アライメントアルゴリズムの改良

中村 卓 佐藤 圭子 東京理科大学理工学部情報科学科

概要 動的計画法を用いたアライメントは、配列間の差異を最小にする(あるいは配列間のスコアを最大にする)ようなアライメント結果を得ることができる.しかし、そのアライメント結果が複数生じる場合があり、その結果から最も確からしいと思われる一つを選択する方法はまだ確定していない.また、各アミノ酸間(あるいは塩基間)やアミノ酸とギャップ間の差異の定義の仕方によって、得られる結果はもちろん異なってくる.したがって、その差異をどのように決定し、かつ適切なアライメント結果を導き出すかが重要となる.そこで、ラマチャンドラン・プロットを基にして、各アミノ酸間の差異を3通りの方法で定義し、それらと、BLOSUM 行列とを組み合わせることで、タンパク質の立体構造と、各アミノ酸のペアの起こりやすさを考慮した差異行列を作成した.

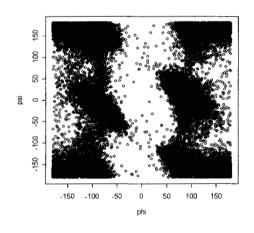
Improvement of alignment algorithm

Takumi Nakamura and Keiko Sato Tokyo University of Science, Department of Information Sciences

Abstract The sequence alignment based on dynamic programming has been done on a principle to give the shortest difference between two sequences (or the maximum score between two sequences). We have a lot of the alignment results having the same value to the difference; however we have not known a criterion which result is most proper. The alignment result is strongly influenced by the way to define the difference between two amino acids (resp., nucleotides) and between an amino acid (resp., a nucleotide) and a gap. Therefore it is important that we decide how to define the difference and find the proper result for the alignment. In this paper, we define the difference between amino acids in three ways on the basis of Ramachandran plot, then we combine these methods with the BLOSUM matrix. That is, we make the difference matrix taking account of the peptide structure and the frequencies of substitution of amino acids in each position.

1. 序章

現在、アライメントを行う際に最も広く使われているスコア行列が BLOSUM 行列である. しかしながら、BLOSUM 行列はアミノ酸置換行列であるため、タンパク質の立体構造


を考慮に入れてはいない、タンパク質の働きは立体構造によって決まるので、立体構造を 考慮することは重要である。そこで、ラマチャンドラン・プロットを応用して、タンパク 質の立体構造を考慮した行列を作り、それらの行列と BLOSUM 行列を組み合わせること で立体構造と置換の起こりやすさを考慮した行列を作成した.

本論文では、まずラマチャンドラン・プロットから各アミノ酸間の差異を 3 通りの方法 で定義した後、それらと BLOSUM 行列とを組み合わせる方法を述べ、作成した差異行列 をアライメントアルゴリズムに適用した結果を示す.

2. ラマチャンドラン・プロットの応用

2.1. ラマチャンドラン・プロット

タンパク質の主鎖の構成する結合部分は様々な角度に折れ曲がっており多くのコンホメ ーションをとる. しかし、実際に自由に回転できる結合部分は、アミノ基と中心炭素のま わりの回転角ゅと、カルボキシル基と中心炭素のまわりの回転角ゅである。ゅとゅは原子 同士が衝突しない無理のない角度に限定されている. 実際にゅとゅをそれぞれ x, y 軸方向 に取りプロットしたものを、この角度を最初に計算した生物学者 G.N.Ramachandran にな らって、ラマチャンドラン・プロットと呼ぶ[1]、 ゅとゅの角度分布は側鎖が関係している ので、側鎖の種類、つまりアミノ酸の種類によって異なっている、側鎖が小さいグリシン は、かなり自由な角度を取ることができる(図1).しかし、側鎖が比較的大きいプロリン では、あまり自由な角度を取ることができない(図2).

