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A Fast and Simple Method for Curve Drawing
— A New Approach Using Logarithmic
Number Systems—

Tomio Kurokawa* and TAKANARI MizukosHI**

A completely new but effective method is introduced for drawing curves on computer graphics. While most
curve drawing methods employ ‘‘incremental’’-type algorithms, the method presented here simply computes a
mathematical expression for a curve to generate dot addresses. It employs a logarithmic number system (LNS).
To generate the curve of f(x, y)=0, for example, the curve expression should be in the form: y=g(x). Then, y
is directly computed for each x, using the LNS. Since the arithmetic in an LNS is extremely fast and accurate,
the speed and the curve quality are naturally expected to be good. The specific procedure for drawing the curve
of y=g(x) is as follows: For each x, (1) convert x (integer) into the LNS by using a lookup table; (2) compute y,
using the LNS; (3) convert the resultant y into an integer by using another lookup table; (4) plot the point (x, ).
Some software experiments were done on a micro-computer to generate circles and ellipses. They showed that
both the speed and the quality are surprisingly good. The former is comparable to or possibly faster than that of
the fastest ‘‘incremental’’ algorithm. The latter is also very good, but depends on the specific LNS used. The bet-
ter the quality desired, the longer the word length required and consequently the more memory required.
However a practically high level of quality can be obtained with fairly little memory.

1. Introduction

Generation of curves has been one of the major in-
terests in computer graphics. Much research has been
done on drawing curves of circles, ellipses, and so on
[1-5].

The standard method of developing efficient
algorithms is to make a very close analysis of the curve
equation so that the algorithms consist of only the
simplest of integer computations. Recently, the
algorithms have become very simple and fast.

On the other hand, our logarithmic arithmetic (LA)
method is based on computations. To generate the
curve of the equation f(x, y)=0, for example, we sim-
ply compute y directly from the equation. That is to
say, we directly compute y of y=g(x) by using a third
type of arithmetic called logarithmic arithmetic (LA),
which employs a logarithmic number system (LNS). It
is like using floating point (FP) arithmetic but without
sacrificing the computational speed. It is conceptually
and algorithmically simple, and it is very general, being
applicable to many types of curves. As long as a curve is
expressed as y=g(x), assuming that g is computational-
ly possible, it is always possible to draw it. What is
more, the coefficients of the curve equation need not be

*Department of Industrial Engineering, Aichi Institute of
Technology, 1247 Yachigusa, Yagusa-cho, Toyota 470-03, Japan.
**Oki Technosystems Laboratory, 3-8-10 Uchiyama-cho, Chigusa-
ku, Nagoya, 464, Japan.

Journal of Information Processing, Vol. 14, No. 2, 1991

integers. The LA method also has many other advan-
tages.

2. Logarithmic Arithmetic

In LA, a number is expressed by a binary sequence:
Sd()dl...dm. l|12. .. 1,, (2.1)

where s, d;, and 1; are 0 or 1; s and d, are the sign of the
number and the exponent, respectively; the d-part and
1-part combined represent the exponent of the number;
the base is assumed to be a positive constant a (greater
than 1); and [ . ] is the assumed binary point of the ex-
ponent. Then, (2.1) indicates the number,

iad-pan . l-pan' (22)

In LA, multiplication and division are simple, being
equivalent to fixed point addition and subtraction, re-
spectively. Addition and subtraction are a little more
complex, but they can be done quickly by using pre-
computed look-up tables [6]. To explain LA addition,
let @* and a” be two numbers, and let a* be the result of
the addition. Then z is expressed as follows:

a*=a*+a’=a*(1+a’™),

z=x+log, (1+a’™%),

then and therefore (2.3)
(x=y). 2.4)

If log, (1+a”7) is pre-computed as a look-up table
with the table address y—x, then z can be computed
quickly. Subtraction can also be done in a similar
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Fig. 1 Curve Dots of an Octant.

