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Optimal Checkpointing Policies Using the
Checkpointing Density

SatosHl FukuMoTo*, Naoto Ka10** and SHUNIi Osaki***

In a computer system, in particular, in a database system, constitutions and recovery techniques of files play
an important role in the operation of the system. This paper discusses checkpointing policies for rollback-
recovery which is one of the most general file recovery techniques. When files on a main memory are lost in a
failure, we reprocess transactions from the latest checkpoint instead of the starting point of the system opera-
tion. Checkpoints are prespecified time points at which the information of the files is collected in a stable sec-
ondary storage. It is important to decide an effective checkpointing policy. If we execute checkpointing frequent-
ly, we must incur a great cost for the collection of the information, and conversely, if we execute rare checkpoin-
ting, we must incur a great cost for the recovery action after the system failure. Thus, checkpoints should be de-
cided by considering the trade-off between the above two costs. In this paper, we discuss the checkpoint time se-
quence which minimizes the approximate total expected cost per unit time in the steady-state. The analysis
shows the derivation of the total cost as the functional of the checkpointing density and the optimal check-
points. We further present numerical examples assuming a failure-time distribution to be a Weibull distribu-
tion, and show how our analytical results are of great use.

1. Introduction

It is important in a computer system to avoid the
system down and to restore rapidly the system to the
normal operation even if the system down takes place.
So far, many fault tolerant techniques for a computer
system have been studied [1]. In particular, constitu-
tions and recovery techniques of files on a database
system play an important part, since reliability and per-
formance of the system are considerably serious by loss
of the files containing much information and/or by in-
troduction of incorrect information. Several techniques
to database systems are applied; error correcting
methods improving the reliability of data, dual file form
having redundancy by duplicated identical files, and so
on. On the other hand, if files on a main memory and a
secondary storage are lost or hurt by some system
failures, several file recovery techniques have been in-
troduced in order to restore the contents of the files to
the consistent states just before the failure. In this
paper, we consider rollback-recovery which is one of
the typical file recovery techniques [2-4].

In a database system, in general, whenever a transac-

This is a translation of the paper that appeared originally in
Japanese in Transactions of IPSJ, Vol. 31, No. 6 (1990), pp. 887-893.
*Graduate Schoo! of Engineering, Hiroshima University,
Higashi-Hiroshima-shi, 724, Japan.
**Department of Management Science, Hiroshima Shudo Univer-
sity, Hiroshima-shi, 731-31, Japan.
***Cluster Il (Electrical Engineering) Faculty of Engineering,
Hiroshima University, Higashi-Hiroshima-shi, 724, Japan.

Journal of Information Processing, Vol. 15, No. 1, 1992

tion modifies the files in the main memory, the redun-
dant information about the transaction processing is
collected in a stable secondary storage (magnetic tape or
disks) which is called a journal (or a log). This informa-
tion enables us to remove the effects of the transactions
from the files, and to reprocess the transactions, where
these operations are called UNDO and REDO opera-
tions, respectively. On the occasion of a failure, we can
restore the files to the states just before the failure, by
loading the main memory with a back-up copy of the
files which had been taken at a normal operation time in
advance, and adding the information of the transaction
processing in the journal to the back-up copy. The
operation that recovers the files to the states of the
previous time when the back-up copy had been taken, is
called rollback. If the back-up copy is in the oldest
state, the rollback operation must trace back to the start
of the system operation, and the file recovery by the
journal may be a great deal. We therefore collect the in-
formation of the files on the main memory in a stable
secondary storage at pre-specified time points before
the system failure. We call this operation ‘checkpoin-
ting’, and the time points ‘checkpoints’. Checkpoints
must be decided by considering the total system perfor-
mance, cost, and so on. If we execute checkpointing fre-
quently, the total time and cost for checkpointing are
large, while those for rollback-recovery are small. Con-
versely, if we execute rare checkpointing, the time and
cost for rollback-recovery are large, while those for
checkpointing are small.
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Problems of deciding checkpoints have been dis-
cussed under the assumption that system failures occur
as a Poisson process [5-8]. Such earlier contributions
yield constant checkpoint intervals which maximize the
system availability, in other word, minimize the total
time for rollback-recovery and checkpointing. The
problem has been also discussed by an algorithm which
optimizes an execution of a task sequence containing
checkpoints [9].

