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Parametric Analysis of Optimal Static Load Balancing
in Distributed Computer Systems

YONGBING ZHANG*, Hisao KAMEDA* and KENTARO SHIMIZU*

A model of optimal static load balancing problems in a distributed computer system, which consists of a set
of heterogeneous host computers connected by a communications network, is considered. We consider the
overall and individually optimal policies. The first is for minimizing the overall mean job response time. The sec-
ond is for determining the equilibrium so that no user has any incentive to change his processing node to im-
prove his expected response time. Tantawi and Towsley showed the conditions that the solution of the overall
optimal policy satisfies. In this paper we show the conditions that the solution of the individually optimal policy
satisfies and show the existence of the solution. Then we examine the effects of some of the main system
parameters on the performance variables of the two policies. In the parametric analysis and numerical examina-
tion we show that there exists a striking parallelism between the characteristics of the two policies even though
they are entirely different from each other. Some anomalous or counter-intuitive phenomena are also observed.

1. Introduction

Distributed computer systems possess many potential-
ly attractive features. One of these is the capability to
share processing of jobs in the event of overloads. This
study focuses on the issue of balancing loads between
nodes of a distributed system in response to imbalances
in loads. Load balancing policies may be either static or
adaptive. It seems clear that adaptive policies [3, 4, 9,
10] may be more effective than static policies whereas
the former may have more overhead than the latter. Fur-
thermore, it seems that there currently exists no optimal
adaptive policy that is sophisticated enough to be
generally applicable to various environments and
analytically tractable. Static policies are very useful to
estimate the performance measure when constructing a
new system or updating an existing system. Thus, in this
paper, we focus on static policies.

We can think of two optimal static load balancing
policies which have contrastive performance objectives
for load balancing. We call the one the overall optimal
policy which optimizes the mean job response time and
the other the individually optimal policy whereby job
scheduling is determined so that every job may feel that
its own expected response time is minimum if it knows
the expected node and communication delays. The
motivation of the overall optimal policy seems clear.
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We may say that the individually optimal policy
balances loads from the user’s viewpoint.

Related to these two policies, many studies (I, 2, 7,
11] have been concerned with the overall and individual-
ly optimal static and adaptive policies for various
specific systems. Tantawi and Towsley [13] considered
an overall optimal policy in a model of a distributed
computer system that consists of a set of heterogeneous
host computers connected by a single channel com-
munications network such as satellite networks and
local area networks. They derived the conditions that
the optimal solution should satisfy and proposed an
algorithm that determines the optimal solution. We call
the solution the optimum. Kim and Kameda [5] showed
an algorithm improved over that of Tantawi and
Towsley [12, 13]. Furthermore, they [6] extended the
model of Tantawi and Towsley [13] to the case of multi-
ple job classes.

In this paper, we study an individually optimal policy
in the same model as the Tantawi and Towsley single
class model. We show the conditions that the solution
of the individually optimal policy satisfies. Then we
show that there exists a striking parallelism between the
above mentioned solutions of the overall and individual-
ly optimal policies. Furthermore, we study the charac-
teristics of the overall and individually optimal policies
and parametric analysis, that is, the effects of varying
the system parameters, such as a planned equipment
upgrade and long term fluctuations of loads, on the per-
formance variables of these policies.
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Fig. 1 A model of a distributed computer system.

2. Model Description

We consider a distributed computer system model
that consists of n nodes (host computers) connected by
a single channel communications network as shown in
Fig. 1. The key assumptions of the model are the same
as those of Tantawi and Towsley [13]). Nodes may be
heterogeneous, i.e., they may have different configura-
tions, number of resources, and processing capacities.
We assume that the expected communication delay
from node / to node j is independent of source-destina-
tion pair (i, j). Let us have the following notation.

