Research Contribution

463

A Fast Algorithm for Computing Longest Common
Subsequences of Small Alphabet Size

Francis Y. L. CuiN*! and C. K. Poon*

Given two strings of lengths m and n=m on an alphabet of size s, the longest common subsequence (LCS)
problem is to determine the longest subsequence that can be obtained by deleting zero or more symbols from
either string. The first O(mn) algorithm was given by Hirschberg in 1975. The algorithm was later revised to
O(In), where [is the length of an LCS between the two strings. Another strategy given by Hunt and Szymanski
takes O(rlogn) time, where r<mn is the total number of matches between the two strings. Apostolico and
Guerra combined the two approaches and derived an O(mlogn+dlog(mn/d)) algorithm, where d=<r is the
number of dominant matches (minimal candidates) between the two strings. Efficient algorithms for two similar
strings were devised by Nakatsu et al. [7] and Myers [6] with time complexities of O(n(m—1)) and O(n(n—1)), re-
spectively. This paper presents a new algorithm for this problem, which requires preprocessing that is nearly
standard for the LCS problem and has time and space complexity of O(ns+ min{ds, Im}) and O(ns+d), respec-
tively. This algorithm is particularly efficient when s (the alphabet size) is small. Different data structures are
used to obtain variations of the basic algorithm that require different time and space complexities.

1. Introduction

Leta=a\a,. . .anand B=b,b,. . . b, be two strings
on an alphabet 2={a,, 0;,..., g} of size s with
m=n. A subsequence of o can be obtained by deleting
zero or a number of (not necessarily consecutive) sym-
bols from «. We say that y is a common subsequence of
« and B iff y is a subsequence of both « and 8. The
longest common subsequence (LCS) problem is to find
a common subsequence y of o and £ of maximal length.

Define the L-matrix for the two strings o and 8 as an
integer array L[0. . . m, 0. . . n] such that L[i, j] is the
length of an LCS for «[1...i]) and B[1. . ./]. Since
afl...0]and B[1. . .0] are two empty strings, L[/, 0]
=LI[0,j1=L[0, 0]=0. It was proved by Hirschberg [3]
that for 1<ismand 1<j<n,

_ L=, —=1]+1
max {L[i—1,j], L[i,j—1]}

L[] if a,'=b,‘
LJ .
otherwise.
With this property, he applied a dynamic programm-
ing strategy to derive an O(mn) algorithm that solves
the problem by filling L row by row. Since L is non-
decreasing in both arguments, we can draw contours [4]
on L to separate regions of different values. Further-
more, the set of contours can be completely specified by
their corner points, which are called dominants. As an il-

*Department of Computer Science, University of Hong Kong,
Hong Kong.

'This research is supported in part by ONR grant N00014-87-K-
0833 while the author is visiting at the Department of Computer
Science, University of Texas at Dallas, Richardson, Texas 75083.

Journal of Information Processing, Vol. 13, No. 4, 1990

Fig. 1 The contents of an L-matrix when a=cbbdac (vertical)
and f=abcddba (horizontal). Row 0 and column 0 of L
are omitted.

lustration, Figure 1 shows an example of the L-matrix
for the strings a=cbbdac and B=abcddba, where the
circled entries are the dominants. It is easy to see that
there are / contours, where / is the length of an LCS,
and an LCS can be obtained by finding the set of
dominants, instead of filling all the m X n entries in L.

Although quadratic time complexity was shown to be
necessary for this problem for sufficiently large s [1],
various improvements to the simple O(mn) algorithm
concentrate on efficient generation of the dominants.
One of the earliest variations was by Hirschberg [4],

464

whose algorithm repeatedly scans « and generates all
the dominants of each contour after each scan. Since
each scan takes n steps (in order to look for matching
symbols in 8) and there are / contours, the total time
complexity of the algorithm is no more than
O(nlogs+1In) where nlogs is the preprocessing time.
Hunt and Szymanski [5] attempted to find the
dominants in L row by row. The matches associated
with each row are considered one by one in succession
from right to left, and the dominants are determined by
binary search. As each match has to be considered
once, the total time complexity is bounded by
O(nlogs+ rlogn), where r is the total number of matches
between the two strings. With the use of a proper data
structure, Apostolico and Guerra [2] improved the time
complexity to O(nlogs+ mlogn+dlog(mn/d)) on the
basis of the above ideas, where d<r is the total number
of dominants between the two strings.