In this paper, we propose a new model in which one
cycle is defined as the interval from the start of the
system operation to the restart on the recovery comple-
tion after a failure. Checkpointing policies are dis-
cussed considering the trade-off between the cost for
checkpointing and the cost for rollback-recovery.
Estimating these overhead costs is basically equivalent
to estimating the above total loss time, since the cost for
the operations is proportional to the time for the opera-
tions in general [5]. However, it is of great convenience
for our analysis to estimate the cost without treating the
times for checkpointing and rollback-recovery. We
therefore introduce the approximate expected cost per
unit time in the steady-state as the criterion of our
model. Assuming that a time point of the system restart
is a regeneration point, the approximate expected cost
per unit time for one cycle can be substituted for the
above cost in the steady-state. We derive the cost for
one cycle from a checkpointing cost function of the
checkpoint interval and a rollback-recovery cost func-
tion of the interval from the latest checkpoint and the
failure.

In our model, the optimal checkpoints are derived as
a time sequence in which the checkpoint interval
changes with time, since we assume that a failure-time
distribution is an arbitrary failure-time distribution,
that is, a failure rate of the system changes with time.
Another model has been presented in the reference [11],
which similarly yields the optimal checkpoint sequence
under the assumption of an arbitrary failure-time
distribution. Taking checkpoints on condition that the
failure probability between successive checkpoints are
always constant p, the model determines p which
minimizes the total loss time.

In the analysis, we derive the approximate expected
cost in the steady-state as the functional of the check-
pointing density; the approximate number of check-
points per unit time, introducing cost functions and a
failure-time distribution. The optimal checkpointing
density is obtained by minimizing the cost. The above
cost and the optimal checkpointing density are replaced
by new ones introducing concrete cost functions. Fi-
nally, we show numerical examples for our analyses
under the assumption that the failure-time distribution
is a Weibull distribution.

2. Model and Assumptions

1. The system operation is started at time 0 (=#).
The planning horizon is infinite.
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2. The kth checkpointing is instantaneously ex-
ecuted at the checkpoint #(k=1,2,3,---). A system
failure is never induced by the checkpointing.
3. The detection of the system failure and rollback-
recovery are executed instantaneously. The recovery ac-
tion is always complete, and the system is restarted im-
mediately.
4. One cycle is defined as the interval from the start
of the system operation to the restart on the recovery
completion after the failure.
5. We introduce the following quantities:
«F(t), F(t), f(t), r(t), E[T]: The cumulative
distribution function, the reliability function, the
probability density function, the failure rate, the
mean of the failure time for the system, respectively.
Note that F(£)=1—F(¢) and r(t)=f(t)/F(t).
*n(t): The checkpointing density at time 7; a smooth
function which denotes the number of checkpoints
per unit time at time f.

¢ The time at which the system executes checkpoin-
ting for each cycle; k=1, 2, 3,---.

o{t¥, t¥,t¥,---}: The optimal checkpoint sequence
minimizing the approximate expected cost per unit
time in the steady-state.

*C(n(t)): The approximate expected cost per unit

time in the steady-state.

oL.(ti—1t;-1): The cost for checkpointing at check-

point #;k=1, 2, 3,- - -.

*L,(t—ty): The cost for rollback-recovery in case the

system failure occurs at time ¢ and the latest check-
point is tn.

3. Analysis

Let us derive the optimal checkpoint sequence which
minimizes the approximate total expected cost per unit
time in the steady-state from the above assumptions.

First, the approximate expected cost for checkpoin-
ting per one cycle, Si(n(1)), is given by

s =| j Le(n(v)"Yn(x)dedF (¢)

0 Yo

=§L4m0”muuﬂnw. (n)
0

We next derive the approximate expected cost for
rollback-recovery per one cycle S;(n(¢)). If t—itn=71,
the cost L,(r) can be approximated by applying
Taylor’s expansion:

L(0)=L (1 +1L,(1 b
D=L\ ]*+3 ’2)

= (B +Z
TT\2) 27 \2)

In case the system failure occurs at time #, the cost for
rollback-recovery is approximately given by
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(OW T
—n(t)£ L, (E) dt
_L (i —l)
=L\5 n(t) ' |.
Thus, we can obtain S;(n(t)):
© 1
Sz(n(f))=§ Lr(_ n(t)")dF(t)- @
o 2
From equations (1) and (2), we have

©

Cn(t)= EIT]

where the approximate expected cost per unit time in
the steady-state coincides with the cost for a cycle [10].

We obtain the checkpointing density 7(¢) minimizing
the functional C(n(¢)). This is a problem of calculus of
variations in which n(f) is an unknown function.
Euler’s equation implies

L(n(t)"H—n() 'Lin(t)™h
1 1
—— b} SN -1 =
2 n(t) %L/ (2 n(t) )r(z) 0. 4)

Applying the concrete cost functions L.(x) and L,(x),
and solving equation (4) yield the checkpointing density
n(t).