* n Number of nodes

» ¢; External arrival rate to node

* & Total external job arrival rate, i.e., =3, ¢;

* x; Job flow rate from node i to node j

* pB; Job processing rate (load) at node i, i.e.,
Bi=2l=1 X

M ﬂ[ﬁl)ﬂh"':ﬂn]

* A Total traffic through the network, i.e., A=%;
2 jwi X

* F;(8) Expected node delay of jobs processed at
node i (We assume that it is differentiable, increasing,
and convex with respect to ;)

* G(A) Expected communication delay of jobs (We
assume that it is source-destination independent,
differentiable, nondecreasing, and convex with respect
to 4)

e T(p) Overall mean job response time, i.e., the
mean length of the time period that starts when a job ar-
rives in the system and ends when it leaves the system.

Jobs arrive at each node according to a time-in-
variant Poisson process. A job that arrives at node
i(origin node) may either be processed at node i or be
transferred to another node j(processing node). After
the job is processed at node j, a response is sent back to
the origin node. Also we assume that a transferred job
from node i to node j receives its service at node j and is
not transferred to other nodes. We can write the overall
mean job response time as the sum of the mean node
delay and the mean communication delay, that is
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T(ﬁ)=% SAF(BI+ACW)), (1)

subject to
6=, @
'=lﬁ,~20, i=1,2,---,n, 3)

where the network traffic A may be expressed in terms of
variable f; as

A=L ST 1a-B1. @
i=1

We identify nodes in the following way: (1) idle
source (R;): The node does not process any jobs, i.e.,
Bi=0. (2) active source (R,): The node sends jobs and
does not receive any jobs, i.e., ¢;>8,>0. (3) neutral
(N): The node processes jobs locally without sending
or receiving jobs, i.e., §i=¢;. (4) sink (S): The node
receives jobs from other nodes but does not send any
jobs out, i.e., §;>¢;.

3. Optimal Solutions

3.1 The Solution of the Overall Optimal Policy

By the overall optimal policy we mean the policy
whereby load is balanced so as to minimize the overall
mean job response time, that is, solving problem (1)
with constraints (2) and (3).

Now we introduce two functions, the incremental
node delay f;(B:) and the incremental communication
delay g(1), as follows.

d d
ﬁ(ﬁi)=‘d—mﬂ:F;(ﬁi), gN)=774G Q). 8)

Define the inverse of the incremental node delay f7 ' by

j-l(x)z{a’ ﬁ(a)zxs
! 0, fi(0)=x.

According to the results of Tantawi and Towsley [13],
we have the following theorem by which we can deter-
mine f that implements the overall optimal policy.
Theorem 3.1 The optimal solution, B, to problem (1)
satisfies the relations

fi(B)zatg(d), B=0 (ie Ra), (6)
Si(B)=a+g(1), 0<Bi<d; (ieR.), M
asfi(Bf)=a+g(d), Bi=¢: (ieN), ®
a=fi(B), Bi>¢i (ie S), 9)

subject to the total flow constraint
2SN+ 2 [ (at+gA)+ Z;I¢i=¢, 10
ie$S ie R, ie

where o is the Lagrange multiplier.
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3.2 The Solution of the Individually Optimal Policy

According to the individually optimal policy, jobs
are scheduled so that every job may feel that its own ex-
pected response time is minimum if it knows the ex-
pected node delay at each node and the expected com-
munication delay. In other words, when the individual-
ly optimal policy is realized, the expected response time
of a job cannot be improved further when the schedul-
ing decisions for other jobs are fixed, and the system
reaches an equilibrium. By the following definition, we
define the equilibrium conditions.