Our algorithm follows the same line of reasoning on
the efficient generation of the dominants in L. The
dominants associated with the contours are generated in
order of increasing value. But instead of scanning « for
the generation of the dominants in each contour, as in
[4], the dominants in each contour are generated from
those with a lower value. Since each dominant can
generate at most s dominants of the next contour, no
more than O(ds) time will be required for this stage.
With some careful analysis, it can be shown that our
algorithm takes no more than O(ns + min{ds, Im}) time
and O(ns+d) space, where O(ns) is the preprocessing
time.

The next section gives the properties of L and the
necessary concepts for our algorithm. Section 3
presents the algorithm, and its analysis follows in Sec-
tion 4. Section 5 studies different variations of the basic
idea and Section 6 concludes the paper by discussing
some possible improvements.

2. Fundamental Concepts and Definitions

Denote the ordered pair of position / and j of L by [i,
J). li, J) is called a match iff a;=b,. Define a rectangular
region in L, YRy, as the set of elements, {[p, q]
li<p=kand j<qg=<!}. [i,j) is a dominant or k-domi-
nant iff L[i, j1=k and L[p, q] <k for all other elements
[P, q] in ®R;;. Since [i, j] is a dominant only if [/, j]is a
match, r=d.

Define D* as the set of k-dominants, that is all the
dominants on the contour with value k. Thus the set of
dominants is composed of / disjoint subsets D', D?, . . . ,
D', where [is the length of an LCS.

Next we define an ordering for the elements in D*.
Given two k-dominants, [i, j], [u, v] in D*, [u, v] is said
to be lower than [i, j] or [i, j] is higher than [u, v] iff
u>i or, equivalently, iff v<j [3]. [u, v] is the lower
neighbor of [i, j1 or [i, j] is the higher neighbor of {u, v]
iff [u, v] is the highest k-dominant lower than [i, j]. In-
formally, a dominant is higher than another one if it ap-

F. CriN and C. K. PooN

pears higher in the picture of L-matrix and is also to the
right of the lower one. For the example in Fig. 1, the set
of 2-dominants is D*={[2, 6], [4, 4], [6, 3]} with the
order that {2, 6] is higher than [4, 4] and [4, 4] is higher
than [6, 3].

Let [#, j] be a k-dominant in D* and [u, v] be its lower
neighbor; define [u, v]=[m, 0] if [/, j] is the lowest ele-
ment in D*. Define D; as the set of all the (k+1)-
dominants in “R,,, that is, the set of (k+ 1)-dominants
in the horizontal strip of L bounded (inclusively) by
row i+ 1 and u. Consider the example in Fig. 1. The set
of 1-dominants, D'={]1, 3], [2, 2], [5, 1}} has three
elements. So D? is divided into three subsets, namely
D|3= {[2, 6]}, D2= {[4, 4]} and D51 = {[6, 3]}. Note that
there should be no 2-dominant higher than row 2. In
general, we have the following resuli[s].

Theorem 1: D**'=U{D,l[i, jle D"}
Proof: If [/, j] is the highest k-dominant, no (k +1)-
dominant would lie on or above row i. The elements of
D¥ cut the rest of the rows into |D*| horizontal strips
and any (k + 1)-dominant must fall on one such strip.-¢-
Thus to find D**', we can find D; for all [i, j]e D*,
and then form the union. Now let us consider some
useful properties of Dj;.
Assume [/, j] is a k-dominant and [u, v] is its lower
neighbor. Suppose {p, q] is in D;;. (For convenience,
these assumptions will hold for the rest of this section.)

