Short Note

529

Proposal of a Scheme for
Linking Different Computer Languages
—from the Viewpoint of Algebraic-Numeric Computation—

TATEAKI Sasak1®, YosHINARI Fukur**, Masayuk! Suzukr*

and MITSUHISA SATO

U**#

A simple and promising scheme for linking different computer languages is proposed. The scheme makes few
assumptions about the operating system on which it is used, yet it is so promising that even programs written in
quite different kinds of languages can be linked together. In particular, we discuss linking FORTRAN and Lisp
(that is, a Lisp-based algebraic language), giving some proposals on the operating system and FORTRAN.

1. Introduction

Although computers are widely used, current com-
puter languages are so specialized that each is used only
for restricted kinds of computation, and a single
language system (including its library) is not enough for
many practical types of computation. For such com-
putations to be performed satisfactorily, it is desirable
that programs written in different computer languages
should be executable in a single run as if they were ex-
ecuted as a single program written in a single language.
For brevity, we call this computation style hybrid com-
putation.

Many scientists and engineers have expressed a strong
desire for a hybrid algebraic-numeric system [1, 2, 3].
For these users, it is inconvenient to split computation
into algebraic and numeric types, because most of their
computations include both. Hybrid algebraic-numeric
computation is also desired by numerical analysts and
computer algebrists [1, 2, 3]. In mathematical computa-
tion, algebraic and numeric methods are often com-
plementary, and efficient and powerful algorithms can
be designed by using hybrid methods. Furthermore,
hybrid systems are sure to enhance computational flex-
ibility greatly. For example, it is easy to generate FOR-
TRAN programs by using Lisp. Hence, with an advanc-
ed hybrid system, it is possible to execute FORTRAN
programs that are generated in run time. We call this
operation dynamic program generation.

*Institute of Physical and Chemical Research, Wako-shi,
Saitama 351, Japan.
**Total Information & Systems Division, Toshiba Corporation,
Horikawa-cho, Saiwai-ku, Kawasaki-shi, 210, Japan.
***Department of Information Science, University of Tokyo,
Hongo, Bunkyo-ku, Tokyo 113, Japan.

Journal of Information Processing, Vol. 13, No. 4, 1990

Many hybrid systems for algebraic-numeric computa-
tion have been constructed, but none of them can be
said to be satisfactory. In this paper, we propose a new
scheme for a hybrid system that is quite simple but
seems to be very promising.

2. Desirable Hybrid Computation Scheme and
Criticism of Previous Schemes

A different scheme for hybrid computation may be
desirable if the languages concerned are different.
However, so far as algebraic and numeric computations
are concerned, the desirable scheme is almost unique
for two reasons: one is that a huge number of library
programs have been accumulated in these fields, and
nobody wants to rewrite them in a new language; the
other is that users have a very conservative attitude to-
ward modifying programs that they have already writ-
ten and debugged.

Thus, we assume that a desirable algebraic-numeric
hybrid scheme should satisfy the following conditions:

(1) A FORTRAN system and its library as well as
an algebraic system and its library can be fully used in
such a way that each system can be used separately;

(2) FORTRAN and algebraic programs can be link-
ed together, easily and with minimum changes to the
programs, so that the algebraic system can be called
from FORTRAN programs and the FORTRAN system
from algebraic programs;

(3) If the realization of a hybrid system requires
modifications and/or extensions of the languages and
systems concerned, these modifications and/or exten-
sions must be as few as possible.

Hybrid algebraic-numeric computation has been con-
sidered since about 1965, when many users began to use

530

general-purpose algebraic systems. Since then, several
hybrid schemes have been proposed and implemented.
However, these schemes are not satisfactory in terms of
the above conditions. We will explain this by briefly
surveying conventional algebraic-numeric hybrid
schemes.

The algebraic-numeric hybrid schemes proposed so
far may be summarized as follows:

(a) Constructing a file handler to transport common
data via files;

(b) Implementing an algebraic system as a set of
FORTRAN subroutines;

(¢) Implementing a FORTRAN-to-Lisp translator
in a Lisp system;

(d) Implementing an algebraic system in FOR-
TRAN or a language that has high familiarity with FOR-
TRAN.

Many users who want to perform hybrid computa-
tion now employ scheme (a), in which the file handling
is often done by the users themselves [4]. According to
our definition of hybrid computation, this scheme can-
not be viewed as hybrid.

Scheme (b) was adopted by FORMAC [5]. This was
the first successful general-purpose formula manipula-
tion system, and was designed as an extended feature of
FORTRAN. However, the manipulation of formulas
covers a large number of operations, and including
FORMAUC into FORTRAN necessitated a drastic exten-
sion of FORTRAN. A moment’s thought will show
that this is rather obvious.