Definition: f is said to satisfy the equilibrium condi-
tions for the individually optimal policy, if the follow-
ing relations hold:

Fi(B)zR+G(A), B=0
Fi(B)=R+G(L), 0<fi<¢:
R=<F(B)<R+G(1),
R=Fi(p), B>
subject to the total flow constraint:
ZF,_I(R)+ >, F,_'(R+G(A))+Z ¢i=®. (15)

ieS ie R, ieN

(ie Ry), an
(ie Ry), (12)
Bi=¢: (ieN), 13)
(ie §), (14)

We call g the solution of the individually optimal

policy if it satisfies the equilibrium conditions (11)-(14).
We also call such a g the equilibrium.
Remark. In the above definition, R and R+ G(A) repre-
sent the expected response time of jobs arriving at sinks
and the expected response time of jobs sent to sinks, re-
spectively. F;(f;) denotes the expected node delay of
node i. For example, let us examine a job that arrives at
an idle node. According to eq. (11), we see that the job
should be sent to a sink node. If the job decides to
receive service locally, its expected response time cannot
be improved because the expected node delay of the idle
node is greater than the expected response time of jobs
sent to sinks. Furthermore, if the job decides to be sent
to another sink node, its expected response time can
also not be improved because the expected node delays
of all sinks are equal according to eq. (14). For a job ar-
riving at an active or a neutral node, we see that the ex-
pected response time of the job cannot be improved ac-
cording to eqs. (12) and (13).

For the individually optimal policy, we have the
following theorem.

Theorem 3.2 There exists one and only one § that
satisfies the equilibrium conditions (11)-(14). Such B is
the solution of the individually optimal policy.

Proof. As pointed out in [8] by Magnanti, we can ex-
press the individually optimization problem by using an
equivalent overall optimization problem. We denote the
expected node and communication delays of the
equivalent overall optimization problem by F}*(8;) and
G*(1), respectively, and define F¥(8;) and G*(4) as
follows.

1 (b
FrB)=5 | F(BVB. FIO=FO,

1
G*(l)=7§ G(A)di, G*(0)=G(0).
0

F}(B:)and G*(4) are different from F;(8;) and G(1),
respectively, but they have relationship with F;( ;) and
G(4) as defined above. By using the similar way as in
problem (1), we can formulate the equivalent overall op-
timization problem as follows.

1 n
min T*(ﬂ)=;[;ﬁ;F7(ﬁi)+lG*(i) . e

subject to

El

B=9, an
1

ﬂ,‘ZO,

where the network traffic A is expressed in terms of
variables B; as A=% e lgi—Bil.

Noting problems (1) and (16), we see that they are the
similar problems except the differences between F*(8:),
G*(4) and F;(B;), G(A). Here, we need to check the con-
vexity of problem (16). Since dF¥/dBi>0 and
d*F}/dpi>0 for all i, and dG*/dA=0 and
d*G*/dA*=0 for A, we may immediately conclude that
T*(B) is a strictly convex function of variables §;. Fur-
thermore, the variables f; belong to a convex
polyhedron. Thus we may conclude that if the problem
is feasible at all, then any local minimum is a global
minimum for T*(B).

To problem (16), by using the similar way as that of
Tantawi and Towsley [12], we have the following rela-
tions.

Fi(B)zR+G(4), B=0 (ie Ra), 19)
F(f)=R+G(1), 0<pBi<¢i (ieR.), (20)
R=F(B)<R+G(A), Bi=d¢: (ieN), @n
R=Fi(B), B> (ie §), (22)
subject to the total flow constraint
.Z;F"I(R)+,ZR FIURHGAN+ D =0, (23)

ieN

i=1,2, -, n. (18)

By noting the equilibrium conditions (11)-(14) for the
individually optimal policy in Section 3, we see that the
conditions that the solution of the problem (16) satisfies
are equivalent to those equilibrium conditions.
Therefore we conclude that the individually optimal
policy has one and only one solution and that its solu-
tion satisfies the conditions (11)-(14). n]
Remark. We can observe that the solutions of the
overall and individually optimal policies have a striking
parallelism in the forms of the solutions of the two
policies. The parallelism between Theorems 3.2 and 3.1
gives us an intuitive explanation of one in terms of the
other. That is, the overall optimal policy would be
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realized by an individually optimal policy, if the values
of the incremental node and communication delays
were given as the expected node and communication
delays, and vice versa. Therefore, we may implement
the individually optimal policy by using that f;(8;) and
g(A) are replaced with F;(8;) and G(4) in the algorithm
of [5].

