Translation from Journal of IPSJ

A Bidirectional Method for Numerical Conformal
Mapping Based on the Charge Simulation Method

KANAME AMANO*

Numerical conformal mapping has been an attractive subject in numerical analysis for several decades, and is
now at an exciting stage of development. Current methods fall into two groups: one for mapping a given prob-
lem domain onto a standard region, such as the unit disk, and the other for mapping in the reverse direction. No
method seems to be feasible in both directions. This paper describes a bidirectional method of numerical confor-
mal mapping between a given Jordan domain and the unit disk. The basic idea is to use the charge simulation
method for solving the Dirichlet problem of Laplace’s equation in order to reconstruct an approximate inverse
mapping function, with the boundary correspondence established in advance. In contrast to many other
methods, it does not require any nonlinear iteration procedure. It also has the following attractive features:
simplicity of mathematical formulation and programming, high efficiency of computation, high accuracy of con-
putational results, and ease of error estimation. These are demonstrated by numerical examples for some typical

problem domains.

1. Introduction

Conformal mapping [1] is a fundamental subject in
complex analysis with wide application in physics and
engineering. However, exact mapping functions are
known only for some special domains. Therefore,
numerical conformal mapping has been an attractive
subject in numerical analysis for several decades [2, 3],
and is now at an exciting stage of development [4].

Current methods of numerical conformal mapping
fall into two groups: one for mapping a given problem
domain onto a standard region such as the unit disk,
and the other for mapping in the reverse direction. In
both cases, conformal mapping can usually be reduced
to integral equations involving an unknown boundary
corresponding function. However, these two groups
have usually been studied independently and a bidirec-
tional method has not yet been discovered.

In mapping from the problem domain onto the stan-
dard region, the integral equations are linear and deriv-
ed from the Dirichlet problem of Laplace’s equation.
Symm’s integral equation method [5-7] is well known,
where conjugate harmonic functions are expressed by a
single-layer logarithmic potential and the problem is
reduced to a singular Fredholm integral equation of the
first kind. Symm approximated the unknown source
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density with a step function, which is equivalent to the
first-order derivative of the boundary corresponding
function. His method was improved by Hayes,
Kahaner, and Kellner [8], where a piecewise quadratic
polynomial was used to approximate the source density.
It was improved also by Hough and Papamichael [9,
10], where spline functions of various degrees were used
and some singular functions were introduced to over-
come the difficulties associated with corner
singularities. O(n’) operations are needed in these
methods if the boundary is discretized at n points.
However, these methods are not suitable for mapping
the standard region onto the problem domain.

On the other hand, in mapping from the standard
region onto the problem domain, the integral equations
are nonlinear and involve the conjugation operator.
Theodorsen’s integral equation method is well-known
[11-15], where various nonlinear iterative techniques
have been used. In each step of iteration, conjugate
periodic functions are determined by using the fast
Fourier transform, and O(n log n) operations are need-
ed. However, these methods are not suitable for mapp-
ing the problem domain onto the standard region.

Numerical conformal mapping has been little used in
scientific and engineering computation. A major difficul-
ty for practitioners of computation may be that two
different complicated algorithms are needed for mapp-
ing from the problem domain onto the standard region
and for mapping in the reverse direction. Conse-
quently, there is little software for conformal mapping.

Recently, a new method [16-18] for mapping the
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given problem domain onto the standard region has
been proposed, in which conjugate harmonic functions
are expressed by a linear combination of logarithmic
potentials. This method is based on the charge simula-
tion method [19], which is known to be a simple and ac-
curate solution of the Dirichlet problem of Laplace’s
equation, and can be easily combined with Newton’s
method for inverse mapping [20, 21].

This paper proposes a bidirectional method of
numerical conformal mapping between a given Jordan
domain and the unit disk, based on the charge simula-
tion method. In other words, it is shown that the charge
simulation method can be applied to the mappings both
from the Jordan domain onto the unit disk and in the
reverse direction. The basic idea is to reconstruct an ap-
proximate inverse mapping function by the same
method, using the boundary correspondence establish-
ed in advance. This method has the following
remarkable features that distinguish it from most other
methods:

(a) Numerical conformal mappings both from the
problem domain onto the standard region and in the
reverse direction are possible with the same algorithm.

