能動的情報資源の概念に基づく ネットワーク管理支援システムの設計

今野 将 加藤 真也 岩谷 幸雄 阿部 亨 木下 哲男

概要一般に,ネットワークシステムの維持・管理を行うためには「状況の把握/原因の特定/対策の決定/対策の適用」といった一連の作業が必要となる.しかしながら,近年のネットワークシステムは,ますます大規模・複雑になりつつあり,ネットワーク管理者がこれら一連の作業を行う際に要求される労力や専門的知識は増加・高度化の一途を辿っている.本稿では,この問題を解決するために,能動的情報資源の概念を用いたネットワーク管理支援システムを提案・設計し,管理者の負担を軽減させることを目的とする.

Design of Network Management Support System based on Active Information Resource

Susumu Konno*, Shinya Kato[†], Yukio Iwaya*, Toru Abe[‡] and Tetsuo Kinoshita[‡]

Abstract Generally, in order to manage and maintain a network system, it is necessary to carry out a series of operations including assessing the network status, determining the network errors, selecting/approving the countermeasures and applying the countermeasures. However, since network systems are becoming complicated and larger in scale in recent years, these operations increasingly require special professional knowledge and quantities of effort and thus the network administrators are carrying heavy workloads. In this paper, we propose and design the AIR-NMS (Active Information Resource architecture based Network Management Support System) for decreasing the network administrators' workloads.

1 まえがき

一般に,ネットワークシステムの維持・管理(障害への対応,セキュリティーの確保,パフォーマンスの調整等)を行うためには,状況の把握/原因の特定/対策の決定/対策の適用」といった一連の作業が必要となる.近年,ネットワークシステムは,ますます大規模・複雑になりつつあり,その利用形態も多様化してきているため,ネットワーク管理者がこれら一連の作業を行うに際し要求される労力や専門的知識は増加・高度化の一途を辿っている.現

これに対し筆者らは,能動的情報資源(Active Information Resource: AIR)[5] の概念を各機器の状態情報や管理に関する諸知識へ適用することで,これらを自律的に連携・協調させ「状況の把握/原因の特定/対策の決定」を能動的に実行させる手法を提案する.本稿では,提案手法を用いたネットワーク管理支援システム(AIR-based Network Management Support System: AIR-NMS)の設計を行い,その特徴について議論する.

在,この問題に対処するために,いくつかのネットワーク管理支援システムが提案・商品化されている[1,2,3,4].しかしそれらの多くは,管理に必要な機器の状態情報や一般的な対応策を管理者へ提示するに留まり,情報の総合的な判断や具体的対策の決定は依然として管理者の側に委ねられている.

^{*}東北大学電気通信研究所, Research Institute of Electrical Communication, TOHOKU Univ.

[†]東北大学情報科学研究科 , Graduate School of Information Sciences, TOHOKU Univ.

 $^{^{\}ddagger}$ 東北大学情報シナジーセンター , Information Synergy Center, TOHOKU Univ.

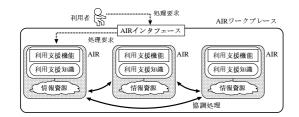


図 1: 能動的情報資源 (AIR) の概念図

2 能動的情報資源を用いたネットワーク 管理支援

まず,ここでは,能動的情報資源の概念と,本稿で提案するネットワーク管理支援システム (AIR-NMS) の概念について述べる.

2.1 能動的情報資源 (AIR)

能動的情報資源 (AIR) は,情報資源の構造を強化することで,利用者の要求へ各情報資源を能動的・自律的に対応させ,情報資源のより高度な活用を図る機構である.具体的には,図 1 に示すように,各情報資源(コンテンツ)に利用支援知識および利用支援機能を付加したエージェントとして AIR を構成し,利用支援知識・機能を用い AIR 相互間で連携・協調処理を行わせることにより,利用者からの処理要求(例えば,コンテンツ検索・統合・分析等)を AIR 側(すなわちコンテンツ側)で自律的に実行させるものである.このとき,AIR が実際に活動する作業空間を AIR ワークプレースと呼び,利用者からの処理要求は AIR インタフェースを介してワークプレース内の各 AIR へ伝達される.

2.2 ネットワーク管理支援と AIR

通常,ネットワークシステムを管理するための一連の作業は,ネットワークを構成する各機器の状態やログ等ネットワーク内に分散した種々の情報と,管理者が持つ経験的知識とを用いることで順次処理されていく.例えば,図2(a)に示すネットワークシステムにおいて,サブネットA内のPCからサブネットB内のサーバへのアクセスに障害が生じた場合,現状では,管理者が自らの経験的知識を用いて以下の作業を行う必要がある.

作業 1 サブネット A 内の PC とルータ, サブネット B 内のサーバとルータ, および基幹ネット

図 2: ネットワークシステムと AIR-NMS

ワークの状態情報の収集

作業2 収集された状態情報の統合

作業3 障害の原因の特定

作業4 障害への適切な対策の決定

作業5 決定された対策の適用

ネットワークシステムが大規模・複雑になれば, これらの作業を行う管理者の労力は膨大なものとなる.さらに,管理者は,ネットワーク一般に関する 高度な知識を有するだけでなく,管理対象に固有の 知識(サブネット内の機器構成等)にも精通してい ることが要求される.