Scheme (¢) was adopted by MACSYMA [6].
MACLISP, in which MACSYMA is written, has many
facilities for driving FORTRAN, such as a translator
from FORTRAN to Lisp [7], a compiler for fast execu-
tion of numerical programs written in Lisp [8], and a
facility for calling FORTRAN subroutines [9]. Since
facilities and data types in Lisp are much richer than
those in FORTRAN, and Lisp can also be used for
numerical computation, scheme (c) will be enough for
performing algebraic-numeric hybrid computation.
However, implementing this scheme requires a tremen-
dous amount of programming labor. Furthermore, the
system is not easy to maintain since it becomes quite
large.

Scheme (d) was adopted by SMP [10], a rather new
algebraic system developed at CalTech. SMP is written
in C, and a subset of C for numeric computation is
quite familiar with FORTRAN. Therefore, if a preproc-
essor is written to translate FORTRAN to C, FOR-
TRAN programs can be executed easily on the C
system. However, this scheme does not allow a large
number of algebraic programs written in Lisp to be
used, and they must be rewritten in C.

3. New Hybrid Scheme

Figure 1 illustrates a desirable hybrid computation on
language systems A and B: given a problem for which a

T. Sasaki, Y. Fukul, M. Suzuki and M. SaTou

language language
system system
A B
Access \ J Access

data types

data types
covered by A R

covered by B

target problem

Fig. 1.

solution cannot be obtained by a single language
system, we solve it by applying the facilities of other
languages. We assume that, in Fig. 1, the data types
covered by systems A and B overlap; otherwise, linking
A and B is meaningless. However, we admit that the
overlapped data types may be differently represented in
systems A and B, and this is actually so. Therefore, one
essential problem in linking different languages is how
to adjust the discrepancy between internal data represen-
tations. Note that all the hybrid schemes listed in the
previous section eliminate this problem by implemen-
ting the system in a single language.

The hybrid scheme we propose has the following four
features:

(i) The hybrid program is a mixture of programs
written in A and B, with commands specifying transi-
tion from one language to another, and is executed as se-
quential processes, that is, corountines;

(ii) The data used commonly in A and B are
declared before execution, and are allocated separately
to systems A and B. However, they are defined for the
user as if they were allocated to a single area common to
both A and B;

(iif) When the program execution is moved from A
to B, for example, the common data allocated to A are
copied to the common data area for B by converting
their internal data representations;

(iv) The programs generated dynamically are writ-
ten into a file shared commonly and transported be-
tween systems A and B.

Let us explain the above points by means of figures.
For definiteness, we assume that command ENTER B
(ENTER A) causes a transition from system A (B) to
system B (A). Furthermore, command GCOMMON
declares the data used commonly in systems A and B.
The identifiers declared by this command can be used in
both A and B. In addition to these commands, we need
the command EXIT which, when used together with an
ENTER command, specifies the end of a program
block. (Without the EXIT command, we cannot
recognize the execution flow correctly in nested sub-
programs.)

Figure 2 illustrates a hybrid program in our scheme.

~

Proposal of a Scheme for Linking Different Computer Languages —from the Viewpoint of Algebraic-Numeric Computation— 531

GCOMMON X,7Y,...
ENTER A

Program A1
(in A language)

EXIT
ENTER B

Program B1
(in B language)

EXIT
ENTER A

Program A2
(in A language)

EXIT
ENTER B

Program B2
(in B language)

EXIT

Fig. 3.

The hybrid program is first separated into A and B pro-
grams by a preprocessor. During this separation,
GCOMMON, ENTER, and EXIT commands are
replaced by corresponding codes in languages A and B.
The programs separated are compiled by their respec-
tive compilers, if necessary, and executed as shown in
Fig. 3.

We may emphasize the simplicity of our scheme: only
a few extra commands are introduced to link A and B.
That the programs written in A and B are executed se-

quentially, as weakly coupled processes, is one of the
key features of our scheme. Such an execution style is
already familiar in some operating systems, such as
UNIX, and requires only minor modifications even in
earlier-generation operating systems.

One might worry that the representation conversion
and copying of the common data will be very costly.
This concern is justified if the transition between A and
B occurs very frequently. However, the main target of
hybrid systems is actually scientific computation com-
posed of large tasks whose execution takes much more
time than the exchange of common data. Furthermore,
operating systems in the near future will provide a facili-
ty for shared memory. When this happens, the
overhead for exchanging common data will greatly
decrease.

4. Linking FORTRAN and Lisp

In the preceding section, we stated our hybrid scheme
in a general form to show that it can be applied to
various languages. In this section, we discuss the hybrid
scheme by confining ourselves to linking FORTRAN
and Lisp (or a Lisp-based algebraic language). We
select FORTRAN and Lisp because they are the most
important languages for numeric and algebraic com-
putations, respectively. For convenience of explana-
tion, we call our hybrid system ANS (Algebraic
Numeric System).