(b) It needs no iteration procedure for mapping in
the reverse direction.

Furthermore, it inherits the following attractive
features from the charge simulation method: simplicity
of mathematical formulation and programming, high
efficiency of computation, high accuracy of computa-
tional results, and ease of error estimation. These are
demonstrated by numerical examples for some typical
problem domains.

2. Numerical Conformal Mapping

2.1 Riemann’s Mapping Theorem

Riemann’s mapping theorem tells us that a simply
connected domain can be mapped conformally onto the
unit disk. We are concerned here with the mapping of a
Jordan domain D bounded by a Jordan curve C given
in the z-plane onto the unit disk |w| <1 in the w-plane
(Fig. 1). Taking the origin in D without loss of generali-
ty, the mapping function w=/(2) is unique under the
normalizing condition f(0)=0 and f’(0)>0 [3], and is
expressed as

w=f(z)=ze9(z)*ih(z), ze D. (1)

The functions g(z) and A(z) are conjugate harmonic in
D and should satisfy

g(z)=-loglzl, zeC ©
and
h(©0)=0, 3

respectively from the boundary correspondence be-
tween C and |w| =1 and from the normalizing condi-
tion f'(0)>0. The condition f(0)=0 is obviously
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Fig. 1 Conformal mapping and the charge simulation method.
The normalizing condition is f(0)=0and f"(0) >0. {;and z;
are the charge points and the collocation points, respec-
tively.

satisfied. The functions exp g(z) and A(z) represent the
extension in modulus and the rotation in argument caus-
ed by the mapping, respectively.

By Carathéodory’s theorem, f(z) maps the closed do-
main D=D+C onto |wl| <1 one-to-one continuously,
including the boundary.

2.2 Charge Simulation Method

Based on the charge simulation method, the con-
jugate harmonic functions g(z) and A(z) can be approx-
imated with a linear combination of real and imaginary
parts of complex logarithmic potentials that have poles
at N charge points {; arranged outside the given domain
D (Fig. 1). The following simple approximate mapping
function

W=F(z)=zeCW+HD e D_, 4)

N

G(Z)=‘ZQ.-log lz—=&l, )
N

H(z)= "Z_} Qiarg (z—{)+6o

N
=— ; Qiarg (1-2/¢), (6)

is then obtained [16]. Here,

N
00=§ Qiarg (—&) Ul

is a constant of rotation determined by the normalizing
condition (3). Capitals W, F, G, and H are approxima-
tions to w, f, g, and A, respectively. The N charges Q
are undetermined coefficients, and can be determined to
satisfy the boundary condition (2) at N collocation
points z; arranged on the boundary C. That is to say,
the values of (; are solutions of a system of
simultaneous linear equations

N
21 Qilog lzi—¢ I =log Iz, zeC,
i=1

J=1,2,---,N, @®
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0

Fig. 2 Error estimation on the boundary curve using the max-
imum modulus theorem for regular functions.

which is called the collocation condition.

Note that the approximate mapping function F(z) is
regular, regardless of the discretization error in G(z)
and H(z) and of the cancelling error in solving
simultaneous linear equations.

2.3 Error Estimates

The maximum modulus theorem for regular func-
tions can be used to estimate computational errors.
Because F(z) and f(z) are single-valued regular in the
bounded domain D and continuous on its boundary C,
the absolute error of the approximate mapping func-
tion Ew(z) takes its maximum value Ey on C and can be
estimated (see Fig. 2) as

Ew(z)=1W(z)—w(z)l =1 F(z)—f(2)|
s=maxc| W(z)—w(z)|=Ew
=maxc {1 W ()| = w()ll
+iw(z)ll arg W(z)—arg w(z)!}
=maxc | W(z)I —1|
+maxc larg W(z)—arg w(z)!. ()