In general, if we use the checkpointing density n(¢),
the checkpoint sequence {#,, f;, #3,- - - } satisfies;

o
k=§ n(t)dt, k=1,2,3,---. )

]

E[T} ’ @

and

L,(x)=c,+k,-l—’x, ()

Hs

respectively, where each parameter is defined as

follows:

A.: The arrival rate [4] of an update transaction which
is reprocessed in rollback-recovery.

us: The processing (service) rate [4] for transactions,
where 1/u;<1/4,, i.e., A,/us<1.

a.: The ratio of the overhead for checkpointing to the
overhead for reprocessing of the update transac-
tions which have been processed between two suc-
cessive checkpoints.

c.: The cost attendant on checkpointing.

K.: The cost for checkpointing per unit time.

¢,;: The cost attendant on rollback-recovery.

k.. The cost for rollback-recovery per unit time.

Substituting n(¢) obtained above into equation (5) If p=£’ K.=k.a. }:z ka.p, and K=k 'l_'z kp
enables us to derive the optimal checkpoint sequence us’ Hs o HUs ’
{et,¢3,¢3,---}. the cost functions are given by
Let us introduce the concrete cost functions to obtain
the checkpoint density n(¢z) based on the above L(x)=c.+Kcx ®
analytical results. We assume that and
Ar =
Lox)=c.+k.a.—x (6) L.(x)=c+K,x. )
He From equation (3), the approximate expected cost per
unit time in the steady-state is given by
00 _ o0 K,
C(n(t))=§ (cc+Kcn(t)")n(t)F(t)dt+S c,+7 n(t)"'|dF(t)/E[T] (10)
o 0

00

S: (ccn(t)+Kc)I':(t)dt+S

0

E[T]

K,
(c,+? n(t)“)f(t)dt

aan
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We further obtain Euler’s equation from equation (4):
1
c.+K.n(t)™! —n(t)‘ch—i n(?)*K.r(¢)=0,
that is,
1
cc—z n(t) K, r(t)=0. (12)

Solving equation (12) with respect to n(¢) yields:

K,

=4 . 13
n(t) yzqr(t) (13)

Introducing a new constant

oK _k ke o
'c_2cc_2ccp_2cc u’ (

we have the following n(¢):

n(t)= VKer(t)=[Ker ()12 (15)

4. Numerical Examples

Let us show numerical examples by assuming the
failure time distribution to be a Weibull distribution:

F()=1—e %" (>0, m>0)

where A and m are called the scale and shape
parameters, respectively. The Weibull distribution is
able to give a reasonable description of several failure
modes by varying the parameters, and is applied to
describe a fatigue failure, an electronic element failure,
and so on. It is sufficiently useful for our model in
which the failure rate changes with time. We have F(¢)
=e U f()y=mAmt™ e A p(t)=mAmt™ ), E[T]

1 1 ©
=(—>F(1+—) , where I“(k)=§ e *x*"!dx (gamma
A m o
function).

From equation (15), the checkpointing density is
given by:

n(t)=[K,mAmtm=12, (16)

We can see from the failure rate properties of the
Weibull distribution that the checkpoint interval in-
creases with time for 0 <m <1 and decreases for 1 <m.
In case of m=1, F(t)is an exponential distribution and
the checkpoint interval is always constant.

Substituting n(¢) from equation (16) into equation
(15) yields the approximate expected cost per unit time
in the steady-state:

2cc§ n()F (t)dt+c,

0

C(n(t)= +K.. an

E[T]
Table 1 shows the optimal checkpoint sequence {¢f,
t¥,t¥,---} obtained from equations (5) and (16), and
the checkpoint sequence {¢¥*, ¢¥*, t$*,---} assuming
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Table 1 Optimal checkpointing time sequence by the checkpointing
density vs. the sequence by the constant time interval. (F(¢)
=1—exp [—(At)"), m=0.5, E[T]=500, c.=10, c¢,=10,
k.=1k,=1, a=0.1,1/1,=5,1/u,=2,)

k [ F(}) e F(t2%)
1 92 0.4557 158 0.5485
2 233 0.6192 316 0.6752
3 400 0.7178 474 0.7478
4 587 0.7840 632 0.7962
5 791 0.8311 791 0.8311
6 1008 0.8658 949 0.8574
7

1238 0.8920 1107 0.8780

Table 2 Optimal checkpointing time sequence by the checkpointing
density vs. the sequence by the constant time interval. (F(¢)
=l=exp [—(4)"], m=1, E[T]=500, c.=10, ¢,=10,
k.=1k=1,a=0.1, 1/A,=5, 1/u,=2,)

k ty F(tp) e F(i*)
1 158 0.2711 158 0.2711
2 316 0.4687 316 0.4687
3 474 0.6127 474 0.6127
4 632 0.7177 632 0.7177
5 791 0.7943 791 0.7943
6 949 0.8500 949 0.8500
7

