Short Note

An Addendum to the Previous Paper
‘“Runge-Kutta Type Seventh-order
Limiting Formula (1989)"’

Harumi Ono* and Hipeo Topa*

In our paper on the Runge-Kutta type seventh-order limiting formula, which appeared in Vol. 12 No. 3 of this
issue, the following problem is raised: similar to the five- and six-stage formulas, is it possible to derive a seven-
stage formula of numerically seventh-order? Here we present the answer to this problem.

1. Introduction

The Runge-Kutta type seventh-order limiting for-
mula of order seven is given as follows [2]:
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where £ is the step size, and the b;;’s, be;;’s and m)’s are
the parameters which are expressed rationally in terms
of two free parameters o4 and as.

The problem is as follows: suppose that we replace
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F,, F; and Fs by the numerical differentiation and
choose the values of free parameters so that the error
caused by the approximation becomes as small as possi-
ble. Then, is the error caused by the numerical differen-
tiation insifnificant compared with the truncation error
of the formula (1.1)?

The results are summarized in the following table
where the computation is done in g-digits of an r
decimal system.

case | numerical true
differentiation derivative

local error caused by
numerical differentiation

I F,, F3, Fy — o)
1 Fy, F, F
I F; Fy, F,

(fifth-order formula)
O(h2r-9/?) (considerably large)
O(htr-4/3) (small enough)

From this table we see that only the second derivative
F; required in the limiting formula can be replaced
by the numerical differentiation without loss of
significance (case III).

2. Derivation of the Results

2.1 Casel

Computing f; as usual with some small value of ¢ and
expanding it around the point (¢,, ¥.), we get
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We compute the numerical differentiation K, and then
Jfusing ¢ and K;. K, and f; can be expanded as follows:

L=h

€ e’
K,= =th+5 h2D2f+g DY+ ...



An Addendum to the Previous Paper ‘‘Runge-Kutta Type Seventh-order Limiting Formula (1989)"’ 205

(2¢)
Fi=f|t.+2eh, y,+2ehf, +—2- hK,

(2e)
=fi+2ehDf+—~ W(Df f,+ D*f)

(2¢)
+— 3
2 h

2¢)’
+(—8)—h3D3f+ .

(g DY S+ 2eDfo,)

Using f1, /> and f;, we get the numerical differentiation
KS:
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If we determine the value of & optimal,
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then K- and K; can be written as follows:
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In the same way, we replace Fg by the numerical differen-
tiation Ks=(fs—fs)/ € using
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where the symbol — is used to denote the value ob-
tained by use of K, and K. As a result, we obtain y,+,
as follows:
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In order to achieve numerically seventh order, at least
all the terms which do not involve r~%/2 must be zero.
But it is impossible, because, provided as# 1(=a5), no

choice of free parameters a4 and as satisfies both of the
equations
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Thus, the formula can achieve at most fifth order ac-
curacy.

2.2 Casell

In this case we use the exact value of derivative F; and
compute f; with some small value of 4. Since f; can be
written
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the numerical differentiation K; becomes
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If we choose the value of J optimal,  and K; become as
follows:
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On the numerical differentiation K¢=(f;—fs)/d’, we
get
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where ¢(f) and Eg are the values that depend on the
function f, Df, Df,, . . ., Es, . . .. Using these values,
we obtain
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We cannot choose a4 and as so that ms vanishes, since
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Fig. 1 The accumulated error of numerical solution in double
precision arithmetic of the example using formulas I, II
and III.

me is the factor of the denominators of the be;,’s and
bs/’s. So the error caused by numerical differentiation
becomes O(h*r~%/2). It is considerably large compared
with the leading truncation error O(#®). Namely, this ap-
proximation error will overcome the truncation error of
the limiting formula for comparatively large values of A
by analogy with our argument in the previous paper [1]
pp. 255-256.

2.3 CaselIll

If we use the derivative Fys(= Fs), the second term of
(2.2) h*r~9?mqE, will vanish. Then, if we choose a4 and
as so that m; vanishes, it follows that the approxima-
tion error becomes O(#°r~%*) and the formula can
achieve numerically seventh order accuracy.

3. Numerical Example and Conclusions

In Fig. 1 and 2 we present the results of an example.
Integrate
dy_ 12y?

2)=1
a 3 ¥

over the range [2, 3] with varying step size 4. The com-
putations are performed in double and quadruple preci-
sion arithmetic using optimum ¢ for double precision
arithmetic to illustrate the error caused by numerical
differentiation.

The graphs indicate that

(1) Formula I (all of the derivatives, F», F; and Fg,
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Fig. 2 The accumulated error of numerical solution in quadruple
precision arithmetic of the example using formulas I, II
and III with ¢ for double precision arithmetic.

are replaced by the numerical differentiation) is of order
five (accumulated error is of O(#*)) for all the value of
h.

(2) Formula II (F; is derivative and F; and Fs are
replaced by the numerical differentiation) achieves the
same accuracy as the limiting formula for the values of
h larger than 27%, and for the values of 4 smaller than
273, the accumulated error caused by the numerical
differentiation becomes the significant part of the total
error and is of O(hr=9/%).

(3) Formula III (F; and Fs are derivatives and F; is
replaced by the numerical differentiation) achieves
numerically the same accuracy as the limiting formula
for all values of # and the accumulated error of the for-
mula III caused by the numerical differentiation is of
O(K°r~?/?) as shown by the results using quadruple preci-
sion arithmetic.

In conclusion, we see the following. In contrast to the
five- and six-stage formulas, we cannot get a seven-stage
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formula of numerically seventh order by substituting
numerical differentiations for all order derivatives re-
quired in the seventh order limiting formula. Only for
the highest order derivative involved in the limiting for-
mula, can we use numerical differentiation without loss
of significance.
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