Here, maxc denotes the estimate on the boundary C.
Note that the relations

Ey=maxcEy(z)=maxc | W(z)| —1|
Zmaxc | G(z)—g(z)| =maxcEq(z)=E; (10)
and
E =maxcE4(z)=maxc larg W(z)~—arg w(z)l
=maxc | H(z)—h(z)l =maxcEx(2)=Ey 1
hold. Errors of the conjugate harmonic functions G(z)
and H(z) may be expected to be of the same order, since
they are derived from the same simulation charges, and
Es=Epy. 12)
In other words,
EysE, (13)

between the errors of the modulus and argument com-
ponents of the approximate mapping function F(z).
This conjecture has been confirmed by practical ex-
perience [16, 22]. Finally, we obtain the relation

z-plane v-plane

+ .

Fig. 3 Inverse conformal mapping and the charge simulation
method. The normalizing condition is £*(0)=0 and f*'(0)
>0. ¢¥ and w; are the charge points and the collocation
points, respectively.

Ew()sEwsEutE 52Ey, (14)

which allows us to estimate errors by using only the com-
putational results on the boundary. Furthermore, Ey
can be simply estimated as

Eyv=max; | W(zjs12)l =11, z+12eC, (15)

since the collocation condition (8) is equivalent to
Eu(z;)=0. Here, 2,4,z is an intermediate point on the
boundary between the two collocation points z;, and
Zj+1.

Finally, in the numerical conformal mapping based
on the charge simulation method, simple error esti-
mates are available a posteriori using only the computa-
tional results at the intermediate points on the bound-
ary.

3. Numerical Inverse Conformal mapping

3.1 Mapping Theorem

We are concerned here with the conformal mapping
of the unit disk | w| <1 in the w-plane onto a Jordan da-
main D bounded by a Jordan curve C given in the z-
plane (Fig. 3). Taking the origin in D without loss of
generality, the mapping function z=s*(w) is unique
under the normalizing condition f*(0)=0 and f*'(0)>0
[3]. By Carathéodory’s theorem, f*(w) maps the closed
unit disk | w! <1 onto D= D+ C one-to-one continuous-
ly, including the boundary.

This z=f*(w) is nothing but the inverse of the
preceding conformal mapping w=/(z), which can be
shown in the following way. Since w=/(z) is mapped
one-to-one from D onto |wl <1, its inverse z=f "'(w)
is unique and single-valued on [wi =1, and the inverse
is regular in [wl <1 and

S w=1/f"(2). (16)

Therefore, £ ~'(0)=0and f ~'"(0) >0 from the normaliz-
ing condition of f(z). Consequently, f*(w)=f"'(w)
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from the uniqueness of f*(w).
We express the mapping function as

= *(w)=wed MM | <] a7

in the same way as for Equation (1). The functions
g*(w) and A*(w) are conjugate harmonic in | wi <1 and
should satisfy

g*(w)=log Izl =log Iwl, Iwl=1 (18)

and
k*(0)=0, 19

respectively from the boundary correspondence be-
tween |wl=1 and C and from the normalizing condi-
tion f*'(0)>0. The condition f*(0)=0 is obviously
satisfied. Note that, for w=£(z),

g*(w)+g(2)=0 (20
and
h*(w)+h(z)=0 1)

between the two sets of conjugate harmonic functions.

Since Equation (18) involves the unknown quantity
z=/*(w) in the right side, it is difficult to determine the
harmonic function g*(w) by solving the Dirichlet prob-
lem of Laplace’s equation. The reason why the second
term log | w| is left will be given later.

3.2 Charge Simulation Method

We approximate the mapping z=/*(w) by the ap-
proximate inverse F~!'(w), not by the exact inverse
f~'(w). By using the charge simulation method, this in-
verse F ~!(w) can be obtained numerically in the same
way as F(z) itself.