fashion [6]. Let
a‘*=a*—a’, then 2.5)
(xzy). (2.6)
Furthermore, power computations are very simple,
unlike in FP arithmetic. For example, the square of a
number a* can be obtained by simply shifting x one bit

to the left and the square root by shifting x one bit to
the right.

z=x+log,(1—a’7"),

3. Circle and Ellipse Drawing

Consider how to draw a circle expressed by
x*+y*=R2% 3.1

It can be done by generating the curve dots shown as the
octant in Fig. 1. The entire circle can be obtained by
symmetry. To generate the octant dots, we directly com-
pute y in the equation

y= VR —x?, (3.2)

for each integer of x. This sort of computation is usu-
ally done by using FP arithmetic. It is very attractive
because it is conceptually simple and flexible to apply
for other curves. But it is slow, especially because of the
square and square root computations.

LA provides a fast and accurate computational
method for real numbers [6-12]. In order to enjoy the
features of LA for integer computation, we need to con-
vert integers into logarithmic numbers. To compute y in
(3.2), consider the following procedure:

(1) Convert an integer (x) into a logarithmic
number by using a lookup table.

(2) Do the required computations in LNS.

(3) Convert the resultant logarithmic number back
into an integer by another lookup table.

y<R
x<0
rni«<([T(R)]?

Plot(x, y)
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[ §
[ v |
[ 7
[ y—t(y1) I

Fig. 2 Algorithm for Circle Dot Generation.

To find y in (3.2), all we need to do is to compute the
squares, the subtraction, and the square root and to do
number conversions by using the lookup tables. The
specific algorithm is shown in Fig. 2. T (#) means a table
lookup conversion from an integer to LNS, and 7(*)
from LNS to an integer. Both tables are assumed to be
pre-computed. R, x, and y are integers, and ry, x;, and
», are logarithmic numbers of the form (2.1). The
overall flow structure is made to resemble that of the oc-
tant drawing algorithm [5] so that later comparisons
should become easier. The essential part is the computa-
tion of y; in box 6. It consists of three operations: one
square, one subtraction, and one square root. The
square and square root operations can be done as one
bit shift in LA. The entire algorithm of Fig. 2 they
becomes very fast.

An ellipse can be drawn in a similar fashion. Con-
sider the ellipse

x2 yZ

;'ﬁ'E:l. 3.3)

y(>0) is expressed as
y=Vb*—(b*/a*)x (3.4

The expression (3.4) is essentially the same as (3.2).
There is only one difference, the additional multiplica-
tion of (b%/a*) and x2. Multiplication is not a big
burden for LA. Figure 3 shows a conceptual dot curve
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Tangent of slope = -1

(0, b)

V.

/ V.

Fig. 3 Curve Dots of a Quarter Ellipse.

of a quarter ellipse. P is the point at which the tangent
line of slope= — 1 touches the ellipse. The curve is to be
drawn in two steps so as to avoid creating gaps along it.
The first step is from the point (0, b) to P with x the in-
dependent variable. The second is from (a, 0) to P with
y the independent variable.

The coordinates of P can be obtained as follows.
Differentiating Eq. (3.3) with respect to x and setting
the derivative dy/dx to —1, we have

y=(b*/a*)x (3.5)
and the tangent point,

a’ b

(x/az+b2’ \/az+b2)' 3-6)
Figure 4 shows an algorithm for drawing the quarter
ellipse. This is essentially the same as the algorithm in
Fig. 2; a, b, x, y and M,, are integers, and a», b,, L., ¢,
¢, Xy, and y; are logarithmic numbers of the form (2.1).
There is no significant difference between Fig. 2 and
Fig. 4. The non-significant differences are in boxes of 1,
7,9, and 15. Box 1 is for initial constant computations.
The biggest difference is the multiplications of ¢; and x?
in box 7 and of ¢, and y1 in box 15. Since multiplication
in LA is quick, it should not affect the computational
speed too much. Box 9 also includes some constant com-
putations. The above discussion suggests that there is
no significant speed difference between the circle and
the ellipse drawing algorithms, as long as one dot ad-
dress computation is concerned.