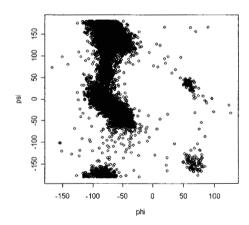


図 1 gly のラマチャンドラン・プロット 図 2 pro のラマチャンドラン・プロット

2.2 アミノ酸間の差異の定義

実際、どのようにラマチャンドラン・プロットからアミノ酸間の差異を計算するか、そ の方法を説明する. 今回使用したアミノ酸の (ϕ,ϕ) 角度のデータはDASSD (http://www.cs. rmit.edu.au/dassd/) から収集した[2].

まず、ラマチャンドラン・プロットの ϕ 方向、 ϕ 方向をそれぞれ等間隔に区切る. これによって作られる升目の中に、いくつデータが入っているかをカウントする. よって、 ϕ 方向、 ϕ 方向にそれぞれNに分割したとすると、 $N\times N$ 個の数が得られることになる. 今回はN=72とした[3].

[方法 1]

この方法では、2つのアミノ酸の角度分布の差の絶対値をもって差異とすることを考える、アミノ酸の種類によってプロットの総数が異なる場合も考慮しつつ、分布間の差の絶対値を計算し、さらにその結果が0から1の範囲に収まるように正規化を行ったものを、各アミノ酸間の差異とする。アミノ酸a,bの差異を $d'_{Rama_1}(a$,b)と表すと、次の式で定義できる。

$$d'_{Rama_{1}}(a,b) = \frac{\sum_{i=1}^{N} \sum_{j=1}^{N} \left| \frac{n_{ij}^{a}}{N_{a}} - \frac{n_{ij}^{b}}{N_{b}} \right|}{2}$$

ただし,

$$N_{a} = \sum_{i=1}^{N} \sum_{j=1}^{N} n_{ij}^{a} , N_{b} = \sum_{i=1}^{N} \sum_{j=1}^{N} n_{ij}^{b}$$

ここで、 n_{ij}^a 、 n_{ij}^b は、それぞれアミノ酸a、bのラマチャンドラン・プロットにおいて、 ϕ 方向のi番目、 ϕ 方向のj番目の升目にプロットされている点の個数である。 [方法 2]

この方法では、 n_{ij}^a 、 n_{ij}^b を、それぞれ $N \times N$ 次元ベクトルの成分とみなす。そして、それぞれを単位ベクトル化した後で、ベクトルの差の絶対値をもって角度分布の差異とすることを考える。その結果が 0 から 1 の範囲に収まるように正規化を行ったものを各アミノ酸間の差異とする。この方法によるアミノ酸a,b の差異を $d'_{Rama_2}(a,b)$ と表すと、次の式で定義できる。

$$d'_{Rama_{2}}(a,b) = \frac{\sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} \left(\frac{n_{ij}^{a}}{N'_{a}} - \frac{n_{ij}^{b}}{N'_{b}}\right)^{2}}}{\sqrt{2}}$$

ただし,

$$N_a' = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} \left(n_{ij}^{a}\right)^{2}} , N_b' = \sqrt{\sum_{i=1}^{N} \sum_{j=1}^{N} \left(n_{ij}^{b}\right)^{2}}$$

[方法 3]

この方法では、相対エントロピーを使用して、角度分布間の差異とすることを考える。 $p = \left\{p_{ij}^a\right\}_{i,j=1}^N, q = \left\{q_{ij}^b\right\}_{i,j=1}^N \quad \left(p_{ij}^a = \frac{n_{ij}^a}{N_a}, q_{ij}^b = \frac{n_{ij}^b}{N_b}\right)$ をそれぞれアミノ酸a,bのラマチャンドラン・プロットにおいて、 ϕ 方向のi番目、 ϕ 方向のj番目の升目にプロットされている点の個数の確率分布とする。その結果が0から1の範囲に収まるように正規化を行ったものを各アミノ酸間の差異とする。この方法によるアミノ酸a,bの差異を $d'_{Rama_3}\left(a,b\right)$ と表し、次の式で定める。

$$d'_{Rama 3}(a,b) = S(p|r) + S(q|r)$$

ただし,

$$r_{ij} = \frac{p_{ij}^a + q_{ij}^b}{2}$$

とし.

$$S(p|r) = \sum_{i=1}^{N} \sum_{j=1}^{N} p_{ij}^{a} \log \frac{p_{ij}^{a}}{r_{ij}}, S(q|r) = \sum_{i=1}^{N} \sum_{j=1}^{N} q_{ij}^{b} \log \frac{q_{ij}^{b}}{r_{ij}}$$

なお,方法1で作成した差異行列を,Ramachandran_1行列,方法2で作成した差異行列を,Ramachandran_2行列,方法3で作成した差異行列を,Ramachandran_3行列とする.

