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Abstract Robustness in metabolic networks can be measured by the minimum number of enzymes to be dis-
rupted so that at least one of the target compounds cannot be synthesized. We developed an improved integer
programming-based method for this problem using feedback vertex sets (FVS) to cope with cycles. When ap-
plied to E. coli metabolic network consisting of Glycolysis/Gluconeogenesis, Citrate cycle and Pentose phosphate
pathway, the proposed method could find an optimal set of enzymes to be disrupted in 0.23~5.15 sec, which are

7.63~145.82 times faster than the previous method:

1 Introduction

In order to understand the principles of living organ-
isms, it is quite important to reveal the origin of the
robustness. Burgard et al. developed bilevel program-
ming methods to find strategies for maximizing or min-
imizing the production of target chemical compound by
knockout of a limited number of genes or reactions [1, 2].
In their methods, the problems are first formalized as
bilevel integer programs and then these are transformed
into conventional integer programs by making use of the
duality in linear programming. Their methods are ele-
gant and scalable, and are very close to the purpose of
this article. In order to effectively apply flux balance
analysis, we should know exact or near exact network
topology and stoichiometry parameters. However, de-
tails of such information may not be available in some
cases. Furthermore, flux balance based methods assume
that their exist steady-states, which may not exist in
some cases. Thus, it is worthy to develop another ap-
proach. Ruths et al. recently proposed a combinatorial
approach for analyzing signaling networks [3]. They
proved NP-hardness of the problem and showed some
heuristic algorithm. In their model, it is allowed that
both chemical compounds and reactions are inactivated.
However, it seems difficult to inactivate specific chemi-
cal compounds, and thus their model does not seem to
be appropriate for analyzing the robustness of metabolic
networks.

In order to study structural and combinatorial as-
pects of metabolic networks, Handorf et al. recently
introduced the concept of scope [4]. The scope is a set
of all possible metabolites obtained from a given set of
seed compounds and a given structure of a metabolic
network. Handorf et al. also defined the inverse of
the scope problem: given a set of metabolites, com-

pute or enumerate minimal sets of seed compounds [5].
Furthermore, they studied robustness of scopes against
modifications of enzymes [4]. However, the methods for
analyzing robustness are based on exhaustive or random
disruptions of enzymes and can not be directly used for
measuring the structural robustness of a metabolic net-
work.

Based on the concept of scope, we previously studied
computational aspects of robustness of metabolic net-
works [6]. We defined this problem as follows: given a
metabolic network, a set of seed compounds and a set of
target compounds, determine the minimum number of
reactions whose deletion prevents generation of some of
the target compounds (i.e., the set of target compounds
is no more a subset of the scope). We proved that this
problem is NP-hard. We developed an O(1.822") time
algorithm for a special case in which the number of sub-
strates per reaction is at most two, where n is the num-
ber of reactions. We also developed an integer program-
ming (IP) based method for a general case. However,
the number of variables appearing in an integer program
was O((m +n)?) where m is the number of compounds
and thus the method could not be applied to large-scale
networks.

In this article, we significantly improve the IP-based
method by means of a novel use of a feedback vertezx set
(FVS). A FVS is a concept in graph theory and is a
set of vertices removal of which makes a given graph
cycle-free. It is well-known that computation of the
minimum cardinality FVS is NP-hard for both directed
and undirected graphs, whereas several approximation
algorithms have been developed [7, 8]. In our purpose,
it is not necessary to use the optimal FVS. Thus, we
adopted a simple greedy algorithm to compute an FVS.
By using an FVS, we can reduce the number of variables



in IP from O((m + n)?) to O(f(f +m+n)) where f is
the size of an FVS. Since f is usually very small (e.g.,
10 ~ 20 in our experiments) and IP’s computational
time usually grows exponentially in the number of vari-
ables, it leads to a significant improvement of practical
efficiency. When applied to E. coli metabolic network
consisting of Glycolysis/Gluconeogenesis, Citrate cycle
and Pentose phosphate pathway extracted from KEGG
database, the improved IP method was 7.63~145.82
times faster than our previous IP method.

2 Methods
2.1 Problem Definition

Here we review the definition of the problem [6]. Let
Ve ={veyy..-Ve,n } and V. = {vry,..., v, } be a set of
compound nodes and a set of reaction nodes respectively,
where V. NV, = {}. It is to be noted that most reac-
tions are catalyzed by enzymes and thus each of most
reactions can be inactivated by disruption of a gene cor-
responding to the enzyme catalyzing the reaction. Let
V=V.UV,. Let V;, C V., and V; C V. are a set
of source nodes and a set of target nodes respectively,
where V, NV; = {}.