4.1 Data Types

The manner of treating precision is quite different in
FORTRAN and Lisp, which causes a serious problem
in connecting these languages. The precision of a
number in FORTRAN is strictly fixed throughout the
computation, while it will be changed automatically in
Lisp. Thus, a number # that is defined as a fixed-preci-
sion integer in FORTRAN may be changed to an ar-
bitrary-precision integer in Lisp. When this happens, it
cannot be converted back to a fixed-precision integer in
FORTRAN. If the ANS, not the user, is responsible for
this precision change, it is necessary to extend the FOR-
TRAN syntax. We propose the following extension of
FORTRAN as a simple answer to this problem:

Introduce a hybrid data type of integer-real
numbers in which a number is an integer so long as
it is representable as a fixed-precision integer, and
is automatically converted to a fixed-precision
floating-point number when the integer precision
overflows.

Note that introduction of this hybrid integer-real
number does not conflict with the static memory alloca-
tion scheme in FORTRAN. Note further that, although
dynamic data type checking is necessary for this
number, there is no need to check the data types of
other numbers dynamically in FORTRAN. Hence, the
computation cost will not be greatly increased by this in-

532

troduction.

There are many other differences between data types
in FORTRAN and Lisp, but most can be adjusted by
conversion of data representations. However, we insist
strongly on the unification of external representations
of strings and arrays, because they are important prac-
tically.

4.2 On Dynamic Program Generation and Loading

Dynamic program generation is an indispensable
facility in hybrid algebraic-numeric computation. This
facility requires an operating system to allow dynamic
linking of FORTRAN subroutines. However, most cur-

1)

;» Common variables declaration

$GCOMMON (Gint CO 10))
$GCOMMON_FUNC

((double RECREL ((double X))))

T. Sasaki, Y. Fukul, M. Suzuki and M. SATou

rent operating systems are not equipped with this facili-
ty.

Fortunately, most FORTRAN subprograms that are
generated dynamically in algebraic-numeric computa-
tion are function subroutines whose names and usage
are known before generation. Such cases of dynamic
program generation can be processed so long as the OS
allows dynamic loading of FORTRAN subroutines.
That is, with the dynamic loading facility, it is possible
to load dynamically and execute the body of a
subroutine whose name has already been registered and
linked with other subroutines. Dynamic loading is
much simpler than dynamic linking.

;; Vector for coeffs of polynomial.
;; Functional variable holding
;; Newton’s recurrence relation.

. Enter language C mode (Numerical language)

$ENTER (C)

define EPS 1.0e—6
define Max 20
main()

double x0, x1, fabs();
int i;

for (i=0; i<10; i++)
scanf("%i", &COlil);

v: Enter REDUCE

$SENTER (REDUCE) {
F —

FOR I := 029 DO
F = (F*X + CO9-));
RECREL := X - F /DFEF, X);
$} EXIT

”»

;; Accuracy of coeffs.
;; Maximum count of iteration

;; Read coeffs. and set them to
;» common variables.

;; Make an equation with
5, coeffs. given by common variables.
;; Calculate recurrence relation.

;; Generate new function to calculate the recurrence relation.

’$'LOAD_FUNC (RECREL)
:: Newton’s iteration in C
" x0 = 06
for (i=0; i<Max; i++) {
x1 = (*RECREL) (&x0);
if (fabs(x1-x0)<EPS)

break;
x0 = xl;
}
printf("Result = %If\n", x1);
exit_ans();
)
$EXIT

;s compile and load

s Calculate the next approximation.
;; Test of convergence.

Fig. 4 Example of an ANS program.

Proposal of a Scheme for Linking Different Computer Languages —from the Viewpoint of Algebraic-Numeric Computation— 533

4.3 Preliminary Implementation and an Example

The above investigation of our hybrid scheme for
ANS leads us to believe that realization of ANS is easy
so long as the operating system provides us with some
necessary facilities. In order to confirm this, we have im-
plemented ANS preliminarily on the UNIX operating
system. In the preliminary implementation, we have
linked REDUCE with C instead of FORTRAN,
because we have no FORTRAN system on our UNIX
operating system. Note that numerical computation in
C is almost the same as in FORTRAN, and that we have
realized most of the facilities of ANS in our implementa-
tion. We found that the implementation was quite easy.
(See Suzuki et al. [11] for a detailed description of the
implementation; in particular, they describe how the in-
ternal data representations are converted by a simple
mechanism). We found also that the inter-process com-
munication facility of UNIX [12] played an essential
role in this implementation; this facility allowed us to
realize coroutine processing easily. On the other hand,
it is rather difficult to implement ANS on an operating
system that does not allow communication between
different processes. Hence, in the next section, we make
several proposals to operating system designers from
the viewpoint of hybrid computation.