3. BLOSUM行列の応用

3.1. BLOSUM行列

BLOSUM 行列とは、類縁配列をマルチプルアライメントし、その結果の中でも特に保存率の高い部分での、アミノ酸の置換の起こりやすさを数値化した行列である。この時の類縁配列の違いから、複数の BLOSUM 行列が存在している。BLOSUM 行列のスコアはプラス値ほど、そのアミノ酸の組み合わせが起こりやすいことを示している。本研究では類似度が 62%以上の配列から数値化した BLOSUM62 行列を使用した。BLOSUM62 行列のスコアの最大は 11 であり、トリプトファンとトリプトファンの組み合わせに与えられている。逆に、一番起こりにくい組み合わせとして、トリプトファンとプロリン、ロイシンとグリシン、等いくつかの組み合わせがあり、スコアは最小の-4となる[4]。

3.2. BLOSUM行列の変形

BLOSUM 行列を、前章で作成した 3 つの差異行列と組み合わせるため、BLOSUM 行列を変形 したものを transformational BLOSUM 行列と呼ぶことにする. その

transformational BLOSUM 行列の各成分となるアミノ酸 a,b の差異 $d'_{transBLO}\left(a,b\right)$ は次のように表すことができる.

$$d'_{transBLO}(a,b) = 1 - \frac{B(a,b) + 4}{15}$$

B(a,b)は、アミノ酸a,bによって決まる BLOSUM 行列の値とする. この変形により、transformationalBLOSUM 行列は BLOSUM 行列で一番スコアの高いトリプトファンとトリプトファンの組み合わせが差異 0 となり、スコアが一番低い組み合わせが差異 1 となり、すべての組み合わせが 0 から 1 の範囲に収まる.

3.3. BLOSUM行列とラマチャンドラン・プロットの組み合わせ方法

transformationalBLOSUM 行列の値と,前章で導き出したラマチャンドラン・プロットの差異行列を組み合わせて,新たな差異行列を作成するため,アミノ酸a,bの差異を次のd'(a,b)で定義した.

$$d'(a,b) = d'_{transBLO}(a,b) \times \alpha + d'_{Rama-1}(a,b) \times (1-\alpha)$$

ここで、 α は、0 から 0.1 刻みで増やしていき、1 までをとることにする。したがって、9 パターンの組み合わせた行列が作成できる。これと同じことを、 $Ramachandran_2$ 行列、 $Ramachandran_3$ 行列の値を用いて行うため、計 27 パターンの行列が出来上がる。

なお、今後 $\alpha = 0.1$ とした時の行列を $0.1*BLO+0.9*Rama_1$ と表すことにする.

4. アライメントアルゴリズム

本研究で用いたアライメントアルゴリズムは、動的計画法を用いて作成された MOU アライメントを改良したペアワイズアライメントアルゴリズムを使用した[5]. MOU アライメントは、配列間の差異を最小とするグローバルアライメントアルゴリズムなので、D[i,j] を配列 α の i 番目と配列 β の j 番目の位置での配列間の差異を表すとすると、本研究で使用したアライメントアルゴリズムを次の式で表すことができる.

$$D[i, j] = \min \begin{cases} D[i, j-1] + w \\ D[i-1, j-1] + d(a, b) \\ D[i-1, j] + w \end{cases}$$

ただし,

$$D[i,0] = w \times i$$
 , $D[0,j] = w \times j$

とする。wはギャップに対する重みで、d(a,b)はアミノ酸a,bの差異で、2章で定義した 3つの差異行列と、transformational BLOSUM行列と、3.3節で述べた 27 個の差異行列の値をとる。そのため、アライメントアルゴリズムに用いる差異行列は計 31 パターンとなる.