Lemma 1: [p, ¢] must lie on the right of [i, j], that is
q>j.
Proof: By contradiction, if g=<j, there would be a k-

dominant [w, x] on the left of [/, j] and above [u,],
that is, x<j and w<u. If w=<i, [, j] would not be a k-
dominant. If w>i, [u,v] would not be the lower
neighbor of [i, j].-o-

Theorem 2: If [p, q] is a match of symbol o, then [p,
q1=1[ps, qs], where p,, g, are the positions of the first ¢
inali+1...m]and B[j+1. .. n], respectively.
Proof: We shall prove the theorem by contradiction.
From the definition of D;; and Lemma 1, p>i and g>.
So if [p, g} #[Ps, -], then either p,<p or g,<gq. In
other words, [p,, g,] lies in the region “R,,\ {[p, ql},
that is, the region YR, except [p, q]. But we can form a
common subsequence of length k+1 for «fl ... p,]
and B[1 . . . g,) by appending o to the LCS (of length
kK)ofall...iland B[1.../]. Hence L[p,, g;] =k +1,
contradicting the supposition that [p, q] is a (k+1)-
dominant. -¢-

A corollary of Theorem 2 is that D; is a subset of
{[po, gollae X'}, to be denoted as S;;. Hence, D;, has at
most s elements. As an example (Fig. 2), let [i, j]1=[2, 2]
be a 1-dominant in D'. Then we have [p,, g.J=]5, 7],
[Ps, @s)=13, 6}, [p., g1=16, 3] and {pa4, gd =14, 4]. Of
these, only [4, 4] is a 2-dominant in D,. Moreover, D>,
contains no other elements.

The following theorem gives the necessary and
sufficient conditions for an element, [p,, g.], of S;; to be

A Fast Algorithm for Computing Longest Common Subsequences of Small Alphabet Size 465

a b c d d b a

Fig. 2 The L-matrix for the example in Fig. 1. [/, j] is a 1-domi-
nant and the entries with ‘*’ are elements of S [par g4}
=(4, 4] is the only element in D;;.

in D;; (Fig. 3). Readers are encouraged to verify that in
Sz, only [4, 4] satisfies these conditions.

Theorem 3: A match [p., q-] in Sj; is a (k+1)-domi-
nant in Dj iff p, < v and g, <z, where [y, z] is the lowest
(k+1)-dominant above row p, and z=n+1 if there is
no (k+ 1)-dominant above row g,.

Proof:

(Necessity) it should be easy to see that both p,<u and
g, <z are necessary for [pg, go] to be in Dj;.
(Sufficiency) Firstly, we note that L[r, s]=k for all [, s]
in the 1-column vertical strip: row i+ 1 to in column j
(region A in Fig. 3), and the 1-row horizontal strip: col-
umn j+1to z—1in row i (region B in Fig. 3). Secondly,
if g, <z, there will be no match in YR, -1 ,4,. Obviously,
the 1-row horizontal strip: column j+1 to g,—1 in row
Do, would not contain any match, from the definition of
po and g,. Hence if p,<u, L[r, s]=k for all [r, s] in
UR,,, ~ except that L[ps, gl=Llps—1,¢,—1]
+1=k+1.¢

3. The Basic Algorithm

Our algorithm will generate all the dominants in the
order D' and then D%, . . . , D*. To determine D**', we
find D;; for all [, j] in D* and then form the union. The
procedure EXPAND shown below will be used to
generate Dj. It accepts four parameters, i, j, u and z,
where [u, v] is the lower neighbor of [/, j] and [y, z] is
the lowest (k + 1]-dominant in ®R;,, that is, on or above
row i. In fact, {y, z] is also the lowest (k+ 1)-dominant
above the highest element in S;. After execution,
EXPAND returns a list, OUTPUT-LIST of all the
elements in D;; sorted in row number.

Procedure EXPAND (i, j, u, 2)

1. while there exists [ps, qs] in S with p,<u do
2. get the highest [ps, q)

3. if g, <z then

a b c d d b a
c
b ij B y.z
" /
d A / D,
()
c

Fig. 3 A diagram to illustrate Theorem 3. [i, 41, [u, v), [Po q,)
are defined as above. [y,] is the lowest (k + 1)-dominant
above row p,. The L-matrix has the value k in the vertical
and horizontal strips (regions A4 and B respectively). The
shaped region is “R,, , \{[p,, g,1}.

4, append [p., q;} to OUTPUT-LIST
s. 2:=q,
end-if
6. remove [p,, q,] from S;;
end-while

7. return (QUTPUT-LIST)

Observe that the algorithm enumerates [p,, g5} in in-
creasing order of row number. Then z will always be the
column number of the lowest (k+1)-dominant above
the next possible candidate in S;;. Hence the correctness
of algorithm EXPAND follows directly from Theorem
3.