It should be mentioned that the notion of linking soft-
ware by a process communication facility has already
been proposed by Purtilo [13].

Figure 4 shows a sample ANS program in the current
preliminary version. Given ¢, ¢35, . . . , Co as input data
of numbers, the program solves a univariate equation

C9X9+C3X8+ s +C0X0=0

by Newton’s method. In the program, the GCOMMON
variable CO, which is declared by the command
$GCOMMON (every ANS command in the preliminary
version begins with $), is an integer array of size 10 and
is used for inputting polynomial coefficients. The
variable RECREL is also declared to be common (in
this case, to be a function name). A common variable
declared by SGCOMMON_FUNC is, when defined in
REDUCE and transferred to C, converted automatical-
ly to a C function subroutine. The C subroutine thus
generated dynamically is compiled and loaded by the
command $SLOAD_FUNC.

The program is executed as follows: first, the
polynomial coefficients are read in by the C system,
then the REDUCE system calculates the function
RECREL algebraically. Finally, the C system executes
Newton’s numeric iteration procedure. Note that the
numerical evaluation of RECREL is not executed by
REDUCE but done as a C subroutine.

5. Proposals on OS, FORTRAN, and Lisp

We have proposed a simple hybrid computation
scheme in which programs written in different
languages are executed sequentially as weakly-coupled
processes. The scheme makes it possible to construct a
flexible and advanced computation system with a
minimum of implementation labor.

When applied to FORTRAN and Lisp, our algebraic-
numeric hybrid scheme requires the operating system to
be equipped with the following facilities:

(01) Execution of FORTRAN and Lisp programs
as coroutines;

(02) Data handling (mostly, conversion of represen-
tations and copying) between data allocated to FOR-
TRAN and Lisp systems;

(03) File sharing between FORTRAN and Lisp
systems;

(O4) Dynamic loading of FORTRAN object codes
(dynamic linking of FORTRAN program is better but
dynamic loading is almost sufficient).

We think that the above requirements will be easily ac-
ceptable to operating system designers.

In addition to the above requirements for an
operating system, the following extensions of FOR-
TRAN and Lisp are necessary or desirable:

(E1) Unification of the user-level definitions of ar-
rays and strings in FORTRAN and Lisp;

(E2) Definition of hybrid integer-real numbers in
FORTRAN. (For the hybrid numbers, see Section 4.1.)

References

1. Brown, W. S. and HEeArN, A. C. Applications of Symbolic
Algebraic Computation, Comput. Phys. Commun., 17, 207-215.

2. Ng, E. W. Symbolic-Numeric Interface—A review, in Lec. Notes
Comput. Sci., 712 (Proc. EUROSAM ’79) (1979), 330-345.

3. Mitsul, T. Interface between Algebraic and Numerical Computa-
tions, Johoshori (Bulletin of Inf. Process. Soc. Japan), 27 (in
Japanese) (1986), 422-430.

4. Ouika, T., WATANABE, S. and MiTtsul, T. Hybrid Manipulations
for the Solution of a Large-Scale System of Nonlinear Algebraic
Equations, J. CAM. Intern’l Congress on Computation and Applied
Mathematics, Univ. of Leuvan, Belguim (1984).

5. Sammer, J. E. and Bonp, E. Introduction to FORMAC, IEEE
Trans. Electron. Computers, EC-13 (1965), 386-394.

6. The MATHLAB group, MACSYMA Reference Manual, version
9, Lab. Comput. Sci. MIT (1979).

7. PitMaN, K. M. A FORTRAN—LISP Translator, Proc. 1979
MACSYMA User’s Conf. (MIT) (1979), 200-214.

8. STEEL, G. L. Jr. Fast Arithmetic in MACLISP, Proc. 1977 MAC-
SYMA User’s Conf. (NASA) (1977), 215-224.

9. LaNaM, D. H. An Algebraic Front-End for the Production and
Use of Numerical Programs, Proc. SYMSAC ’81 (1981), 223-227.
10. CoLrg, C. A., Wolfram, S., et al. SMP Handbook, version I,
CALTEC (1981).

11. Suzuki, M., Sasakl, T., Fukui, Y. and SAaTo, M. A Hybrid
Algebraic-Numeric System ANS and Its Preliminary Implementation,
Proc. EUROCAL °87 (Lec. Note Comput. Sci. 378), 163-171.

12. LETTLER, S. J., FaBrY, R. S. and Joy, W. N. A 4.2BSD
Interprocess Communication Primer (1983).

13. PurTiLO, J. M. Application of a Software Interconnection
System in a Mathematical Problem-Solving Environment, in Proc.
SYMSAC ’86 (1986), 16-23.

(Received June 11, 1987; revised May 10, 1989)