4. Parametric Analysis

In this section, we study the effects of the system
parameters on the behavior of the system in the op-
timum and in the equilibrium while node partition re-
mains the same, respectively. We consider the com-
munication time ¢, the node / processing time u;(i=1,
2,--+,n), and the node i job arrival rate ¢;(i=1,
2,---, n) as system parameters. We use a vector p to
denote [, U1, Uz," " *, Un, D1, D2, " *, Dul. Sfi(Bis u;) and
g(4, t) denote the incremental node and communica-
tion delays, respectively. We assume that f;(8;, u;) is a
convex function with respect to §;, and an increasing
function with respect to u;. Similarly, we assume that
g(4, t) is a convex function with respect to 4, and an in-
creasing function with respect to ¢. Similarly for Fi( 8,
u;) and G(4A, t). Parameters A, 8, and « in the optimum
are determined when p is given and we write them as
A(p), Bi(p), and oa(p). Similarly we may write
parameters 4, 8, and R in the equilibrium as A(p),
Bi(p), and R(p).

We define an inverse function e; of the incremental
node delay f; as follows.

ei(a, u)=p;, iff fi(Biu)=c. (24)

Similarly, we can define an inverse function E; of the
expected node delay F; as follows.

Ei(R,u)=4;, iff Fi(B,u)=R. (25)

We assume that the expected communication delay
G(4, t) and the incremental communication delay g(4,
t) increase with ¢.

4.1 Parametric Analysis of the Overall Optimal Policy

We analyze the behavior of the performance
variables of the overall optimal policy as follows.
Theorem 4.1 The following relations hold for the in-
cremental node delay o(p) at sinks.

da(p)
2
at 26)
3
*®) 6. ic SUR,,
au,-
=0, ic NUR,. 27
da(p) .
36, >0, ie SUR,,
=0, ie NUR,. 28)

Proof. Given in Appendix A. m]

Y. ZHaNG, H. KAMEDA and K. SHIMIzU

Remark. This theorem implies that the incremental
node delay at sinks will decrease as the communication
time increases, and that it will increase with the increase
in the processing time or in the arrival rate, at a sink or
at an active source.

Corollary 4.2 The following relations hold for the net-
work traffic A(p).

aA(p)
Y <0. (29)
al
—£< 0, iesS,
au,«
=0, ie NUR,,
>0, ie R,. (30)
di(p)
- 0’ ] 9
Py <0,ie S
=0, ie NUR,,
>0, ie R,. 3D
Proof. We can derive these from Theorem 4.1. o

Remark. This corollary implies that the network traffic
decreases with the increase in the communication time,
or with the increase in the processing time or the arrival
rate at a sink, and that it increases with the increase in
the processing time or in the arrival rate at an active
source.

Denote the overall mean job response time in the op-
timum under the overall optimal policy by T(p). Then
we have the following theorem.

Theorem 4.3 The following relations hold for the
overall mean job response time in the optimum, T(p).

T (p) .
T >0, (32)
aT
——(’2>0, ie SUR,UN,
Bu,-
=0, ieR.. (33)

Proof. From eq. (1) and relations (7) and (9), we have

0T®)_ 1 [&AF)IB BAGWA) 34 3G
at ® |1 9B ot aA at at
_ A 4G
T
Therefore we have relation (32).
We have (33) in the similar way as above. o

Remark. This theorem implies that the overall mean job
response time in the optimum will increase with the in-
crease in the communication time, or with the increase
in the node processing times at sinks, sources, or
neutrals.

4.2 Parametric Analysis of the Individually Optimal
Policy

For the individually optimal policy, we have the
following theorems.
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Theorem 4.4 The following relations hold for the ex-
Dpected node delay R(p) at sinks.