Equation (3.4) can be expressed as

y=(b/a)va*—x*. 3.7

If Eq. (3.7) is used, the algorithm should be changed ac-
cordingly but with no significant difference.
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Fig. 4 Algorithm for Ellipse Drawing.

The LA method has some attractive features. For ex-
ample, the coefficients of R, a, and b can be real
numbers but with some sacrifice. Some changes should
be made to enable the algorithm to handle such
coefficients.

As for Fig. 2, “y<R” and “‘r;<[T(R))*’ of box 1
should be changed so that R can be real. There is more
than one way to do this.

One is for the case in which R is a general FP
number. In this case y and r, may be given by
“y<RD(R)” and ‘‘ri+log, (R?)”, respectively, where
RD means a rounding function and log, means a
logarithmic function with base 4. The two functions
can be realized in software or hardware, possibly by us-
ing a general FP hardware processor. Even with hard-
ware the speed should become slower as long as FP
arithmetic is used.

Another way is for the case in which R is a fixed point
number with some fraction below the binary point. Its
form is similar to that of (2.1). In this case “y«<R” and
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Fig. 5 Circles Generated by LNS.

14: cir_1n(px,py,pr)
15: int px,py,pr;
{

16:
17: int ex,ey,er,x,y;
18: y=pr;

19: er=cvtilipr] << 1;
20: for (x=0;x < y;){

21: Plot(x,y);

22: X++,

23: ex=cvtil[x] << 1;

24: ey=(er+mtablef{er-ex]) >> 1;
25: y=cvtliley];

26: }

27: if (x == y){

28: Plot(x,y);

29: }

30: }

Fig. 6 C Program for Generating Circles.

“p—[T(R)]*’ should become ‘‘y~RD(R)” and
“r—[K(R)]*’, respectively, where RD means a roun-
ding function and K means a table for conversion to
LNS. With a limited fraction in R, the above functions
should not be a big draw-back in either table size or
speed.

The same discussion can be applied to the real
coefficients of @ and b in ellipse drawing.

4. Experiments and Discussion

Some experiments were done on a 16-bit micro-com-
puter. Programs were developed to draw circles and
ellipses, and were tested for quality and speed.

4.1 Quality Test of Circles

A set of circles was drawn to see how it looked. The
quality of the circles generated by the LNS method was
evaluated by comparison with other methods of circle
drawing.

Figure 5 shows the circles thus drawn by using LNS
of a=2, m=4, and n=10, which can be realized in a
16-bit word system. Those circles have radii R=180,
160, 140, . . ., 20. They look very good. The specific
program is shown in Fig. 6, which is written in C

FLONTING 0]

Fig. 7 Circles Generated by FP.

09: cir_fp(px,py,pr)
10: int px,py;
11: unsigned pr;

12:
13: int x,y;
14: y=pr;

15: pr==pr;
16: for (x=0;x < y;){

17: Plot(x,y);

18: X++,

19: y=(int) (sqrt(pr-x#x)+0.5);
20: }

21: if (x == y){

22: Plot(x,y);

23: }

24: }

Fig. 8 C Program for Generating Circles by FP.

language. This program is easy to read, because it pre-
cisely follows the flow of Fig. 2. ‘‘Plot’’ is the pro-
cedure for plotting. All the lookup tables are pre-com-
puted by rounding instead of truncating. The LA used
in the program does not necessarily follow precisely the
original procedure of LA [6]. For example, the sign of
the logarithmic number s in (2.1), is omitted because
clearly none of the values used in drawing a circle are
negative. Incidentally, “‘px’’ and ‘‘py’’ are the center
coordinates of the display, and “‘pr’’ is the radius R.

