0™,
Cn=(Ln(A)—w)/ A",
Crnr={L"A)+m(Ln(A)—p)} /A",
m(m+1)
2

Ly+1(2)

R@@)=

4.14)

Cins2= {Lﬁ,,‘2>(,1)+mL$,,‘”(l)+

x (Lm(l)—u)} /l’"”,

(m+1)
2

m
Cres= {L‘;3’(A)+me’u)+ L%

L mm+1)m+2)

A (4.15)

(Lm(i)‘u)} /l’"”-

T. Koto

Theorem 3. Let m be even. Then, there is a rational
approximation of the form (1.4) with p=m—1 and
g=m+4, where p is the order and g is the phase order.

Proof. We show that the rational approximation
(4.14) for some u, A satisfies

Cni1—Cn=0 and
Crn+3— Crns2+ Cms1/2—Cn/ 6=0.
Since Cy+,— C,y is written as
Cre1 = Cn={L5y "A) +(m—=2)Ln(Q)—u)} /A", (4.17)
the parameters 4 and A must satisfy
u=Ln(A)+L5"A)/ (m—2)

for C,+1—C, to vanish. Furthermore, this condition
together with (4.6), (4.8) and (4.9) yields

(l —m)}‘m+2(cm+3_Cm+2+Cm+|/2'“ '1’,‘/6)

(4.16)

(4.18)

_m-i, (m+2-2)(m=4) |
T m+3 me3(A) = m+2 Lava)
+m(m+1)(m+2)/3—(m+ 1)2A+(m+1)A2-213/3
m+1
X Lyi1(A) (4.19)

Hence, it suffices to show that the polynomoial given by
the right side of (4.19) has a real root.

Let g.(A) denote the polynomial. Since L,,(0)=—m
for any m, g..(0)=m(1 —m?/3<0. On the other hand,
the equality

lim L (A)/Am=(=1)"**/ m! (4.20)
implies that
m(m+2)
lim g.(A)/ A" =—r— 4.2
lim gm(2)/ 3(m+3)!>0 4.21)
Therefore, ¢g.(4) has at least a real root.

Q.E.D.
5. A-acceptability

In this section we investigate the A-acceptability of
the rational approximations appearing in the preceding
section.

A rational approximation R(z) to exp (2) is said to be
A-acceptable if

IR(z)I =1 for any ze C with Im z=0. ¢.1)

Furthermore, a Runge-Kutta method is said to be A-
stable if its stability function is A-acceptable [3]. When
the rational approximation R(z) has the form (1.4), the
A-acceptability is determined as follows.

It is clear that A must be positive for R(z) to be A-ac-
ceptable. When A is positive R(z) is regular in the left
half complex plane, and hence, by the maximum
modulus principle, if

I(1=iy/A)" 1= | Pn(iy}|*2 0 5.2)
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for any ye R, then the condition (5.1) is satisfied.
Writing P.,(z) as

P.@=3 a7, aeR, 5.3)
j=0
we have
[m/2} 2
|P,,,(iy)|2= {kz;] azk(_)’z)k}
itm-1)/2] 2
+y2{ 2 a2k+l(-y2)k} ) 5.9
k=0

where [x] represents the integral parts of x. Using this
equality, together with

A =iy/ A" 12 =1+ 2", (5.5)

we express the left side of (5.2) as
[m/2) 2
E.(0)=(1+u)"— { >, (—u)"(awl”‘)}
k=0

(m=1)/2) 2

—u{ >, (~u)"(a2k+1,12"“)} (5.6)
k=0

where u=y?/A%. Consequently, R(z) of the form (1.4) is

A-acceptable if and only if >0 and E,,(4) =0 for any

uz0.

On the rational approximations of order m+1, it is
known that the A-acceptability is possible only when
m=1, 2, 3 or 5 [17]. We investigate the other rational
approximations, described in Theorem 2 and Theorem
3, in the cases m=<6.