R (p)
a1 <0. (34)
dR
—Q> 0, ie SUR,,
6u,-
=0, ie NUR,. 395)
R (p) ,
36, >0, ie SUR,,
=0, ie NUR,. 36)

Proof. By using the similar way as Theorem 4.1, we
can derive equations on 9dR(p)/dt, dR(p)/du;, and
AR(p)/9d¢i. Then we can derive the above relations. O
Remark. This theorem implies that the expected node
delay at sinks will decrease as the communication time
increases, and that it will increase with the increase in
the processing time or in the arrival rate, at a sink or at
an active source. These agree with our intuition. The
corresponding results on the optimum can be derived
simply by replacing R with « in egs. (34), (35), and (36).
Corollary 4.5 The following relations hold for the net-
work traffic A(p).

i (p)
EY,

daA
£<0, ie S,
au,-
=0, ie NURy,
>0, ie R,. (38)

A (p) .
3% <0, ie S,
=0, ie NURd,
>0, ie R,. (39)

Proof. We can derive these from Theorem 4.4. D
Remark. This corollary implies that the network traffic
decreases with the increase in the communication time,
or with the increase in the processing time or the arrival
rate at sinks, and that it increases with the increase in
the processing time or in the arrival rate at an active
source. These agree with our intuition. The corre-
sponding results on the optimum have the same form as
relations (37), (38), and (39).
Theorem 4.6 The following relations hold for the ex-
p;cted response time for jobs arriving at active sources
R(p)=R(p)+G(A(p), 1).
4R (p)
Yy >0
dR(p)
d U;
=0, ie NUR,. 41)

<0. ()]

(40)

>0, ie SUR,,

3R (p)

=0, ie NUR,. (42)

Proof. Relation (40) can be derived in the same way as
Theorem 7 of [12].

>0, ie SUR,,

Note that
3R() dR(®) 3G(A,1)dA(p)
= . 4
du; du; + A ou; “3)

From Theorem 4.4, Corollary 4.5, and eq. (43) we

easily see that R
R (p)

Bu,-
=0, le NURd.

>0, ieR,,

For ie S, we have from Theorem 4.6 and eq. (43)

aﬁ(p)_(BR(p)) 1 0
du;  \ dw; J1+B@OGA, 1)/ar)”

where B(p)=2icr, (aE[(IQ, u;)/ 6§)lk=ﬁ(p)- Therefore
we have relation (41).
Relation (42) is derived similarly as above. a]
Denote the overall mean job response time in the
equilibrium under the individually optimal policy by
T(p). Then we have

ST(P)=2, 6:R(P)+ 3, ¢:i(R(P)+G(A(p), 1))
ieS RJJURy

+ 2 ¢iFi(). (45)

ieN

(44)

Theorem 4.7 The following relations hold for the
overall mean job response time in the equilibrium, T (p).
aT

a—q,2>0,ie SUR,UN,

i

=0,ie R4.(46)

aT(p)_ . .

a—¢—>0,le R,UR,UN.(47)

Proof. From eq. (45) we have

aT()_ 1 3R (p) AR .
du; @ ,'ez;‘ﬁi du; +R§4¢i P SRz,
aF;

¢i—, ieN.
all,'

Therefore we have relation (46) by noting Theorems
4.4 and 4.6.

Relation (47) is derived similarly as above. [m]
Remark. This theorem implies that the overall mean job
response time in the equilibrium will increase with the
increase in the node processing times at sinks, sources,
or neutrals, or with the increase in the job arrival rates
at sources or neutrals. These agree with our intuition.



438

5. Anomalous Behavior of the Optimum and the
Equilibrium

In the previous section, we have analyzed the effects
of the system parameters on the performance variables
of the overall and individually optimal policies. Note
that a7 (p)/d¢; is not presented in Section 4.1 and that
aT(p)/ot and aT(p)/d¢; for ie S are not presented in
Section 4.2. Let us examine these in the following.