5. 実験と結果

まず、使用する配列をNCBIのWebサイト (http://www.ncbi.nlm.nih.gov/) から 10 種の タンパク質で異なる生物種のアミノ酸配列を10本ずつ収集した(表1).

5.1. 実験方法

まず、1つのタンパク質につき、10本の配列を総当りでペアワイズアライメントを行う. つまり、アライメントを行う配列ペアは 45 組である. それを 10 種すべてのタンパク質で 行うため、配列ペアは 450 組になる. その 450 組で、31 すべての差異行列を用いてアライ メントを行った。なお、アミノ酸差異とのバランスをとる意味と、ギャップに対する重み に左右されずに、差異行列の検証を行うため、ギャップに対する重みを、1.0、1.5、2.0、 2.5 と 4 つの値で試した.

動的計画法を用いるペアワイズアライメントは最も確実なアライメント法ではあるが、 アライメント結果が多数導き出されてしまうことがある. しかし, 進化の過程を考えると アライメント結果は 1 つであるべきである。そこで、全ての差異行列を用いたアライメン ト結果の中で、1つに絞れた数が多い差異行列をより確からしい差異行列であるとした.

表 1 使用配列表 タンパク質 accession number 配列名 タンパク質 accession number

	XP 755273	Aspergillus fumigatus AF293		BAD23846	Auxis rochei	
- 1	BAA07428	Aspergillus oryzae	1 [NP 776306	Bos taurus	
F	CAA93255	Botryotinia fuckeliana	1 1	AAB54102	Chionodraco rastrospinosus	
	AAL38030	Glomerella cingulata	1	AAK49781	Hemitripterus americanus	
cutinase	AAZ95012	Monilinia fructicola	myoglobin	NP 976312	Homo sapiens	
	CAA46582	Mycosphaerella rabiei		NP 038621	Mus musculus	
	AAB05922	Nectria ipomosae		AAC69245	Notothenia coriiceps	
	CAA61622	Phytophthora capsici	1 E	AAS92621	Ochotona curzoniae Rattus norvegicus	
	AAX55266	Phytophthora infestans		NP 067599		
	CAB40372	Pyrenopeziza brassicae		NP 999401	Sus scrofa	
	AAB72175	Arabidopsis thaliana		AAD29409	Apium graveolens	
1	P 00011	Canis familiaris	1 1	AAG10091	Arabidopsis thaliana	
- 1	CAB16954	Chlamydomonas reinhardtii	1 1	CAD10376	Capsicum annuum	
1	CAA25046	Gallus gallus	1 1	CAD9266	Cucumis melo	
cytochrome c	AAR30955	Helianthus annuus	profilin	CAD10377	Lycopersicon esculentum	
	NP 061820	Home sapiens	1 1	CAA57632	Nicotiana tabacum	
1	CAA25899	Mus musculus	1 1	CAA54686	Phleum pratense	
	CAA29050	Neurospora crassa	1 1	AAD29411	Prunus avium	
	AAS67288	Pichia pastoris	1 1	AAD29410	Pyrus communis	
	BAC54258	Rosellinia necatrix	1 1	AAB22843	Strongylocentrotus purpuratus	
	AAL55398	Artemia franciscana		NP 879193	Bordetella pertussis Tohama	
1	NP 281795	Campylibacter jejuni	1 1	YP 107689	Burkholderia pseudomallei	
1	CAB72315	Daphnia pulex	1 1	CAA09017	Clostridium butyricum	
1	YP 050566	Erwinia carotovora	rubredoxin	CAB41597	Clostridium cellulolyticum	
ferritin	AAQ54714	Ixodes scapularis		CAA09015	Clostridium diolis	
	AAZ07716	Puccinellia tenuiflara		AAK08075	Desulfovibrio gigas	
-	AAV76910	Salmonella enterica		BAA11175	Desulfovibrio vulgaris	
Ì	YP 041358	Staphylococcus aureus	-1 1	YP 447487	Methanosphaera stadtmanae	
ł	AAB20316	Xenopus laevis	-1 t	NP 254037	Pseudomonas aeruginosa	
	NP 405350	Yersinia pestis C092	1 1	NP 623712	Thermoanserobacter tengcongens	
	AAB28788	Amia calva		NP 281358	Campylibacter jejuni	
ł	NP 776341	Bos taurus	-1 1	NP 418228	Escherichia coli	
1	NP 001003044	Canis familiaris	1 1	AAB93304	Eubacterium acidaminophilum	
1	AAT00451	Capra hireus	-1 t	NP 003320	Homo sapiens	
glucagon	CAA68827	Gallus gallus	thioredoxin	CAB40815	Listeria monocytogenes	
	AAP35459	Homo sapiens	-	CAC30771	Mycobacterium leprae	
1	NP 032126	Mus musculus	- I	NP 326538	Mycoplasma pulmonis	
ŀ	AAB28397	Petromyzon marinus	-1 1	NP 446252	Rattus norvegicus	
+	NP 036839	Rattus norvegicus	-1 h	NP 625184	Rhodopirellula baltica	
	NP 999489	Sus scrofa	1 1	YP 218808	Salmonella enterica	
	AAA37041	Cavia porcellus		YP 093879	Bacillus licheniformis	
1	CAC20109	Danio rerio	-1 t	NP 418159	Escherichia coli	
1	INEL	Elephantidae	-1 1	YP 248695	Haemophilus influenzae	
insulin	AAM76640	Gorilla gorilla	- I	NP 965835	Lactobacillus johnsonii	
	INHY	Cricetinae	ribonuclese P	CAD65752	Lactobacillus plantarum	
	AAA59172	Homo sapiens	1	NP 487453	Nostoc	
	AAA40590	Octodon degus	-II - I-	YP 376016	Pelodicyton luteolum	
-	AAA19033	Orygtolagus cuniculus	- I	NP 734911	Streptococcus agalactiae	
ŀ	AAB60625	Ovis aries	- I	ZP 00993220	Vibrio splendidus	
	NP 062002	Rattus norvegicus	-1 -1	NP 995270	Yersinia pestis	