By Theorem 2, we obtain rational approximations of
the form (1.4) with p=3 and g=6 when m=3 and with
p=S5 and ¢g=8 when m=5. These approximations are
given by (4.4) with the real roots of the polynomial
f=(A) appearing in the proof of Theorem 2. Similarly,
by Theorem 3, we obtain rational approximations with
p=1 and g=6 when m=2, with p=3 and ¢g=8 when
m=4 and with p=5 and ¢g=10 when m=6. These ap-
proximations are given by (4.14) and (4.17) with the real
roots of the polynomial g,.(1) appearing in the proof of
Theorem 3.

In the five cases above, we find the real roots of f,,(1)
or g»(A) numerically, and determine the A-acceptability
of R(z) corresponding to each real root by investigating
E,,(1) which is approximately obtained.

(i) The case m=2, p=1, g=6.

The polynmial

gx(A)=—2+41-(10/3)A*+ (4/3)A°

—(4/15)2*+ 1%/ 45. 5.7
has the real root, 4,=3.51909015. . . . We obtain ap-
proximately

Ex(u)=u(2.1085—0.4594u). (5.8)

Thus, the corresponding rational approximation is not
A-acceptable.

@ii)) The case m=3, p=3, ¢=6.

The polynomial

365
FAD)=3-5A+(5/2A*=12/2+1%/30 5.9)

has the two real roots, A1,=1.02493188 ... and
A,=7.33493979. . . . In this case, we obtain approx-
imately
Ex(u)=u*0.1169+0.5396u) (5.10)
for A,, and
Ex(1)=u*(—6.6801—35.8984u) (5.11)

for A,. Thus, only the rational approximation corre-
sponding to A, is A-acceptable.
(iii) The case m=4, p=3, g=8.
The polynomial
ge(A)= —20+481 —42A2+(56/3)A° —(14/3)A*
+(2/3)A°—(16/315)A°+47/630 (5.12)
has the three real roots,
A,=0.885169% . . .,
and A3=9.94198815. . . .

A,=35.34281697 . . .

We obtain
E(u)=u%0.0553+0.24780u +0.5716u?),

E (u)=u’(1.8419—1.6480u — 10.4180u?) (5.13)

and
E(u)=u*—8.0558—38.8468u — 187.7797u?),
for A, A2 and A;, respectively. Thus, the A-acceptability
of R(2) is obtained for A,.
(iv) The case m=5, p=5, ¢g=8.
The polynomial

f(A)=5—131+10A2—(10/3)23+ (13/24)A*
—A%/24+1°/840 (5.149)
has the four real roots,
A1=0.63700032 . . .,
A3=7.90620732 . . .
We obtain
Es(u)=u(—0.0219—0.2966u +0.693617),
Es(u)=u’(0.1783+ 1.4482u +0.1643u%),
Es(u)=u’(—9.5705—39.3597u —46.9197u%)

A,=2.21458814 . . .,
and 1,=14.00659861 . . ..

(5.15)
and
Es(u)=u’(82.7562+2217.0072u — 20139.709413),

for A, 4, A; and A, respectively. Thus, the A-
acceptability of R(z) is obtained for A,.
(v) The case m=6, p=5, ¢g=10.
The polynomial
ge(A)=—70+2281 — 24817+ (400/3)A°
—(165/4)A*+(47/6)A° —(167/180)A¢

+A7/15-2%/378+1°/22680 (5.16)

has the five real roots,
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A1=0.56664636 . . .,
A3=6.9445970 . . .,

A,=1.98010163 . . .,
A4=10.22462450 . . .

and
As=16.98815977. . . .
We obtain
Ee(u)=1*(—0.0076 — 0.0670u —0.4538°
+0.70794%),
Es(u)=u*(0.0709+0.4871u+ 1.9509:*
+0.2743u3),
Eg(u)=u’(—0.3481 —12.1442u — 36.47194?
—38.91784%),
Es(u)=1u’(—12.3466 — 51.1070u — 140.23174*
—229.35594%)
and
Ey(u)=u*(76.6586 + 1201.2564u +22930.84734°
—205517.7805:%), (5.17)

for A, A2, A3, As and As, respectively. Thus, the A-
acceptability of R(z) is obtained for A,.

5. Concluding Remark

In this paper, we have constructed higher order A-ac-
ceptable rational approximations with reduced phase er-
ros, but have not discussed the corresponding A-stable
DIRK methods. In practice, it is important to construct
such A-stable DIRK methods and this is a future prob-
lem.
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