§.1 The Overall Optimal Policy
From eq. (1) and relations (7) and (9), we have

aTP)_ 1 " 3(BF)IB;
3¢ B? [¢ 2 g, 3¢
d(AG(A))aAr
T a«m)””‘"’]
1 aF:(ﬂi, u;)
‘F[‘p YR

+ Z";ﬂ,-(ﬂ(ﬁ,-, )~ F, (B, )

—AG(@4, t)] ieN

3

1
Tp‘;( ,Q:(a+g-F,(,B,-,u,-))-—).G(/l,t)) ie R,URy
j=1

1 /2 .
Y (/; Bla—Fy(B, u))—AG(4, t)) ieS

Let us see the case ie S as an example. When com-
munication speed is slow, i.e., the communication time
is large, and sinks are lightly loaded, we may have a < F-
(B, u;) and G(A)»0. It is dT/d¢:<0, in this case, so
that the overall mean job response time have a chance
to decrease as the job arrival rate at a sink increases.

5.2 The Individually Optimal Policy

We have in deriving the theorem 4.4,
dR(p) _ —B(p)3G(4,1)/d1)

at TAP)+BE)+AP)BEIOG(A,1)/31)’
dR(p) _ APNIG(4,1)/31)

3t A@+BE)+AP@BE)NIG(A,1)/34)

From eq. (45) and the above relations, we have

aT(p) 1 dR(p) IR (p)
at @ {§g¢i_al_+k§ia¢i at }
1 ZrorpiA(P)— Zic s i B(p)
T @ A(p)+BP)*+A@P)BO)AG (A, 1)/d1)
xaG(i, t)

at

Note that if all sinks are congested, A(p)
=3,cs@E (R, u;)/dR) will be small, i.e. A(p)=0.
Thus, for example, if all sinks are nearly saturated or
the arrival rates X,.s¢; at sinks are high, we may
observe an anomalous behavior of the equilibrium such
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that the overall mean job response time decreases even
though the communication time increases.

Similarly from the theorem 4.4, and eq. (45), we have
forie S

0T®)_ 1 !
86, @’ A@)+BE)+AP)B(P)IG/o1)
G
x {¢(2¢.»+ > 6+ ¢,-B(p)5;)

€S RMUR, ieS§

=[>, 6:G+ 3] ¢i(Fi(¢)—R(p)))
RORq fry
X[A(p)+B(p)+A (p)B(p)(&G/ZM)]}.

Although the above relation is quite complicated, we
may see that it has chances to be negative. Thus, in
some cases, the overall mean job response time of the
equilibrium may have chances to decrease as the job ar-
rival rate at a sink increases.

6. Numerical Examination

We have examined numerically the effects of the
system parameters in several examples of a distributed
computer system that consists of four host computers
(nodes) connected via a single channel. Each node is
modeled as a central-server model as shown in Figure 2.
Server 0 is a CPU that processes jobs according to the
processor sharing discipline. Servers 1, 2, ---, d are
1/0 devices which process jobs according to FCFS. Let
pioand p;;, j=1,2-- -, d, be the probabilities that, after
departing from the CPU, a job leaves node i or requests
1/0 service at device j, j=1, 2,-- -, d, respectively.

The expected node delay of a job in such a node
model is given as

F(py=3—3o 48)
S Bu—aiiB’
where gi0=1/p;o and q; ;= p;;/ pio, and u;; is the service
rate of at server j, j=0, 1,- - -, d of node i. We consider
processor sharing M/G/1 model for the single channel
communications network. The expected communica-
tion delay is given by

node i I B

o

&

Fig. 2 Node model.
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Table 1. Parameters of node models.

Processing rates of Probabilities of a job
servers(jobs/sec) leaving CPU

node || pio | pin | pi2 | #i3 [ pio | pin | pi2 [ pia
1 1500 | 450 | 450 [ 450 |f 0.1 | 0.3 | 0.3 [ 0.3

2 100 45 45 - 0.1 ]0.45 | 0.45 -
3 || 100 | 30 |30 |30 01] 030303
4 [ 120 |54 | 54| - [01]045]045] -
G)= ! 49)
1—At’

where ¢ is the mean communication time for sending
and receiving a job. We used the algorithm which is de-
veloped by Kim and Kameda [5] in our numerical
calculation program.