5.2. 結果

全てのアライメント結果の中で、結果が1つに絞れた確率を行列ごとに示しておく(表2). この中で最も確からしい差異行列は、transformationalBLOSUM 行列と Ramachandran_3 行列を、3:7の比率で足し合わせた 0.3*BLO+0.7*Rama_3 行列である.

また、各タンパク質について最も確からしい差異行列と、その差異行列を使用したアライメントの結果が1つに絞れた確率を示し、比較のためにtransformationalBLOSUM行列の1つに絞れた確率も示しておく(表 3).

差異行列		差異行列		差異行列	
Ramachandran_1	56.11%	Ramachandran_2	56.94%	Ramachandran_3	57.17%
0.1*BLO+0.9*Rama_1	59.06%	0.1*BLO+0.9*Rama_2	58.83%	0.1*BLO+0.9*Rama_3	58.61%
0.2*BLO+0.8*Rama_1	56.22%	0.2*BLO+0.8*Rama_2	55.94%	0.2*BLO+0.8*Rama_3	57.22%
0.3*BLO+0.7*Rama_1	55.56%	0.3*BLO+0.7*Rama_2	57.28%	0.3*BLO+0.7*Rama_3	59.11%
0.4*BLO+0.6*Rama_1	56.22%	0.4*BLO+0.6*Rama_2	55.78%	0.4*BLO+0.6*Rama_3	55.78%
0.5*BLO+0.5*Rama_1	55.78%	0.5*BLO+0.6*Rama_2	55.94%	0.5*BLO+0.6*Rama_3	56.72%
0.6*BLO+0.4*Rama_1	55.83%	0.6*BLO+0.4*Rama_2	56.56%	0.6*BLO+0.4*Rama_3	56.00%
0.7*BLO+0.3*Rama_1	57.11%	0.7*BLO+0.3*Rama_2	55.89%	0.7*BLO+0.3*Rama_3	57.94%
0.8*BLO+0.2*Rama_1	56.67%	0.8*BLO+0.2*Rama_2	55.50%	0.8*BLO+0.2*Rama_3	56.67%
0.9*BLO+0.1*Rama_1	57.06%	0.9*BLO+0.1*Rama_2	56.94%	0.9*BLO+0.1*Rama_3	56.00%
ransformationalRI OSLIM	38 80%			· · · · · · · · · · · · · · · · · · ·	