However, we have implicitly assumed the knowledge
of §;; for any position [, j], and moreover, a data struc-
ture to enumerate S;; in increasing order of row number
efficiently. To realize this, we provide two tables: a-
CLOSEST’[1. . .s,0...m]and 8-CLOSEST]o, . . . o,
0...n). B-CLOSEST|o, j] specifies the position of the
first ¢ in B[j+1... n+1]. (For convenience, we ap-
pend to the ends of « and B a joker symbol, ‘$’, that
matches all symbols. Therefore, if ¢ does not exist in
Blj+1...n], B-CLOSEST]o, jl=n+1.) a-
CLOSEST" is slightly different from 8-CLOSEST and
a-CLOSEST’[x, i] is set to the value p; s.t. a,_is the x™
different symbol when «fi+1... m+1] is scanned
from front to end and p, is the position of its first occur-
rence. Note that 1<x=<s and p,<p,<...<p. So a-
CLOSEST’[1. . .s, i] and B-CLOSEST(a, . . . 0s,j}
store the row and column numbers of the [p,, ¢,]’s in
Si» respectively. Moreover, the p,’s are arranged in
ascending order. With these two tables, we can easily
get from a-CLOSEST’ the smallest p, of an uncon-
sidered symbol g in e[i+1 . . . m+1] and look up ¢, in
B-CLOSEST.

As an example, referring to Fig. 2, we have

a-CLOSEST’[1, 2]=3 «af3]1=b

466

B-CLOSESTIb, 21=6
a-CLOSEST’[2,2]=4 a[d]=d
B-CLOSESTId, 2]=4
«-CLOSEST’[3,2]=5 a[S]=a
B-CLOSESTIa, 2]=17
a-CLOSEST'[4,2]=6 al6]=c
B-CLOSESTIc, 2]1=3

Hence, the elements of S,; (arranged in increasing row
number) are [3, 6], [4, 4], [5, 7], and [6, 3].

To call EXPAND, we must supply « and z besides [i,
j1. u can be retrieved easily if the elements of D* are
stored in a linked list sorted in increasing row number.
To know z we have to ‘expand’ the higher neighbor of
[#, j] before ‘expanding’ [/, j]. This order of expansion
is also favored by the linked list data structure for D*.
Note that every element of D,, is higher than every ele-
ment of Dy if [w, x] is the higher neighbor of [i, j].
Thus, after the call EXPAND(w, x, i, 2'), the updated
value of z’ is the correct value of z for the next call EX-
PAND(, j, u, 7). Hence, EXPAND should also return
the updated z.

Finally, to facilitate the retrieval of an LCS after
finding all the dominants, we have to keep a PARENT
pointer for every record of the dominant [p, g]. It
should point to the record of [i, j] if [p, q] is in D;.

The modified procedure EXPAND.MOD and the
main algorithm FIND_LCS are shown below.

Procedure EXPAND.MOD (, j, p, u, 2)

Remark: EXPAND.MOD returns D; in OUTPUT-
LIST L, which is a linked list of dominant records, and
the updated z. A dominant record has the format: (fi, j],
D) where [i, j] is a dominant and p is a PARENT
pointer. For the input parameters, pointer p points to
the record of [i, j], [u, v] is the lower neighbor of [i, j],
and [y, 7] is the lowest (k+ 1)-dominant in ®R,,.

1. x:=1
2. while o-CLOSEST'[x, i]<u do
3. :=a-CLOSEST'[x, i]; c:=B-CLOSESTIa,, j]
4. if c<z then
5. append ([r, c]l, p)to L
6. L=cC

end-if
7. x:=x+1

end-while

8. return(L,)

Algorithm FIND_LCS(«a,)

Remark: FIND_LCS outputs the LCS of o abd B.
oa-CLOSEST' and B-CLOSEST are defined above.
Df0. . m]is an array of lists and each list D{k] is a list
of dominant records, each storing an element of D*.
The records of each list will be stored in increasing row
number order.