To find how good the circles are relative to these
drawn by another method, we can draw supposedly
identical circles by using the FP arithmetic function of
an 80287 (FP, 64 bit). Figure 7 shows the result. The
program, written in C, is shown in Fig. 8. The control
flow is exactly the same as that of Fig. 6. The two sets of
circles in Figs. 5 and 7 look indentical. There are,
however, some differences. As long as FP is used,
almost error-free computation is expected to generate
the integer address coordinates. Every coordinate
generated by LNS is compared with every one generated
by FP. There are 634 dots generated in drawing all the
nine octants of R=180, 160, . . ., 20. Out of those,
613 dots are exactly the same and 21 dots have a
difference of 1 in the two sets of circles.
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Fig. 9 Circles Generalted by BM.

87: cir_br(px,py,pr)
88: int px,py.pr;
{

89:
90: int x,y,d;
91: y=pr;

92: d=3-(pr << 1);
g3: for (x=0;x < y:){

94: Plot(x,y);

95: if (d < 0)

96 : d+=(x << 2)+6;
97: else(

98: d+=((x-y) << 2)+10;
99: y--;

00: }

01: X++;

02: }

03: if (x == y){

04: Plot(x,y);

05: }

06: }

Fig. 10 C Program for Generating Circles by BM.

Another quality comparison was made with the well-
known Bresenham-Michener (BM) ‘‘incremental’’
method [5]. It was found that the circles generated by
FP and BM had no differences insofar as the nine circles
are concerned. The circles generated by the ‘‘incremen-
tal”’ method are shown in Fig. 9, and the program used
is shown in Fig. 10.

4.2 The Relation between Types of LNS and the Cir-
cle Quality

In LA, conversion or computational errors are ex-
pected to be strongly related to the type of specific
number system [8, 9, 13] especially » in (2.1). More ex-
periments were done to find the relation between n and
the error. Using the number systems (¢=2, m=4, n=4
to 18), 186 octants with radii between R=5 and R=190
were computed. The number of disagreements with the
results obtained by FP and the number of jumps (gaps
on the curves) were counted. The results are shown in
Table 1: ““n’’ as in (2.1), ‘‘disag”’’ is the number of
disagreements; ‘‘jump’’ is the number of gaps; “N”’
means the total number of dots computed in each LNS.
The table shows that for n=17 and above, the results of
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Table 1 Relation Between Error and LNS Type (LNS: =2, m=4,
n=4 to 18; 186 Octants of Radius=S5 to 190).

n disag jump N
4 10559 1238 12840
5 8696 1733 12815
6 6259 1085 12797
7 3079 164 12781
8 1540 27 12776
9 773 8 12776

10 443 1 12776

11 205 0 12775

12 103 0 12777

13 55 0 12776

14 40 0 12776

15 12 0 12776

16 2 0 12776

17 0 0 12776

18 0 0

12776

Table 2 Comparison of Operational Constituents.

Bre-Mich

Operation LNS
Inc/Dec 1 1.41
Compare — 1
Shift 2 1
Add/Sub 2 2.41
Memory ref. 3 —

LNS and FP are in complete agreement and that LNS
has no jumps for =11 and above. It shows that as » in-
creases, the quality of the computation also rapidly in-
creases.

Like any other number system, a LNS also has its
maximum and minimum (absolute value) expressible
numbers. According to (2.1), the maximum is expressed
as

@ =gt @.1)

Therefore, as long as R? is less than (4.1), a normal
LNS computation is expected. But the accuracy should
depend on n [8] with the base a fixed [9]). As for the LNS
(a=2, m=4, n=10), the maximum is close to 2'°. Thus
the radius R should be less than 256. If m is increased
by one, that is, m=35, the maximum should: be close to
2%2, Accordingly, the radius can be almost as large as 2'°.
An LNS of a=2, m=5 and n=15, which can be realiz-
ed by a 22-bit word system (often used for FP
arithmetic as in DSP), was tested for computing coor-
dinate addresses of a large octant of radius =2000. The
disagreement count (with difference 1) with FP was only
24 out of 1414 dots and no jump occurred. The remain-
ing dots were in complete agreement.