First, we adopt as the collocation points in the w-
plane N* suitable points w; such that w;=F(z)), z,e C
(Fig. 3). Outside the unit disk |wl| <1, we arrange N*
charge points {* corresponding to each of the colloca-
tion points. Then, the conjugate harmonic functions
g*(w) and A*(w) can be approximated with a linear com-
bination of real and imaginary parts of complex
logarithmic potentials that have poles at £*. The follow-
ing simple approximate mapping function

Z=F*(w)=wel0 W+H' W |y|<], (22
N*

G*(w)=->, 0 log lw—(}1, 23)
i=1

H*(w)=—3 O arg (w—(1)+63
i=1

e
=-3 Qrarg(1-w/(P) (24)
i=1
is then obtained. Here,
e
63=>Qrarg (—{F) (25)
i=1

is a constant of rotation determined by the normalizing
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Fig. 4 Estimation of the error in numerical inverse conformal
mapping.

condition (19). The N* charges Q} are undetermined
coefficients, and can be determined to satisfy the bound-
ary condition (18) at N* collocation points w,. That is
to say, the values of QF are solutions of a system of
simultaneous linear equations

N
>.QFlog lwi—(Fl=log | wil —log |z,
i=1

j=1,2,---,N* (26)

which is called the collocation condition. Note that
z;=F ~'(w)) of the second term is known for the colloca-
tion points w;=F(z;)), z;€ C. The first term log
lw;l =log | F(z;)! is not always zero, because of errors
in the approximate mapping function. This is why the
second term of Equation (18) was not removed.

A simple and practical way of determining the col-
location points w; is to adopt the images of the N col-
location points z; used for the approximate mapping
function F(z). Then, each w; is determined automatical-
ly from z;, and values of w; are specified for tracing the
shape of the problem domain D if values of z; are
specified in the z-plane. Additional programming is not
needed for the inverse mapping F*(w). We have only to
re-call the same subprogram as used for computing F(z),
exchanging the input and output relations of the z- and
w-planes. This is a remarkable characteristic not found
in any other method of numerical conformal mapping.
Equations (20) and (21) are useful for checking the
validity of computation.

3.3 Error Estimates

We have approximated the mapping function f*(w)
=f~Yw) by F~'(w), which has been further approx-
imated by F*(w) according to the charge simulation
method (Fig. 4). The maximum modulus theorem for
regular functions can also be used to estimate errors in
inverse mapping. Because F*(w) and F ~'(w) are single-
valued regular in the bounded domain |w| <1 and con-
tinuous on its boundary | wl| =1, the absolute error of
F*(w) with respect to F~'(w) takes its maximum value
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on |wl=1 and can be estimated as
EX(w)=|F*(w)—F'(w)l
=max¢| F*(w)—F Y (w)l=E}
Zmax, | F*(wi)— 2. 27
The notations max# and max, denote the estimate on
the unit circle |wl =1 and at the collocation points and
the intermediate points, respectively. Similarly, for the
error of F ~!(w) with respect to f~'(w),
EF'(w)y=IF ' (w)—f"(w)I
s=max¢| F '(w)—f'"(w)l =EF'
Zmaxc {| F(2)—f(z)I/ | F’' (2)]}
<Ew/minc | F’ (z)| =EF!
=ZEw/ming | F' (). (28)
Here, in addition to the maximum modulus theorem,
note that the ratio of local enlargement by mapping
with a regular function is equal to the modulus of its
derivative. F’(z)#0 is a necessary condition of the con-

formality. Consequently, for the total error of F*(w)
with respect to f~'(w),

Ez(w)=1F*(w)—f""(w)l
smax | F*(w)—f""(w)l =E;
smaxg {| F*(w)—F '(w)I + | F~'(w)

=f~'(w)l}
=EF+EF!
<E¥Ef'=E,. 29)

Thus, simple error estimates can also be obtained by
using only the computational results on the boundary in
the inverse mapping. The estimates of £ 7' and £ are
for the worst case in which the errors of the approx-
imate mapping function F(z) and the enlargement ratio
of its inverse 1 /|F’(z)| take their maximum values at
the same boundary point. Practically, the relation