F. CHiN and C. K. PooN

1.1 for 1=x<sdo B-CLOSEST|o., n}:=n+1
1.2 for j:=n—1 downto O do begin

1.3 for l=<x<s do p-CLOSESTIo,,j):=8-
CLOSEST|o., j+1]

1.4 B-CLOSEST[b;+\, j):=j+1
end-for

2.1 for l<x<sdo a-CLOSEST [x, m]:=m+1

2.2 fori:=m—1 downto 0 do begin

23 a-CLOSESTI(1,i]:=i+1

24 find the min. y s.t.
CLOSEST'|y, i+1]={

2.5 for 2<x<y do «-CLOSEST[x,il:=a-
CLOSEST'[x—1, i+1]

2.6 for y=x=<s do
CLOSEST'[x, i+1]
end-for

3.1 put [0, 0] into DIO]

3.2 k=0

3.3 while D[k] not empty do

3.4 COLox:=n+1; Dlk+1]:=empty
35 repeat

ais\=a,, where a-

a-CLOSEST'[x, i]:=a-

3.6 get the highest not expanded [i, j] in D[k],
with p pointing to the record of [i, j]

3.7 if [i, j]1 has lower neighbor [u, v] then

3.8 ROW i =u

3.9 else ROW :=m

3.10 (L, COLway):=EXPAND.MOD(i, j, p,
RO Wmax, COLmax)
.1 append L to Dlk+1]
3.12 until al// elements of D[k] expanded
313 k:=k+1
end-while

4.1 Pick an element [p, q] in Dlk—1]
{k—1=I=length of LCS}

4.2 while k—1>0do

4.3 output([p, q])

4.4 set [p, q] to parent of |p, q] by following the
PARENT pointer

4.5 ki=k—1
end-while

Steps 1 and 2 are the preprocessing steps that build
the 8-CLOSEST and a-CLOSEST' tables. Step 3 is the
main body that computes D', I?, . . ., D'. Since higher
dominants of D* will be expanded before the lower ones
by the algorithm FIND_LCS and the procedure EX-
PAND.MOD generates the elements of Dj; also in in-
creasing row number, the elements of D**' will be
generated and hence stored in D[k+1] in the same
order. Step 4 recovers an LCS in reverse order. This
step is relatively simple, as each dominant in D* has a
parent pointer pointing to a dominant in D*"'.

4. Analysis of Algorithm

Steps 1 and 2 constitute the preprocessing, which
takes time O((n+m)s). In Step 3, the outer while-loop

A Fast Algorithm for Computing Longest Common Subsequences of Small Alphabet Size 467

(line 3.3) repeats for / times and the inner repeat-loop
(line 3.5) loops for | D*| times. Therefore, there should
be ID'I+iD’I+...+1D'|I=d calls to EX-
PAND.MOD. The procedure EXPAND.MOD requires
at most O(s) time to find D;. Thus Step 3 requires at
most O(ds) time. On the other hand, D**'=U{D;l[i, j]
€ D*}. In constructing D, from S;, EXPAND.MOD
considers only |S;Y°R,,| elements. Thus determining
D**! requires X1 S;{Y°R,,| =O(m) time. Consequently,
Step 3 takes no more than O(/m) time. Thus the total
work for Steps I, 2, and 3 has a time complexity of
O((n+m)s+min{ds, Im}).

The required space includes tables a-CLOSEST' and
B-CLOSEST, together with the linked lists D[k] of the
dominants. They require a total of O((m+n)s+d)
storage.

Let us consider the following example with
a=0"1"0", =1"0"1" and T=1{0, 1}. Obviously, y, the
LCS of a and B, is either 0"1” or 1"0”. Hirschberg’s ap-
proach [3] takes O(n?) time, whereas that of Hunt and
Szymanski [5] takes O(n? log n), that of Apostolico and
Guerra [2] O(nlogn), and those of Myers [6] and
Nakatsu, Kambayashi and Yajima [7] O(n?), as o and 8
are not similar strings. However, our approach takes no
more than O(n). Note that our approach will perform
best when s is small, but in some cases our approach
may not be as good as others.