We have observed (results not presented here), in
most cases, that the results of the numerical examina-
tion agree with our intuition and that the overall mean
job response time of the equilibrium is close to that of
the optimum. We also observed that, in most cases, the
individually optimal policy is more sensitive to the
system parameters than the overall optimal policy.
Table 1 shows an example of the set of the values of
processing rates u;; and the transition probabilities p; ;.
The results using Table 1 are given in Figs. 3, 4, and 5.

In Figures 3, 4, and 5, ‘OOP’ and ‘IOP’ denote the
overall mean job response times of the overall and in-
dividually optimal policies, respectively. The solid line
shows the overall mean job response time ( 7(f)) of the
optimum under the overall optimal policy. The dotted
line shows the overall mean job response time ( 7( #)) of
the equilibrium under the individually optimal policy.

Figures 3 and 4 show how the overall mean job
response times (7(f)) of the optimum and of the
equilibrium vary as the communication time (7)
changes. The values of ¢, ¢3, and ¢, are fixed tobe 7, 7,
and 7.5 (jobs/sec), respectively. In Fig. 3, ¢, equals 80
(jobs/sec). From this figure, we can observe that the
overall mean job response time of the equilibrium is
close to that of the optimum. This is what we noted at
the end of Section 3. The right-most end of each curve
shows the case where all nodes are neutral, i.e., the case
of no load balancing. In this figure, we see how static
load balancing improves the mean response time in an
example.

In Fig. 4, ¢, equals 140 (jobs/sec). We can observe
such an ganomalous behavior that the overall mean job
response time of the equilibrium decreases even though
the communication time increases up to a certain value.
This is what we noted in Section 5.2. Furthermore, we
can even find such a seemingly extraordinary case that
the overall mean job response time of the equilibrium is
minimum only when all nodes are neutral (no load
balancing).

Figure 5 shows how the overall mean job response
times (7(B)) of the optimum and of the equilibrium
vary as the job arrival rate of node 1 (¢,) changes from

x103

300,00._F I u

250.00—

200.00—

150.00— |

Response time (sec)

100.00—

0% | | | "‘
0.00 1.00 2.00 3.00 4}00

Communication time (sec)

Fig. 3 The overall mean job response times (7(£)) when chang-
ing the communication time (¢) under the overall and in-
dividually optimal policies in the case where ¢, =80, ¢,=7,
@;=17, and ¢,=7.5.

x 10

55000 —

Response time (sec)

500.00— N —

450.00— | { -
0.00 1.00 2.00 3.00 4.00
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Fig. 4 The overall mean job response times ( 7(8)) when chang-
ing the communication time (¢) under the overall and in-
dividually optimal policies in the case where ¢,=140,
6,=7, $;=7, and ¢,=7.5.

0 to 146 (jobs/sec). The values of ¢, ¢3, ¢4 and ¢ are
fixed to be 9, 9, 11.5 (jobs/sec) and 0.3 (sec), respec-
tively. In Fig. 5, we can observe that the overall mean
job response time of the equilibrium is close to that of
the optimum. Under both of the two policies, however,
we can observe anomalous behaviors that the overall
mean job response times of the optimum and of the
equilibrium decrease even though the total external ar-
rival rate increases up to a certain value. These are what
we noted in Section §.
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Fig. 5 The overall mean job response times (T(B)) when chang-
ing the job arrival rate of node 1(¢,) from 0 to_146
(jobs/sec) under the overall and individually optimal
policy in the case where ¢=0.3 (sec) and ¢,=9, $;,=9,
6,=11.5.

7. Conclusion

We studied two contrasting policies, the overall and
individually optimal policies, for statistically balancing
the load on a set of heterogeneous host computers con-
nected by a communications network. We showed the
conditions that the solution of the individually optimal
policy satisfies. We studied the effects of the system
parameters on the performance variables of the two
policies. The main results of this paper can be summa-
rized as follows:

«  We found that the two policies have very similar
characteristics even though they are of the nature entire-
ly different from each other. We observed, in most
numerical examples, that the overall mean job response
time of the equilibrium is near to that of the optimum.
We also observed that the two policies can be im-
plemented in a similar way.