E;=Ef«FE; (30

holds well in many cases, as shown later. From Equa-
tions (4) ~ (6),

F' (z)=eC0@+iH@ {l_ziQi/(z—Ci)}! 31
—F. —n.)) 2
| F* (z)] =€5® {1—§;Q,.""‘ D30y n.)}
i=1 lz=&)
N —_n)— —_—F 271/2
+{§QiX(y :7;)_5(2:: i,)}] @

4. Numerical Examples

4.1 Collocation Points and Charge Points

In the charge simulation method, the collocation
points and the charge points should be arranged accord-

Fig. 5 Arrangement of the collocation points and the charge
points in the charge simulation method.

ing to the given domain and the boundary condition.
However, optimization is difficult because of the multi-
variableness of the problem. Appropriateness may be
empirically judged by the following qualitative criteria:
high accuracy of the computational results, simplicity
of the arrangement, wide applicability, and stability of
the accuracy obtained.

We first arrange a suitable set of collocation points z;,
i=1,---, N on the boundary of the given Jordan do-
main so that they are generally dense in regions where
the distortion is large (Fig. 5). Then, we specify the
charge point {; corresponding to each collocation point
z; by means of the equation

Ci=Zi+f | Zi—2i-1] ei(arg(z,—z.q)—nlzs' (33)

Here, r is a positive parameter independent of i. As a
result, the charge points are in the outward normal
directions at the corresponding collocation points and
dense near the boundary, where distortion is large. It is
known from numerical examples that this method gives
a good arrangement of points in many cases [17, 18,
20-22]. If the given domain has corners on the bound-
ary, Equation (33) is modified as

Cizzi-{-r/z |Zi+1 —Zi-—ll eitarg(@vi—z-)—n/2} (33:)

at the corner points. Satisfactory results can usually be
obtained for r=1~ 10.

In inverse mapping, the collocation points w; in the
w-plane are determined to be the images of the colloca-
tion points z; in the z-plane, as stated previously. The
charge points {* in the w-plane are also determined
from Equation (33).

The conventional boundary extension method for
charge arrangement [16, 19], though it has been used ex-
tensively and can give good results for near-circular do-
mains, is not successful for flat or concave domains.
Moreover, it is not applicable to non-starlike domains.

4.2 Computational Results

The notation used in the presentation of numerical
results is as follows.

N: Total number of collocation points or charge
points. Numbers in parentheses are for unknowns of
the simultaneous linear equations to be solved when the
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symmetry of the given domain is used in computation.
rz, rw: Parameters of the charge arrangement in the
z- and w-planes, respectively.

Eum, E4, Ew: Errors in the numerical conformal mapp-
ing of the given Jordan domains onto the unit disk, de-
fined by Equations (9)-(11).

E}, EF', E;, EF', Ez: Errors in the inverse mapp-
ings, that is, mapping of the unit disk onto the given
Jordan domains, defined by Equations (27)-(29).

The equations used to estimate errors can be summa-
rized as follows:

Ey(=sEg)=max; | F(zj+1/2) — 11,

E.(=Ey)=max, larg F(z:)—arg f(z)!,

Ew=max, | F(z:)—f(z0)!,

Ef=max; | F*(w)—F ' (w)l,

Ef'=max, | F ' (W) —f " (W),

Ez=max; | F*(w,)—f "' (w)l,

E~F"=EW/mink |F'(Zk)|,

EZ=E ;+E F ! .
The subscript k denotes the estimate at the collocation
points and intermediate points, as mentioned previous-
ly. The approximation Ey = 2E), is used for £7' when
the exact mapping function is not known.