5. Variations of the Basic Algorithm

As shown in Section 3, we provide a-CLOSEST’ and
P-CLOSEST for easy enumeration of S; in the main
program. This preprocessing requires O(n+m)s) time
and storage. With the help of these tables, expanding a
dominant requires O(min{s, ¥=—i}) time. (For conve-
nience, we let [/, j] be a k-dominant, [«, v] its lower
neighbor, [w, x] its higher neighbor, and [y, z] the
lowest (k + 1)-dominant on/above row i. These assump-
tions will hold throughout this section.) In this section,
we study two variations of the basic algorithm. In the
first, we reduce the preprocessing time to O((m+n)
logs) and storage to O(m + n) by using a persistent data
structure [8]. This is a significant reduction, and the
penalty is just a slight increase of the dominant expan-
sion time to O(min{s, u—i+x—j}). In the second varia-
tion, we reduce the time of dominant expansion to
O(logs). This requires the construction of a special
table, 1-DOM, using O((s!)’s) time and O(s*) space. In
addition, we need a-, f-CLOSEST and «a-, 8-INDEX,
which requires O((m +n)s) time and space. However,
the table 1-DOM is independent of the input strings.
Therefore the method is suitable for applications in
which the LCS of many pairs of strings is required and
the alphabet size is small. In this situation, 1-DOM is
calculated just once.

Variation 1
A persistent tree allows insertion and deletion, as in

many ordinary dynamic data structures such as AVL
trees and red-black trees [9]. However, a persistent tree
differs from these other trees in its ability to access infor-
mation from the past. More precisely, only the follow-
ing operations of the persistent tree are considered for
our application:

access(x, t): Find the node in the tree at time ¢ with the
smallest key greater than or equal to x.

insert(x, t): At time ¢, insert the node with key x into the
tree.

delete(x, t): At time ¢, delete the node with key x from
the tree.

Moreover, the time specified in any update (in-
sert [delete) operation should not be earlier than that of
any operation already performed. For example, after
the two operations insert(x, 1) and delete(x, 3), insert(y,
2) is not allowed; access(x, 2) will return the node with
key x; access(x, 4) will return ‘key not found’. Sarnak
and Tarjan [8]} have described several techniques for
converting some ordinary dynamic data structures into
persistent ones. Thus there are persistent AVL trees, per-
sistent red-black trees, and so on.

Now consider a-CLOSEST’. Suppose we use a red-
black tree to store the s elements in «-CLOSEST’[1 . . . s,
i+1]. We can still enumerate them in ascending order.
If we then insert i+ 1 and delete i’ (s.t. @;+,=a; and i’ is
the position of the first occurrence of the symbol a;., in
ali+2 .. .m]), the new tree will contain the elements in
a-CLOSEST’[1. . .s, i]. However, we must not forget
the old tree because a-CLOSEST'f1 . . . s, i+1] may
be needed to expand a dominant in the main program.
Therefore we can use a persistent red-black tree, a-
TREE, to replace a-CLOSEST'. Although the usage of
B-CLOSEST is slightly different from that of a-
CLOSEST’, we also replace it by a persistent tree, 8-
TREE.

To construct a-TREE, we start with an empty tree at
time t= —m. At time t= —i (0<i<m—1), we perform
insert(i+1, —i)and delete(i’, —i) on a-TREE so that it
contains the same elements as in «a-CLOSEST'[1 . . .s,
i]. Note that we need an auxillary table Plo, . . . g,] so
that at time just before —i, P[g;]=position of the first
giinafi+2. .. m)]. In fact it contains the same elements
as in a-CLOSEST’[1...s, i+1] but in a different
order. This table enables us to find i’ by looking at
Pla;;]. After the two updates on a-TREE, we set Pla;+]
to i+ 1 so that Plg;] =position of the first g;ina[i+1 . . .
m]. The construction of f-TREE is similar. From Sar-
nak and Tarjan [8], updating a persistent red-black tree
requires O(/ogs) time, where s is the size of the tree at
that moment. The space required is O(m) when there
are m updates. Therefore the constructions of «- and §-
TREE require O((m+ n) logs) time and O(m + n) space,
since there are 2(m+ n) updates in total.