4.3 Speed Comparison

Let us do a kind of speed comparison—of the basic
operations necessary to generate a dot—with the BM
method. Table 2 shows what and how many such opera-
tions constitute each of the algorithms of LNS and BM,
which is considered to be one of the fastest. The two
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may be considered comparable. The memory reference
of LNS, however, seems to be a burden. The data
shown are derived from the programs of Figs. 6 and 10
especially inside the ‘‘for-loop.”” The procedure calls of
‘“Plot” are ignored. Every possible effort is made to
shorten the execution time of each program. Take some
examples. In the BM algorithm, shift operations are
used for multiplications by 2 and 4, and increment or
decrement operations for addition or subtraction of 1,
respectively. The fractional data of BM in the table
comes from a simple geometrical fact. That is, “‘(d<0)”’
of Fig. 10is true (v2 — 1) times and false (2— v2) times
for each dot generation.

We also did some actual experimental speed com-
parisons with the two methods of FP and BM, using a
micro-computer. The test conditions were as follows:

1) The three source programs shown in Figs. 6, 8,
and 10 were used, but without the procedure calls of
‘““Plot.”’ The reason for omitting the calls is that the pro-
grams are to compare the address computation time,
not the display time. Incidentally, the procedure calls of
the plotting should actually take a considerable part of
the execution time. An FP program is also made to be
as fast as possible. FP arithmetic is used only for the
procedure call of ‘‘sqrt’’ and the addition of 0.5 for
rounding. Other wise, integer arithmetic is used.

2) One of the most popular personal computers
with the micro-processor (an 80286 of 8 MHz) and its
FP co-processor (an 80287 of 10 MHz) was used.

3) A microsoft C compiler was used with the op-
tions of the optimizer (0x) and the co-processor options
(FPi87).

4) The time taken to compute the dot addresses of
10,000 octants of radius R=190 was measured for each
of the programs, thus calling each program 10,000
times.

The results are shown on the *“‘C’’ row of the “‘1/8
Circle’’ in Table 3. ‘“‘Bre-Mich’’ means the BM method;
““LNS,’’ means the LNS method. The fastest was BM,
which took only 9 seconds. The next fastest was LNS,
followed by FP, which took 3 minutes and 14 seconds.
LNS, though it was only the second fastest, is con-
sidered to be very fast, because there are three memory
reference operations in the LNS program, which usu-
ally take several times longer to execute than operations
such as ‘‘shift’”” or ‘‘increment.”” The sentences of
‘“‘shift’> or ‘‘increment”’ are considered to be register
operations in machine instructions. In fact, this was
confirmed by the assembly program list, and they were
executed very quickly. The memory references are those
of array operations of ‘‘cvtil[x]’’, ‘“‘mtable[er-ex]’’, and
“‘cvtlifey]”’ inside the ‘‘for-loop’’ of the LNS program.
The fact that the execution time of memory reference
operations was longer than that of register operations
was probably because the actual physical memory exists
outside the CPU chip. In the micro-computer used for
this experiment, the memory is on different printed
boards.
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14: cir_1ln(px,py,pr)
15: int px,py,pr;

16: {
17: 1int ex,ey,er,x,y;
18: y=pr;

19: er=cvtilfpr] << 1;
20: for (x=0;x < 134;){

21: Plot(x,y);

22: X++

23: ex=cvtil[x] << 1;
24 ey=(er+x+ex) >> 1;
25: Y=X;

26: }

27:  if (x == y){

28: Plot(x,y);

29: }

30: }

Fig. 11 Program in which Memory Reference Is Replaced by
Register Operation.

Table 3 Speed Comparison.

Bre-Mich FP LNS, LNS,
1/8 C 9 194 15 8
Circle A 7 87 11 8
1/4 c — 469 34 -
Ellipse A — 246 26 —

If the execution time of the memory reference is
shortened by several hundred percent, then the execu-
tion of the LNS program is expected to be much
quicker. We did some experiments to measure the excu-
tion time; the program in Fig. 11 was written for that
purpose. Two of the three array references are replaced
by ‘‘supposed’’ register operations, so that the memory
references become quicker. These new operations are
on lines 24 and 25. The resulting program is nonsense,
but is intended to measure the excution time. The
measured execution times are shown in the column of
Table 3 labeled ‘‘LNS;’’. The data says that the LNS
program has become as fast as the BM program. Row
“A” in the table shows the execution time of the
assembler programs written by the authors. Since they
are lengthy, and are therefore not shown, the data is in-
tended only for reference. Incidentally, ‘‘C’’ in the
table stands for the C compiler with the optimizer.