A metabolic network is defined as a directed graph
G(V,E) satisfying the following conditions: (i) For
each edge (u,v) € E, either (u € V.)A (v € V;) or
(u € V;) A (v € V) holds. (ii) Each source node does
not have an incoming edge. (iii) Each target node does
not have an outgoing edge. (iv) Each node v ¢ V; has
at least one incoming edge.

Let V, C Vi be a set of reaction nodes correspond-
ing to a set of inactivated reactions. We assign 0-1 value
to each node V. Let A be such an assignment (i.e., A is
a function from V to {0,1}). For each node v € V, we
write v = 0 (resp. v = 1) if 0 (resp. 1) is assigned to v.
A is called a valid assignment if the following conditions
are satisfied: (i) For each v € V;, v = 1. (ii) For each
v € V. — V4, v = 1 if and only if there is u such that
(u,v) € F and w = 1. (iii) For each v € V., v =1 if and
only if v ¢ V, holds and u = 1 holds for all u such that
(u,v) € E.

The second condition means that compound nodes
correspond to OR nodes. The third condition means
that reaction nodes correspond to AND nodes, where
the output is forced to be 0 if a node is inactive (i.e., a
node belongs to V,). Clearly, the following proposition
holds.

Proposition 1 [6] If there is no directed cycle in
G(V,E), a valid assignment is uniquely determined for
a given V.

If there exist directed cycles, we may have multiple
valid assignments. However, we can define the maxi-
mal valid assignment uniquely. A valid assignment A
is called mazimal if A is valid and {v|v = 1,9 € V} is
maximal.

Proposition 2 (6] A mazimal valid assignment s
determined uniquely for a given metabolic nelwork
G(V,E) and a given set of inactivated reactions V.
For example in Fig. 1 (A), assume that
Ve = {ves--5vh Vo = {vr, 00,0}, Vo =

{VeysVeq, v} and V; = {v} are given. The
maximal valid assignment for Vo = {v,,} is
{Ucu -+ sVegy Ury, Uray ¥ }={1,1,1,1,1,1,0,1,1,0,1}.
{vers -+ - Vg5 Ury, Urg, 903111, 0,1, 0,0, 1,0,0,0,0,0} is
not maximal but valid for V, = {v,,}. Intuitively, max-
imal valid assignment is the steady state to which a
metabolic network converges assuming all nodes were
initially assigned 1 and nodes in V, were inactivated.

Let K, be the maximum indegree among reaction
nodes (i.e., |{u|(u,v) € E}| < Kin holdsforallv € V;.).
Let Kout be the maximum outdegree among reaction
nodes (i.e., [{u|(v,u) € E}| < Kou:t holds for all
v € V;). It is reasonable to assume that K, and Koyt
are bounded by a constant since the number of substrate
compounds and the number of product compounds are
bounded by a constant.

Then, we formulate the problem of determining the
robustness of a metabolic network (MetaboRobust)
as follows:

Input: A metabolic network G(V, E).

Output: A minimum cardinality set V, for whichv =0
is satisfied for some v € V; in the maximal valid
assignment.

It is to be noted that we only consider irreversible
reactions for the simplicity. Reversible reactions can
be taken into account if we replace one reversible re-
action with two irreversible reactions. In such a case,
special treatment is needed since inactivation of single
reversible reactions corresponds to inactivation of two
irreversible reactions.

In MetaboRobust, a set of target compounds is
given. But, it is almost equivalent to the case where
only one target compound is given because the origi-
nal problem can be reduced to |V;| cases of the single
target problem. In highly robust cells such as cancer
cells, it may not be enough to prevent generation of a
single compound in V; because there may exist hidden
or unknown reactions. In such a case, it may be useful
to prevent generation of all compounds in V;. We also
consider this variant, which is referred as MetaboRo-
bustAll and MetaboRobustII-All. Note that target
nodes may have outgoing edges for MetaboRobustAll.