To expand a k-dominant [/, j], we first retrieve all the
q.’s from B-TREFE at time t= —j s.t. g,<x, and write
them into an auxillary array Q[a; . . . o). (Q is initializ-

468

ed to n+1 at all entries before expanding the highest k-
dominant for every k. Thus Qo ...ad]=8-
CLOSEST|o, . . . g5, n].) From Sarnak and Tarjan (8],
if the updates are taken at regular time intervals (as in
our situation), accessing a persistent red-black tree
takes the same time as the non-persistent counterpart.
Therefore retrieving the smallest r elements from a tree
with s nodes requires O(max{logs, r}) time if an in-
order traversal is done. In our situation, r=min{s,
x—j}. If x—j<O(logs), searching B-TREE will take
O(logs) time, but searching [+ 1. . . x] will just take
O(x—j) time. We will therefore search g instead of -
TREE. Consequently, retrieving the g,’s requires
O(min{s, x—j}) time. After that, Q[o:. .. ag]=p-
CLOSEST]|o, . . . 05, j]. Then we retrieve, in ascending
order, the p,’s from «-TREE at time t=—is.t. p,<u
(or from a(i+1. .. u] directly if u—i<O(logs)). This
requires O(min{s, u—i}) time. For each p, retrieved,
we immediately check Qlo] to see if Q[g]<z’, where
[y, 2’} is the lowest (k+1)-dominant higher than row
Do. If the test succeeds, [ps, Qlo]] is a (k+ 1)-dominant,
else it is not. Note that next time we expand [u, v], we
retrieve the g,’s between v+1 and j and overwrite Q.
The resulting array will be equal to f-CLOSEST [a, . . .
gs, v]. Hence the time to expand a dominant is
O(min{s, u—i+x—j}). By an analysis similar to that
for the basic algorithm, the total time and space for this
variation are O((n+ m) logs+min{ds, I(n+m)}) and
O(n+m+d), respectively. The procedure EXPAND.1
that expands a dominant is shown below.

Procedure EXPAND.1 (i, j, p, u, z, x)

Remark: EXPAND.1 has the same input and output
parameters as EXPAND.MOD, except x where [w, X] is
the higher neighbor of [i, j]. However, it uses a- and f-
TREE instead of o-CLOSEST’ and B-CLOSEST.
Moreover it requires an auxillary array Qfo,. . . o
that is initialized to n+ 1 at all entries before expanding
the highest k-dominant for any k.

1. while there exists q, at time —j with g,<x do
2. get q, from B-TREE
(or from B directly if x—j < O(logs))
3. Qlol:i=q,
end-while

4. while there exists p, at time —i with p,<u do
S. get the smallest p, from a-TREE

(or from « directly if u—i<O(logs))
6. if Q[o] <z then
7. append ([ps, Qloll, p) to L
8. z:=0Qlo]

end-if

end-while

9. return (L, 2)

Variation 11
In Section 3, Theorem 3 gives the condition for an ele-
ment, [ps, go], of S;;to be in D;j:p, <u and g, <z’ where

F. CHIN and C. K. PooN

[¥’, 2’] is the lowest (k+ 1)-dominant higher than row
D.. We can however, break down the conditions into
two parts:

(R1) p,=<u and q,<z; and

(R2) no other element, [ps, g5}, in S;; s.t. p;<p, and
9:<q..

Observe that the relative positions between the
elements in S;; are sufficient to determine the subset that
satisfies (R2). Thus S; has just (s!)? different cases with
respect to (R2). Hence we can calculate the subset satis-
fying (R2) for all possible cases of S; and store them in
a table, 1-DOM. When expanding a dominant, we get
back the subset from 1-DOM and eliminate those
elements violating (R1). The remaining subset will then
be the required Dj;. If s is very small with respect to n,
there will be many S;’s that have the same relative order-
ing of elements, in which case the construction of 1-
DOM is worthwhile. Thus from now on, we will assume
that slogs<logn.

To simplify the indexing, we define 1-DOM|[u . . . v,
u...v] (where u=ag,...01, v=0,...0,) as an
s*x s* table although only (s!)’ entries will be used. for
any two permutations «’, #’ of the s symbols in the
alphabet, 1-DOM|[c’, B’] is defined as the set
{olo=«a'[i]1=8’[/] and there are no other matches in
0"R,-j}. Note that this is just the set of 1-dominants for
o’ and B’ (hence the name 1-DOM). We store the set as
a list of s symbols arranged in increasing order of row
number and pack it into one memory word (assumed to
have logn bits). The construction of an entry f 1-DOM
takes O(s) time, and the work is similar to the dominant
expansion in the basic algorithm. Hence constructing 1-
DOM requires O((s!)’s) time and O(s*) space. Both are
less than O(n?) as slogs < logn. Note that unused entries
such as 1-DOM |u, u] need not be calculated.