The above operation replacements, though indirect
and not rigid, imply a program execution situation
closer to one in which the operations of the array
lookup are realized within a processor’s chip hardware.
The LNS processor [12] has this kind of on-chip
memory and is capable of tremendous speed computa-
tions. Many DSP chips have such a memory on the chip
(though not a very large one) and an access time as fast
as register operations [14].

RISC is another kind of computer, based on what
may be an opposite philosophy. It is probably true that
the LNS circle-drawing algorithm is much slower than
the ‘““‘incremental’’ one if run on a RISC. RISC is, in a
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sense, considered to be a computer in which a small
amount of memory (number of registers) is made very
fast and a large amount of memory left comparatively
slow.

However, drawing curves by using an LNS should be
rather compared with doing so by using FP arithmetic,
since it is based on the computational method.

4.4 Lookup Table Size

The size of the lookup table of LA could become im-
possibly large. With no reduction [15, 16], the addition
and subtraction tables have a total of 2”*"*2 entries. In-
cidentally, the addition table is not used for drawing
circles. In addition to the above tables, we require two
conversion tables for converting integers to LNS and
vice versa. The first table contains N entries if the in-
tegers are from 1 to N, It should normally be small. The
second table may have as many as 2”*"*! entries if there
are no reductions. With an LNS (¢=2, m=4, n=10),
when the input integers are given in 8-bit code,
21642154 28 (16-bit) words are necessary. This is not too
big. For a 22-bit word LNS (¢=2, m=35, n=15), the
add/sub tables combined should have 2%? entries, and
the table for converting LNS to integers should have 22!
entries, resulting in about 8 MB.

However, studies [15, 16] have been made of ways to
reduce the size of the add/sub tables. One method [16]
compresses the add/sub tables by using the fact that the
table functions:

F(N)=log: (1+27") and 4.2)
G(N)=log, (1-27%), (N=0) 4.3)

have essential zeros for N above a certain value. The
zero portions occupy the majority of the two tables.
The percentage of such parts depends on the base @ and
n. Accordingly, a simple test in F(N) and G(N)
lookup would discard such portions of the tables. For
an LNS in which ¢=2, m=35, and n=15, eliminating
the zero part reduces the number of entries to 25.8 per-
cent of the original table. Further reduction is possible
if portions of one, two, and so on are discarded [16].
Another method allows additional reduction [15].

The table for LNS to integer conversion can also be
reduced. For drawing circles, y in Eq. (3.2) is bounded
as

R/ /2 <y=<R. 4.4)

It is therefore sufficient to prepare a table of 2"~ en-
tries. However, this is just for circle drawing and not
for general use. If the lower and upper bounds of the
resultant LA value (before LNS-to-integer conversion)
are known as is generally the case, the required table
size can be determined. Then, letting x be the LNS expo-
nent, the value 2* is bounded as

1<2*=<u. 4.5)

Then, if ¢ is zero, the number of entries in the table
becomes
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Fig. 13 Ellipses Generated by FP.

2" m 4 INT(2" log, u)+1, (4.6)

where INT means truncation at the binary point. If the
zero part is to be eliminated, then

1/2<2*<u. @.7)
Accordingly, the size becomes
INT(2" log, u)+2"+1. 4.8)

If the above is applied to an LNS in which ¢=2, m=5
and n=15, only about 17% of the original table size of
2% is required.

Obviously the table for integer-to-LNS conversion is
not usually large in comparison with the above two
tables. As a result, the overall storage requirement
could be easily reduced by 75% or more with a little loss
in computational speed.