2.2 Improved IP Formalization

In the formalization in [6], the number of variables of IP
is O((m +n)?). So, this method cannot be applied to
large scale networks. Furthermore, real networks con-
tain many reversible reactions. In such a case, it may
output inadequate solutions as follows. Assume that a
reversible reaction of Fig. 1 (B) is given. If the maxi-
mal valid assignment is defined as the solution, both v,
and v, are assigned 1 and they never become 0 unless
vr, is inactivated. If vc, or v, is provided by another
reaction, this constraint is reasonable. However, if nei-
ther vc, nor v, is provided by another reaction, it is
more reasonable to assume that v, and v, eventually
attenuate and become v, = v., = 0. Therefore we
have to extend the definition of MetaboRobust as fol-
lows. Let vsy,...,0s,, and vp,,...,Vp,, are substrates
and products of a reversible reaction where products
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Figure 1: (A) V, = {v,,} is the solution of MetaboRobust when V, = {v¢,,---,Ves }, Vo = {Ury,Vryy Urs },
Vo = {Ve;s Vey, Vee } and V; = {vce } are given. (B)Example of reversible reaction. (C)Example of decom-

position of cycle.

can exchange for substrates and vice versa. An assign-
ment A is called extended maximal valid assignment if
A is valid, {vlv = 1,v € V} is maximal, and both v,
and vp; are assigned 1 only if either all vs; or all v,; are
provided by the other reactions. Now, we formulate the
extended version of MetaboRobust.

Problem: MetaboRobustII:

Input: A metabolic network G(V, E).

Output: A minimum cardinality set V, for whichv =0
is satisfied for some v € V; in the extended max-
imal valid assignment.

It is not straightforward to solve this problem by IP.

However, by utilizing the notion of FVS F, the problem

can be solved in most cases. Recall that an FVS is a set

of nodes removal of which makes the network acyclic.

Recall also that we need not introduce the notion of

time if the network is acyclic. Thus, we combine these

two ideas. In the improved method, we first identify an

FVS that consists of reaction nodes, and then apply the

IP formulation similar to that of MetaboRobust to the

obtained acyclic network. Different from the previous

IP-formulation for cyclic cases, we use the same time

step for all the nodes in the obtained acyclic network.

In order to take the effect of cycles into account, we

create another reaction node v,; for each reaction node

vy, in F (see Fig. 1 (C)) and put an additional con-
straint that vs, (¢ + 1) = vy, (t). By means of this mod-
ification, the number of required time steps is reduced
from m+n+1 to f+ 1, where f = |F|. Therefore,
the required number of variables in IP-formulation is
reduced from O((m + n)?) to O(f(m + n + f)). Since
it is expected that f is much smaller than m + n and
the computation time of IP exponentially increases with
the number of variables, it is a significant improvement.

Though finding an FVS of minimum cardinality is NP-

hard, we need not use an FVS of minimum cardinality.

Thus, we employ a simple greedy method to select an

FVS. If there does not exist a reversible reaction, this

FVS-based method should output the same robustness

measure as the previous IP formulation for cyclic cases

does.

3 Results and Discussion

In this article, we deal with two versions of the main
problem, MetaboRobust and MetaboRobustII,

and their definitions are different from each other. The
difference between them are mainly caused by how to
treat reversible reactions. In MetaboRobust, every com-
pound is assumed to be producible at an initial state and
deletions of some reactions gradually affect the whole
network and eventually a target compound becomes
nonproducible. However, in this definition, compounds
directly connected to a reversible reaction v., never be-
come nonproducible unless v, is deleted. For example,
in Fig. 1 (B), vc, and v, are directly connected to a
reversible reaction vr,. Since v;, and v, are assigned
1 at an initial state, they never become nonproducible
unless vy, is deleted. However, it is more reasonable to
assume that v., and v., become nonproducible if nei-
ther ve; nor v, is provided by another reaction. Thus
in MetaboRobustlIl, the extended version of MetaboRo-
bust, every compound is assumed to be producible at
an initial state, but it will become nonproducible if it is
not producible only from seed compounds.

We implemented Integer Programming based
methods for these two problems, where their for-
malizations are explained in Method Section, for
E. coli metabolic network consisting of Glycoly-
sis/Gluconeogenesis (00010), Citrate cycle (00020)
and Pentose phosphate pathway (00030) from KEGG
database. It contains 60 compound nodes and 111 re-
action nodes (44 reversible reactions and 23 irreversible
reactions). Reversible reactions are represented by two
nodes so that each edge has only one direction. Note
that 44 x 2423 = 111. Pyruvate (C00022), Acetyl-CoA
(C00024), Acetate (C00033), Oxaloacetate (C00036)
and Phosphoenolpyruvate (C00074) were used as tar-
get compounds from a view point of importance of
amino acids. The experiment was done on a PC with
Xeon 3GHz CPUs and 8GB RAM under the Linux (ver-
sion 2.6.24) operating system, where CPLEX (Version
10.1.0) was used as the solver of integer programming.