Besides 1-DOM, we need o-INDEX([0 . . . m] and 8-
INDEX]IO . . . n] for indexing 1-DOM when expanding
adominant. a-INDEX[i] is defined as a string of length
s such that its & symbol is the k" different symbol met
when scanning afi+1 . . . m] from front to end. §-IN-
DEX is similarly defined. The construction is similar to
that of a-CLOSEST"’ in the basic algorithm. Hence the
two tables require O((m + n)s) time and O(m + n) space
(since we can pack a string of length s into one word).
We also need a-CLOSEST[G,.. .05, 0...m] and S-
CLOSEST|a,...a5, 0...n] to eliminate those
elements violating (R1). f-CLOSEST is as defined in the
basic algorithm and «-CLOSEST is similar to f-
CLOSEST. Hence they require O((m+ n)s) time and
space.

When expanding a dominant [/, j], we retrieve from
1-DOM [a-INDEX[i], B-INDEX[/j]] the subset of S
that satisfy {R2). Since the elements of the subset are or-
dered in increasing row number (and thus also in
decreasing column number), we can do binary searches
on the subset to select those elements satisfying (R1).
We first look at the (s/2)" symbol, g (say), of the subset
and check whether -CLOSEST]a, j1<z’. If the test

A Fast Algorithm for Computing Longest Common Subsequences of Small Alphabet Size 469

succeeds, we check the (3s/4)"; otherwise, we check the
(s/4)™, and so on. Thus in O(logs) time, we can deter-
mine the border line that separates those symbols that
are on the left of column z’ from those that are not.
Another O(logs) time will determine those on/above
row u.

Finally, we append each element in the remaining
subset, D, to the list D[k]. This requires a constant
time for each element. We can therefore charge the
work onto the elements of Dj;, rather than on the expan-
sion of [/, j/]. Hence the expansion of a dominant re-
quires O(logs) time. Consequently, the total time and
space for this variation are O((s!)’:s+ (m+ n)s+dlogs)
and O(s®+ (m+ n)s+d), respectively.

6. Conclusion

The LCS problem has been studied by a number of
researchers and its complexity has been improved in
different respects. We have a solution that is efficient
when the alphabet size for the strings is small. Using the
same idea, we derive two variations of our algorithm
with different time and space complexities for different
data structures. However, it is still not certain whether
better-than-quadratic-time uniform algorithms for this
problem exist when s is fixed, even though a

nonuniform linear algorithm exists for this problem
when s=2.

Acknowledgment

The authors wish to thank Dr. M. Y. Chan for
reading the early drafts of this paper.

References

1. AHO, A. V., HIRSCHBERG, D. S. and ULLMAN, J. D. Bounds on
the complexity of the maximal common subsequence problem, J.
ACM,. 23 (1976), 1-12.

2. ApostoLico, A. and GUERRA, C. The longest common subse-
quence problem revisited, Algorithmica (1987) 2: 315-336.

3. HIRSCHBERG, D. S. A linear space algorithm for computing max-
imal common subsequences, Comm. ACM, 18 (1975), 341-343.

4. HIRSCHBERG, D. S. Algorithms for the longest common subse-
quence problem, J. ACM, 24 (1977), 664-675.

§. Hunr, J. W. and Szymanski, T. G. A fast algorithm for com-
puting longest common subsequences, Comm. ACM, 20 (1977), 350-
353.

6. MyEers, E. W. An O(ND) difference algorithm and its variations,
Algorithmica (1986) 1:251-266.

7. NAKATsU, N., KAMBAYASHI, Y. and YAJIMA, S. A longest com-
mon subsequence algorithm suitable for similar text strings, Acta In-
JSformatica, 18 (1982), 171-179.

8. SaARrRNAK, N. and TARJAN, R. E. Planar point location using persis-
tent search trees, Comm. ACM, 29 (1986), 669-679.

9. Tarian, R. E. Data structures and network algorithms, Society
for Industrial and Applied Mathematics, Philadelphia, Pa., 1983.

(Received March 5, 1990; revised July 2, 1990)