+ We observed, however, an anomalous
phenomenon, that there are cases where in the
equilibrium, the overall mean job response time
decreases even though the communication time in-
creases. We can improve the overall mean job response
time in this situation, by decreasing the ratio of jobs
sent to sinks in order to reduce the congestion in sinks.
However, it may degrade the mean response time of
jobs in sources. It is necessary, therefore, to consider
the trade-off between the mean response time of jobs in
sources and the overall mean job response time.

* We also observed another anomalous
phenomenon that there are cases where in the optimum
and in the equilibrium, the overall mean job response
time decreases even though the job arrival rates in-
crease.
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¢ From the above results, we may conclude that the
overall mean job response time is not a performance
measure perfect in all respects and that it is necessary to
take account of other performance measures. This prob-
lem seems to be worth while to study.

One of the extensions to this work is the considera-
tion of multiple class cases where different classes may
have different processing requirements and node
assignments. In the multiple class cases, neither the
overall optimal policy nor the individually optimal
policy may generally have a unique solution. Thus the
parametric analysis may encounter many difficulties. In
the parametric analysis of the multiple class cases, one
of the most important tasks is to determine the mean-
ingful performance variables which are uniquely deter-
mined.

Appendix A. Proof of Theorem 4.1
Let us define

1, ieX,

0, i¢X.

Relation (26) itself is Theorem 5 of [12].
Lemma A.1 For a given set of sinks S and for all i,

@) _ . da(p)
% =C(p) YRR (A.1)
94 (p) _ da(p) de;
o, =C(p) au, +5.-(S)au'_, (A.2)
M@ _ . dap)
%%, =C(p) 24, 9i(8), (A.3)
where
de;i(a, u;)
cp)=),—— A4
®) 'EZ; Fro (A.4)
Proof. Eq. (A.1) itself is eq. (17) of [12]. To derive

eq. (A.2) we have from relation (9) and definition (24)

ei(a(p), u)=pip), ieSs. (A.5)
Therefore we have
aﬂ,-(p)=3ei(a, "i)l da(p)
au/ da a=a(p) au,
dei(a, ui)
Y (A.6)
du; a=a(p)

By noting that A(p)=Zics(Bi(p)—¢:), we easily
have eq. (A.2) from eq. (A.6).
We have (A.3) in the similar way as above. o

Lemma A.2 For a given set of active sources R, and
Sfor all i,
34()_ _(da(p)/3n)+(3g(4, 1)/31) A7)
at A/D(P)+(3g(4,1)/34) ’ ’
0A()_  (Ba(p)/du)+0i(Ra)(dei(&, ui)/du)
dup A/DE)+@g@A,n/31)

(A.8)
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6l(p)=_ (0 (p)/3¢:)—38i(R.) (A.9)
a¢; (1/D(p)+(3g(4,1)/84)’ '
where
aP)=a@)+g(i @), 1), (A.10)
_ e, )
D(p)_.-ezn;.——a& . (A.11)

Proof. Eq. (A.7)itself is eq. (20) of [12]. To derive eq.
(A.8) we have from relation (7) by using definition (24)

Bip)=e(a(p)+g(4, 1), w), ieR..
Then we have

8 Bi(p) _dei(a, u;) a_d+a_gﬁ)
ou;  da& du; A du;

aei(&) ui)
auj
(A.12)

Note that A(p)=Zicr, (¢i—Bi(p))+Zicr, ¢ From
these, we have eq. (A.8).
We have (A.9) in the similar way as above. D
By combining each equation in Lemma A.1 with the
corresponding equation in Lemma A.2, we can derive
equations on da(p)/du;, and da(p)/d¢;.. Then we can
derive relations (27)-(28).
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