4.5 Ellipse Drawing

Some ellipses were also drawn by using an LNS of
a=2, m=4, n=10, as shown in Fig. 12. The algorithm
shown in Fig. 4 was applied. The resulting ellipses iook
good. For comparison, the supposedly equivalent
ellipses were also drawn by using FP, as shown in Fig.
13. Nothing looks different.

Table 3 gives some data for comparing the speed of
the two methods in drawing ellipses. The same condi-
tions are applied for measuring the speed as in circle
drawing. Dots of 10,000 quarter (not one-eighth for
circles) ellipses of a=b=190 (actually the circle drawn
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previously) are computed. The measured data suggest
that dots can be generated for ellipses almost as fast as
for circles. It took 15 seconds to generate 1/8 of a circle
and 34 seconds for 1/4 of an ellipse. There should be
only two second difference for 1/8 of a circle and 1/8
of an ellipse. This should be due to the additional
multiplication of (»*/a*) and x* of Eq. (3.4), as
previously explained.

5. Concluding Comments

A new method has been presented for drawing curves
by using logarithmic number systems. It was shown that
high-quality curves can be drawn by experimentally
drawing circles and ellipses. It was also shown that this
method is comparable in speed to one of the fastest ““in-
cremental’’ methods.

Since the curves are drawn by computational means
called LA and data conversion, the method is very
general and easy to apply to many types of curves. That
is, as long as a curve is expressed as a function, such as
y=g(x), that consists of addition/subtraction,
multiplication/division, and power computation, the
computation of y (dot address generation) is always
possible and can be done very quickly. The method has
many attractive features:

1) Parallel computations: Since every dot genera-
tion is independent, parallel computation is possible. It
is conceptually possible to generate more than one dot
simultaneously in parallel, using multiple LA proces-
sors. In the ‘‘incremental’’-type algorithm, every dot is
dependent on the previously generated dot, and
therefore, parallel processing is not directly possible.

2) Flexible starting point: Any dot can be a start-
ing point for drawing. That is, for y=g(x), x can have
any value at the start of drawing. The ‘‘incremental’’
algorithm usually assumes a special point, that is, an ex-
act mesh point. In many cases it must be a very special
point.

3) Real number coefficients: In LA, computations
are naturally in real numbers. The coefficients of curve
equations need not be integers. For circles and ellipses,
the coefficients of ¢ and b may be real numbers. This
feature provides flexibility in that it can easily cope with
many ways of defining curves.

4) High precision: LNS computations are far
more accurate than FP computations with the same
number of bits for a word and equivalent dynamic
ranges [8, 9]. One reason for this is that there are no
computational errors due to multiplications and divi-
sions in LA. Thus there are no errors in squares. In FP,
such computations generally cause errors.

In computations of addition and subtraction, errors
exist for both FP and LA. But the error range in LA is
smaller. Suppose FP numbers are expressed with
n+m+2 bits, that is, an n-bit fraction, an (m+ 1)-bit
exponent, and a 1-bit sign (compare with (2.1)). The
dynamic range (the largest positive number divided by

the smallest positive number) for LA of Eq. (2.1) is ex-
pressed as

n =2(2.nﬂ_2—n).

G
That for FP is

r=(1—2"")22"", (5.2)

These are essentially equal, but that of LNS is a little
larger. The relative error e (=the absolute error divided
by the error-free result) range for LA addition and sub-
traction is expressed as

27 —1=e =2V 1.

(5.3)

The error range of the FP addition/subtraction, multi-
plication/division and square/square root is

(5.4

The error range of the FP is about 2.89 times larger [8,
9].

In an LNS, numbers are arranged in such a way that
the difference between two adjacent numbers is propor-
tional to their magnitude. In FP, however, the
difference is usually equal, but it is doubled each time
the exponent is incremented by one, and FP requires
normalization at the end of each computation. This
means that there are some redundancies in the number
coding. The number arrangement of an LNS is more
smooth and rational.