Computations were carried out on a FACOM M-

360AP machine at the Data Processing Center of Ehime

University. Crout’s method LAX and DLAX in SSL II
were used to solve the simultaneous linear equations.
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Table 1 Error estimates in the case of the circular domains (x—x,)
+y?<1. N is the number of simulation charges, and r, and
ry are the parameters for their arrangement in the z- and w-
planes, respectively. E denotes a computational error. Dou-
ble-precision arithmetic is used in (c2).
(@) (b) (c1) (c2)
X, 1/2 3/4 7/8
N 3317 64 (33) 64 (33) 128 (65)
rs 4. 3.0 2.0 3.0
rw 4.0 3.0 3.0 4.0
Ey 1.4E-6 1.7E-5 1.1E-3 1.2E-6
E, 1.4E-6 3.2E-6 1.2E-3 1.2E-6
Ey 1.9E-6 1.9E-5 1.2E-3 1.2E-6
E} 3.0E-6 1.0E-5 4.3E-4 1.1E-6
E;' 2.5E-6 1.9E-5 1.8E-4 1.3E-7
E, 3.1E-6 1.6E-5 5.4E-4 1.2E-6
EF' 5.7E-6 1.3E-4 1.8E-2 1.8E-5
E, 7.9E-6 1.4E-4 1.8E-2 1.9E-5

Example 1 Eccentric Circle
Problem domain (x—x)?+y*<l1
Mapping function w=f£(z)=z/{1+x.(z—x.)}
= (w)=1~xHw/(1—x.w)
Collocation points x;=cos 6+x.
y;=sin 8
0=2n(j—1)/N

This is an example of uniformly convex domains. The
parameter x.(0<x.<1), that is, the distance between

Fig. 6 Numerical conformal mapping of a circular domain and its inverse mapping by the charge simulation method.
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Fig. 7 Numerical conformal mapping of a Cassini’s oval domain and its inverse mapping by the charge simulation method.

the normalizing point and the center of the circle con-
trols the difficulty of the mapping problem. The colloca-
tion points are uniformly spaced along the entire bound-
ary. The collocation points in the w-plane are the im-
ages of these collocation points in the z-plane. As men-
tioned previously, they are specified for tracing the
shape of the given problem domain. The charge points
are arranged mechanically by Equation (33) in the z-
and w-planes.

Figure 6, which corresponds to Table 1(b) (but
rw=1.5), illustrates the mappings from the given prob-
lem domain onto the unit disk and in the reverse direc-
tion. The symbols O, X, and + show the normalizing
point, the collocation points, and the charge points, re-
spectively. Comparison of the computational results
with the exact mapping function is possible in this exam-
ple. The values of Ey and E7 in the table show the high
accuracy of bidirectional mapping. We can also see that
EM-"_-.-EA, Ewg EM+EA = ZEM and E'2=E‘;!'r <« Ez of Equa-
tions (13), (14), and (30) hold well. Note that the
FACOM M-360AP machine has six significant hex-
adecimal digits in single-precision arithmetic, which cor-
responds to 6.3-7.2 significant decimal digits. As the
normalizing points approache the boundary, the ac-
curacy of the computational results decreases and the
difference between E 7' and E 7' or Ez and E increases.
However, as shown by (cl1) and (c2), the accuracy in-
creases sharply if N increases and double-precision
arithmetic is used in computation.

The accuracy of the computational results is regular
and stable with respect to the change of parameters rz

Table 2 Error estimates in the case of Cassini’s oval domains
{c+ 12+’ Hix= 1) +p} =a*. Double-precision
arithmetic is used in (c2).

(a) (b) ()] (c2)
a 2| 2 21/I6 2!/!28

N 32(9 64 (17) 64 (17) 128 (33)
rz 2.5 2.0 1.0 2.5
rw 3.0 2.5 1.5 2.5
E, 2.8E-6 1.9E-5 2.6E-4 8.9E-7
E, 3.6E-6 3.9E-6 2.1E-4 7.0E-7
Ey 3.7E-6 1.7E-5 2.7E-4 8.9E-7
E} 5.9E-6 2.9E-5 1.9E-3 1.7E-5
Ef' 8.4E-6 3.6E-5 2.8E-3 1.9E-6
E; 6.3E-6 3.1E-5 3.4E-3 1.6E-5
E;' 1.3E-5 3.0E-4 3.5E-2 1.1E-4
E, 1.9E-5 3.2E-4 3.7E-2 1.3E-4

and ry. That is to say, the accuracy first increases and
then decreases as r; and ry increase, where high ac-
curacy is obtained for a wide range of parameters.