Elapsed times for MetaboRobust and MetaboRo-
bustII for each target compound are shown in Table
1. When the target compound is Pyruvate (C00022),
Acetyl-CoA (C00024), Acetate (C00033), Oxaloacetate
(C00036) , Phosphoenolpyruvate (C00074) respectively,
the elapsed time of the computational experiment for
MetaboRobust was 10.15, 46.88, 49.93, 42.62, 65.62 sec-
onds respectively, whereas those for MetaboRobustIl



Table 1:

Elapsed time for MetaboRobust and MetaboRobustII for each target compound.

Target Computational time | Computational time | Ratio
compound for MetaboRobust for MetaboRobustII
C00022 10.15s 0.23s 44.13
C00024 46.88s 4.39s 10.68
C00033 49.93s 4.95s 10.09
C00036 42.62s 4.91s 8.68
C00074 65.62s 0.45s 145.82
MetaboRobustAll 39.28s 5.15s 7.63
Number of variables in IP 81396 6526 12.22

Table 2: Solution for MetaboRobustlI for each target compound

Target Indegree The number of Deleted

compound deleted reactions reactions
C00022 2 2 R00200, R05605
C00024 4 2 R00351, R07618
C00033 2 2 R00351, R007618
C00036 4 3 R00351, R01518, R02570
C00074 2 2 R00341, R01518

MetaboRobustAll 4 R00351,R01518,R02570,R05605

was 0.23, 4.39, 4.95, 4.91, 0.45 respectively. Since ra-
tios of them are 44.13, 10.68, 10.09, 8.68 and 145.82,
it is seen that solving MetaboRobustII is much faster
than solving MetaboRobust. Furthermore, for the
problem where all of Pyruvate (C00022), Acetyl-CoA
(C00024), Acetate (C00033), Oxaloacetate (C00036)
and Phosphoenolpyruvate (C00074) should become
nonproducible, which we call MetaboRobustAll,
elapsed times for MetaboRobust and MetaboRobustII
are 39.28 and 5.15 respectively. Since the ratio is 7.63,
solving MetaboRobustII was much faster than solving
MetaboRobust.

The reason why MetaboRobustIl is faster than
MetaboRobust is that numbers of variables in IP in
MetaboRobustII is much less than that of MetaboRo-
bust. In MetaboRobust, we have to use 81396 variables
whereas only 6526 variables were used in MetaboRo-
bustII and their ratio is 7.63. To deal with cycles in-
cluded in a given network, we have to introduce the no-
tion of time. In MetaboRobust, the number of used time
steps is m + n + 1. Since each node requires O(m + n)
variables, O((m + n)?) variables are necessary for IP
formalization.

On the other hand, in MetaboRobustIl, only f time
steps are necessary for each node, where f is the cardi-
nality of FVS of a given network. However, each node
vy, included in the FVS is decomposed into two nodes
vy, and v,s; so that v, has only in-edges and v,; has
only out-edges. Therefore, since the number of nodes
becomes f + m + n, the total number of variables in IP
is O(f(f+m+n)), where f was 13 in our computational
experiment. This is the reason why solving MetaboRo-
bustII is much faster than solving MetaboRobust.

The minimum cardinality set of deleted reactions
for MetaboRobust and MetaboRobustII for each target
compound is shown in Table 2.

4 Conclusions

In this article, we introduced a novel Integer Program-
ming formalization method utilizing FVS for finding
the minimum cardinality set of reactions whose deletion
causes that a target compound becomes nonproducible.
We applied the proposed method to E. coli metabolic

network consisting of Glycolysis/Gluconeogenesis, Cit-
rate cycle and Pentose phosphate pathway from KEGG
database. Pyruvate, Acetyl-CoA, Acetate, Oxaloac-
etate and Phosphoenolpyruvate were used as tar-
get compounds from a view point of importance of
amino acids. The result of the computational experi-
ments showed that our proposed method can appropri-
ately find the solution of MetaboRobustII since there
were good agreement with the existing knowledge of
metabolic networks. Furthermore, the elapsed time for
the computational experiment was much faster than the
method used in [6].
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