1107 0.8907 1107 0.8907

Table 3 Optimal checkpointing time sequence by the checkpointing
density vs. the sequence by the constant time interval. (F(¢)
=1—exp [—(At)"), m=2, E[T]=500, ¢.=10, c¢,=10,
k.=1k=1,a=0.1, 1/1,=5,1/u,=2)

k tf F(th) et F(E%
1 262 0.1935 158 0.0755
2 415 0.4183 316 0.2696
3 544 0.6056 474 0.5068
4 659 0.7447 632 0.7154
5 765 0.8409 791 0.8596
6 864 0.9041 949 0.9408
7

957 0.9438 1107 0.9787

Table 4 The expected costs and gains ((C,—C,)/C:[%]) by the
checkpointing density vs. by the constant time interval.
(F(t)=1—exp [—(A)"], E[T)=500, c.=10, c¢,=10,
k=1k=1,a=0.1, 1/4,=5, 1/u,=2,)

G G (C;—C)/ C1[%)
m=0.5 0.1721 0.1942 11.36
m=2 0.1764

0.1867 5.513

that the checkpointing is executed periodically, where
m=0.4, E[T]=500, ¢.=10, ¢=10, k.=1, k=1,
a.=0.1, 1/A,=S5, and 1/u,=2. Figure 1 illustrates the
relation between the checkpoint sequence and the check-
point density n(f). Table 2 and Figure 2 show the
results for m=1, where all parameters are the same as
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Fig. 1 The illustration for the checkpointing density and check-
pointing time sequence. (F(t)=1-—exp [—(41)"], m=0.5,
E[T]=500, c.=10, ¢,=10, k=1 k,=1, a,=0.1, 1/1,=5,
1/1,=2))
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Fig. 2 The illustration for the checkpointing density and check-
pointing time sequence. (F(f)=1—exp [—-(A1)"], m=1,
E[T]1=500, ¢.=10, ¢,=10, k=1 k,=1, a,=0.1, 1/4,=5,
1/u=2))
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Fig. 3 The illustration for the checkpointing density and check-
pointing time sequence. (F(t)=1—exp [—(4¢)"], m=2,
E[T]=500, c.=10, ¢,=10, k.=1 k,=1, a.=0.1, 1/4,=5,
1/u,=2))

in Table 1 except the shape parameter m. Table 3 and
Figure 3 similarly show the results for m=2. In case of
m=0.5, the checkpoint intervals are short at the early
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stage of the system operation, and increase with time.
Conversely, in case of m=2, checkpoint intervals are
long at the early stage of the system operation, and
decrease with time.

We next discuss comparisons between the approx-
imate expected cost by the optimal checkpoint sequence
and the one by the periodical checkpoints, for m=0.5
and m=2. Let C, and C, denote the cost by the optimal
checkpoint sequence and the cost by the periodical
checkpoints, respectively. Table 4 shows the gain of C,
to G, ((C:—C1)/ Cy) x 100[%], for m=0.5 and m=2.
We can see from these results that the checkpointing
policy by the optimal checkpoint sequence is better than
the other in either case.

5. Conclusion

This paper has discussed checkpointing policies for
rollback-recovery which is a file recovery technique in a
computer system. We have shown the derivation of the
checkpoint sequence which minimizes our criterion; the
approximate expected cost per unit time in the steady-
state. The checkpointing density which denotes the ap-
proximate checkpointing rate has been introduced by
assuming that the checkpoint interval should change
with the failure rate of the system. One cycle has been
defined as the interval from the start of the system
operation to the restart on the recovery completion
after the failure. The approximate expected cost per
unit time in the steady-state has been derived as the func-
tional of the checkpoint density from the costs for
checkpointing and rollback-recovery per one cycle. We
have obtained the checkpointing density which
minimizes the above cost. We have further obtained the
above cost and the optimal checkpointing density by
assuming concrete cost functions. Finally, numerical ex-
amples for the results obtained have been shown, in
case the distribution function of the failure time is
assumed to be a Weibull distribution.

Our results derived by using the checkpointing den-
sity are analytical results. Thus, applying a failure-time
distribution and cost functions, we can relatively easily
calculate the optimal checkpoint sequence. In par-
ticular, our analytical results are of great use for
various kinds of distributions, since we have assumed
an arbitrary failure-time distribution.

Rollback-recovery with checkpoints is in general of
great use for a file recovery technique in a database
system. A system failure does not always occur with a
constant failure rate if we consider the times in the early
stage of practical system operations and so on. In such
situations, our results yield an effective checkpoint
policy, since the policy by the optimal checkpoint se-
quence is better than the one by the periodical check-
points as discussed by the numerical examples above.
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