Example 2 Cassini’s Oval

Problem domain {(x+1)2+y2}H{(x—1)*+y?} =a*

Mapping function w=f(z)=az/(a*—1+z%)"?

z=f"H(w)
__.(04_1)1/2W/(a2_w2)1/2

Collocation points x;=rcos 8, y,=rsiné
r={cos 20+(cos? 26 +a*—1)!/2}'/2
0=2n(j—1)/N
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Fig. 8 Numerical conformal mapping of a square domain and its inverse mapping by the charge simulation method.

The product of the distances from the two points
(—1,0) and (1, 0) is less than or equal to @ in this do-
main. The parameter a controls the domain’s shape and
the difficulty of the mapping problem. We are interested
in the case 1 <a=<2'? as an example of a concave do-
main. It looks like an ellipse x2/3+y*=1 when a=2!/2,
and the concavity becomes more pronounced as a
decreases, until it is finally cut off at the origin when
a=1. The collocation points are equidistant in argu-
ment along the given boundary. The other collocation
points and the charge points are determined in the same
manner as in the previous example.

Figure 7 corresponds to Table 2(b) (a=1.044273).
The width of the concavity in (c) (a=1.005430) is about
one third of that in (b). Comparison of the computa-
tional results with the exact mapping function is also
possible in this example. The values of Ew and E; in the
table show the high accuracy of the bidirectional mapp-
ing, and the error relations (13), (14), and (30) hold
well. As the parameter a decreases to 1, the accuracy of
the results decreases and the difference between E;'
and £ 7! or Ez and E; increases. However, as shown by
(cl) and (c2), the accuracy increases sharply if N in-
creases in double-precision arithmetic.

The accuracy of the computational results is regular
and stable with respect to the change of parameters rz
and ry.

Table 3 Error estimates in the case of square domains |x—x.| <1

and ly—ylsl.
(a) (b1) ®2) (b3)
e, Yo) ©, 0) (1/4,1/2)
N 64 (17) 64 128 256
r. 10.0 10.0 10.0 10.0
ry 2.0 2.0 2.5 3.0
rw 0.5 1.0 1.0 1.0
Ey 1.5E-4 7.0E-4 1.3E-5 6.6E-6
E} 9.9E-3 1.3E-2 6.5E-3 3.0E-3
E; 8.5E-3 1.2E-2 5.6E-3 2.6E-3
Example 3 Square
Problem domain |x—x.l=x1, ly—y.l=l

Colloation points x;=1+x,
y=A=r"/A=r"%+y.
rNEl=1 /.

Jj=1,--- N/8+1

This is an example of a domain with corners on the
boundary. The collocation points are arranged so that
they are dense near the corners by a geometrical series
with the common ratio r, which is determined by the
parameter r.. The number density near the corners is
about r. times that near the midpoints of the sides. The
other collocation points and the charge points are deter-



A Bidirectional Method for Numerical Conformal Mapping Based on the Charge Simulation Method 481

PUTTRLL RN
o .

N
\;'
7
2%

N
£

[ 7
Wy
%
=

W

=~
N
7
(]

25

%
<
'='=. W
N
A
SEES

70
|\

Fig. 9 Numerical conformal mapping of a comma-shaped bead domain and its inverse mapping by the charge simulation method.

mined in the same manner as in the previous examples
by using Equations (33) and (33’).

Figure 8 corresponds to Table 3 (b2). Conformal map-
ping of the unit disk onto polygonal domains is known
as the Schwarz-Christoffel transformation. The mapp-
ing functions f(z) and f ~'(w) are expressed by elliptic
functions and elliptic integrals, respectively. However,
they are not elementary, and we do not compare the
computational results obtained with them. We focus
here on the possibility of estimating errors even if the ex-
act mapping function is not known. That is to say, the
error of the numerical mapping F(z) can be estimated
and determined to be sufficiently small by using the er-
ror relation Ew < 2Ey of Equation (14) and the computa-
tional values of Ej. On the other hand, neither E; nor
E7 can be estimated in the inverse mapping, owing to
the singularity at the corners where f'(z)=0. However,
it is not difficult to estimate the gap between the image
of the unit circle given by F*(w) and the original square
as