These are the reasons why LA computation is more
precise than that of FP. Generation of dots by the de-
scribed method is still more accurate even with number
conversions. This accuracy holds for any LA computa-
tion. Therefore, it should be possible to draw curves
other than circles or ellipses precisely as well.

5) High-speed Computation: The Computation
speed is much higher than that of FP with equivalent
conditions [12], even with number conversions. The
speed of the LA method in drawing circles compared
with that of the ‘‘incremental’’ method should be
noted. With so many outstanding merits, the speed of
the LA method is still comparable with that of the
fastest existing ‘‘incremental’’ altorithm.

6) Generality: The method of the curve dot ad-
dress generation is very general. Since LA is a valid com-
putation, there is no reason that the computation could
not be applied to drawing curves other than circles and
ellipses. As long as a curve is defined as a function
form, y=g(x), and ¢ is computable in the LNS, it is
always possible to generate the curve (as a matter of
fact, it need not be a curve). Other applications have
also been reported [7-19].

7) Easy usage: Assuming the existence of an LA
processor (software or hardware), the curve dot genera-
tion software can be easily developed without a deep
knowledge of geometry or the algorithm.

In summary, the proposed method is like using FP
arithmic but fast. The one problem is memory space.
The greater the accuracy desired, the more memory is re-

—2T"=<e=<27".
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quired—the memory space is doubled by each 1-bit in-
crease in the word length. A word length of, say, 64
bits, which is normally implemented in FP arithmetic,
requires an impossibly large memory for current
technology. Even for a 32-bit word length it would be
very hard to use.

5.1 Miscellaneous Discussions

1) Problem 1:
y=f(x):

y=a,x"+a,- x""'+ - tax+a.

Draw an nth-order polynomial

(5.5

In DDA, it is possible to generate dot addresses by suc-
cessive additions of differences. The number of addi-
tions needed to generate one dot is

i=n(n+1)/2.

(5.6)

For example, take
y=a x>+ axt+ax+a.
The following equations show how a dot is computed:
YX)=y(x—+y (x— D4y (x—1)/2+a,
y' )=y (x—D+y"(x—1)+3a;,
Yy (x)=y"(x—1)+6a;.
The number of the additions is six for one dot. The LA
method requires essentially:

5.7

3n (fixed-point) additions,
n memory references, and
2 conversions (2 memory references),

if the following order of computations is used:

¢ ((@nx+an-)x+a2)x+ - +a)x+ta. (5.8)

For small n, the DDA method requires smaller numbers
of additions and should be faster. For larger n, the LA
method should be faster. If, however, the polynomial is
given in fewer terms, the LA method becomes faster.
As for y=x?, one shift, one addition, and two number
conversions can generate one dot address for the LA
method. For DDA, the computations of Eq. (5.7) are
still required. LA should therefore be much faster than
DDA in this case.

Problem 2: Is the LA method superior to the ex-
isting number system method using square and square
root tables? First, the FP number system should be con-
sidered. For FP, the speed of square and square root
operations definitely becomes fast with lookup tables.
Circle drawing (in which the required operations are
square, square root, and addition) should be quick, but
only for those two operations. Multiplication, division,
and other arithmetic operations will not become faster.
Therefore it will not usually work effectively except for
circle drawing. In addition, as mentioned previously
among the features of the LA method, the computa-
tional error becomes larger for FP.

T. KurokAwA and T. MizZuKkOsHI

Next, consider a fixed-point number system. In this
case, in addition to the multiplication/division prob-
lem, the dynamic range of the number system causes a
problem. For simplicity, consider an fixed-point (in-
teger) number system with n-bit words and positive
numbers only. The largest number is 2"—1, and its
square root approximately 2”2, Thus the largest radius
is 27/2 for circle drawing. For n=18 the radius should
be less than 512. This is not large in relation to the word
length. In general, the intermediate result often
becomes very large or very small (in absolute value) and
fixed-point arithmetic cannot handle such situations
easily. Incidentally, multiplication and division are also
slow for integers.
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