表2 アライメント結果が1つに絞れた確率

表3 各タンパク質で最も確からしい差異行列と transformational BLOSUM 行列のアライメント結果が1つに絞れた確率

タンパク質	差異行列	確率	差異行列	確率	
cutinase	0.1*BLO+0.9*Rama_1	51.67%	transformationalBLOSUM		
cytochrome c	0.7*BLO+0.3*Rama_3	84.44%	transformationalBLOSUM	49.44%	
ferritin	0.3*BLO+0.7*Rama_2	70.56%	transformationalBLOSUM	24.44%	
glucagon	0.1*BLO+0.9*Rama_1	42.78%	transformationalBLOSUM	37.78%	
insulin	0.1*BLO+0.9*Rama_3	57.78%	transformationalBLOSUM	29.44%	
myoglobin	0.7*BLO+0.3*Rama_1	75.56%	transformationalBLOSUM	57.78%	
profilin	0.9*BLO+0.1*Rama_1	78.33%	transformationalBLOSUM	61.67%	
ribonuclese P	Ramachandran_3	76.67%	transformationalBLOSUM	37.22%	
rubredoxin	0.9*BLO+0.1*Rama_3	64.44%	transformationalBLOSUM	57.78%	
thioredoxin	0.1*BLO+0.9*Rama_2	58.89%	transformationalBLOSUM	21.67%	

6. 考察

本実験の結果から、 $0.3*BLO+0.7*Rama_3$ 行列が最も確からしい差異行列であるということは記した。また、各タンパク質も ribonuclese P の Ramachandran_3 行列を用いたアライメントアルゴリズムが最も確からしいという結果となっているのを除いて、transformationalBLOSUM 行列とラマチャンドラン・プロットから作成した差異行列を組み合わせた差異行列を用いたアライメントアルゴリズムが最も確からしい結果となっている。さらに、表 2、表 3 は、ギャップに対する重みごとに詳細を述べてはいないが、ギャッ

プに対する重みごとにアライメント結果を見てみると、全てのアライメント結果の中で最も確からしいアライメントアルゴリズムになったのは、 $0.1*BLO+0.9*Rama_2$ 行列を使用し、ギャップに対する重みを 2.5 としたアルゴリズムで、アライメント結果が 1 つに絞れた確率は 62.0%にもなる。各タンパク質ごとにアライメント結果を見てみると、cytochrome c に対して $0.9*BLO+0.1*Rama_2$ 行列を使用し、ギャップに対する重みを 1.5 としたアルゴリズムが、1 つに絞れた確率が 91.11%にもなり、最も高い結果となっている。

これらの結果は、本研究で作成した差異行列が BLOSUM 行列より優れているということを表している. transformationalBLOSUM 行列とラマチャンドラン・プロットから作成した差異行列を組み合わせた差異行列が確からしい結果となりやすいのは、アミノ酸の置換の起こりやすさとタンパク質の立体構造を考慮に入れているからであろう.

参考文献

- [1] G. N. Ramachandran, C. Ramakrishnan, V. Sasisekharan "Stereochemistry of polypeptide chain configurations" *J. Mol. Biol.* Vol.7, pp.95-99 (1963)
- [2] Saravan Dayalan, Nalaka Dilshan Gooneratne, Savitri Bevinakoppa, Heiko Schoroder "Dihedral angle and secondary structure database of short amino acid fragments" *Bioinformation*, Vol.1(3), pp.78-80 (2006)
- [3] T.Kuroiwa, M.Ohya "On Multiple Alignment of Amino Sequences with Protein Structure" *IEICE technical report*, Vol.98, No.211, pp.55-60 (1998)
- [4] Steven Henikoff, Joria G. Henikoff, "Amino acid substitution matrices from protein blocks" Proc. Natl. Acad. Sci., Vol.89, pp.10915-10919 (1992)
- [5] M.Ohya, S.Miyazaki, Y.Ohshima "A new method of Alignment of Amino Acid Sequences" Viva Origino 17, pp.139-151 (1989)