Ec=max&(min | F*(w)—zc!)
Zmax, (min | F*(e’*®™)—z¢1), zce C. (34)

The results show that Ez(5 EJ)=EF of Equation (30)
may also hold well in this example. The accuracy in-
creases if N increases, as shown in (bl)~(b3).
However, the increase in the inverse mapping is slow,
which suggests that the charge simulation method is
suitable for the Dirichlet problem without singularities

in the boundary condition. However, it is important
that numerical mapping of the unit disk onto a square
domain can be obtained simply with an accuracy of
1073,

The accuracy of the computational results is regular
and stable with respect to a change in the parameter rz,
but errors in the inverse mapping increase rapidly if the
parameter ry becomes large.

Example 4 Comma-Shaped Bead

This is an example of an asymmetric and non-starlike
domain in which the whole boundary cannot seen from
the normalizing point. The boundary curve is con-
structed by connecting four semicircles with radii 1/4,
1/4, 1, and 1/2, in this order (Fig. 9). The largest one is
(x—xJ)*+y*=1, x=x.. The collocation points are uni-
formly spaced along the entire boundary. The other col-
location points and the charge points are determinéd in
the same manner as in the previous examples. -

Figure 9 corresponds to Table 4(a2). Because of the
non-starlikeness, it is difficult to illustrate the numerical
mapping F(z) by using curves similar to the boundary
and radial lines from the origin. However, it is easy to
image F(z) from the inverse mapping. :

The exact mapping function is not known, and the er-
ror Ey should be estimated from Ey in the same way as
in the preceding example. The errors of the inverse map-
ping, £7' and E7, can be estimated in this case.
However, it should be remembered that they are based
on the worst situation, as stated previously. The gap be-
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Table 4 Error estimates in the case of a comma-shaped bead do-

main.
(al) (a2) (a3)
Xe, Vo) 0.5, 0)
N 64 128 256
rz 1.5 3.0 - 3.5
rw 1.0 1.5 1.5
Ey 1.0E-3 2.4E-4 8.2E-5
E? 1.5E-2 1.5E-3 7.5E-4
7! 7.5E-2 2.5E-2 8.6E-3
E, 9.0E-2 2.7E-2 9.0E-3
Ec 7.0E-3 1.1E-3 3.4E-4

tween the image of the unit circle given by F*(w) and
the original comma-shaped bead shows that Ez(=E.)
= E} of Equation (30) may hold well and that the ac-
curacy of the inverse mapping is satisfactory.

The accuracy of the computational results increases if
N increases. It is regular and stable with respect to a
change in rz, but the errors of the inverse mapping in-
crease more rapidly than in examples 1 and 2 if ry
becomes large.

5. Concluding Remarks

A bidirectional method of numerical conformal map-
ping between a given Jordan domain and the unit disk
has been successfully proposed and tested on some
typical domains. It has the remarkable feature that map-
pings both from the problem domain onto the standard
region and in the reverse direction can be obtained sim-
ply without a nonlinear iteration procedure. Errors can
also be estimated a posteriori by using the computa-
tional results on the boundary.

The following subjects remain for future studies:

(a) Applicability to the mapping of exterior and
doubly connected domains. The fundamentals of the
method may be applicable. However, its practical utili-
ty should be tested numerically.

(b) Arrangement of the collocation points and
charge points. A mechanical method should be
established that is independent of the given problem do-
main. Optimization is difficult, owing to the multi-
variableness of the problem. However, in the applica-
tion to the conformal mapping, a practical method may
be found, since the problem to be solved is determined
only by the given domain and the normalizing point.

(c) Development of mathematical software. Very lit-
tle software exists for conformal mapping, which could
be used extensively in scientific and engineering com-
putation. The charge simulation method may be
suitable for this purpose if it is possible to arrange the
collocation points and the charge points mechanically.

K. AMANO
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