このようなネットワークシステム管理の場面で, 各機器の状態情報や知識ベースに蓄積された管理者の経験的知識を情報資源とみなし AIR 化すれば(図2(b)),管理作業の大部分を AIR の連携・協調処理により自律的に実行させることができ,管理者の労力を大幅に削減することが可能となる.

さらに, AIR の概念を用いることで,管理システムの情報や経験的知識の追加・継承・修正が容易になるため,より高度かつ柔軟なネットワーク管理の実現が期待できる.

本稿では,以上の考えに基づくネットワーク管理支援システムを提案し,これを AIR-NMS (AIR-based Network Management Support System) と呼ぶ.

3 AIR を用いたネットワーク管理支援システム (AIR-NMS)

次に,提案するネットワーク管理システムの構成 とその動作について説明する.

(a) I_s -AIR

サブネット名: サブネット A

管理者名:Mr.Noname

管理者 E-mail: noname@noname.nohost.jp

Network: 192.168.255.0/24 Gateway: 192.168.255.1

FireWall:保有

DNS サーバ名: ns1.noname.nohost.jp DNS サーバ IP: 192.168.255.2 SMTP サーバ名: smtp.noname.nohost.jp SMTP サーバ IP: 192.168.255.3

(b) I_d -AIR

Apr 1 01:38:48 mail sendmail[1892]:: ruleset=check_rcpt, arg1=<noname@noname.</pre> nohost.jp>,relay=nohost.noname.jp[192.168.0.1], reject=550 5.7.1<noname2@noname.nohost.jp> ... Relaying denied Apr 3 16:17:23 mail sendmail[1925]:: ruleset=check_rcpt, arg1=<noname@noname. nohost.jp>,relay=[192.168.0.2], reject=550 5.7.1 <noname3@noname.nohost.jp> ... Relaying denied. IP name lookup failed [192.168.0.2]

(c) K-AIR

A) サブネット____においてメールが送信出来ない

・サブネット____の SMTP サーバの特定作業 サブネット____の構成情報を持つ Is-AIR から SMTP サーバの IP アドレス獲得 B) へ

B)SMTP サーバ___の障害特定作業の実行

- ・SMTP サーバ____のログの確認
- ・SMTP サーバ____の動作状況確認 ・メールクライアントソフト____の設定確認
- ・クライアント PC____のネットワーク設定確認
- ・途中経路____の状況確認
- C)SMTP サーバのログの確認
 - ・SMTP サーバ____のログ情報を持つ Id-AIR の呼 び出し D)へ
- D)SMTP サーバのログ情報検査
 - ・エラーの有無の検査
 - ・エラー有り エラー____の解決知識を持つ K-AIR の呼び出し
 - ・エラー無し 終了

図 3: I_s-AIR, I_d-AIR, K-AIR における情報資源の例

3.1AIR-NMS の構成

AIR-NMS では,以下の2種類のAIRを導入する.

- ネットワーク構成機器の状態情報を持つ I-AIR (Status Information AIR)
- 管理者の経験的知識を持つ K-AIR (Management Knowledge AIR)

[I-AIR] I-AIR は , 静的情報を持つ I_s-AIR (Static Status Information AIR) と,動的情報を持つ I_d-AIR (Dynamic Status Information AIR) の2種類 の AIR にわけられる.

 I_s -AIR は,アプリケーションの設定情報や,サブ

ネットの構成情報等の静的な情報を持つ.例えば, サブネットの構成情報を持つ Is-AIR は,情報資源と して, サブネット名, 管理者名, 管理者 E-mail, サ ブネットにおける各種サーバ名や IP アドレスの情報 を持つ(図3(a)). I_d-AIR は, SNMP/MIB/アク セスログ等から,自身の持つ利用支援機能を用いて, ネットワーク構成機器の状態情報を獲得する. 例え ば, SMTP サーバの状態情報を管理する I_d-AIR は, 情報資源として、メールプロセスに関するログの情 報を持つ(図3(b)).

これら I-AIR は ,情報資源から必要な情報だけを 抽出する等の処理を行う利用支援機能や,抽出した 情報を他の AIR との連携・協調に用いるための利 用支援知識を持ち、これらを用いることで能動的・ 自律的に活動する.

[K-AIR] 一方, K-AIR は, ネットワーク管理の 経験的知識を知識ベースから獲得する.管理知識は 知識ベースに格納されており,図3(c)に示すよう に,IPアドレス等が特定されていないルール型の 汎用的な管理知識として記述される . K-AIR は , こ のような知識を具体的な対象に特化した知識とする ため,他の K-AIR や I-AIR との連携・協調を行う.

例えば,図3(c)に示した K-AIR の管理知識 C) では,SMTP サーバのログが確認される.その際, 前述の I_s-AIR が呼び出され, SMTP サーバの IP ア ドレスが特定され、対象となる SMTP サーバのロ グ情報を持つ I_{d} -AIR に対してログ情報の確認を依 頼する.その後,管理知識 D)が起動され,ログ中 のエラーの有無によって動作が能動的に変化する. このような処理を実現するため, K-AIR では,利 用支援機能として,ルール型の汎用的な管理知識を 加工する機能が付与される.また,他のAIRとの 連携・協調により情報資源を具体化する知識が利用 支援知識として付加されている.

以上のように, K-AIR は, I-AIR と連携・協調 することにより,自身の持つ汎用的な管理知識を具 体的な管理知識へと変化させる.この機構により、 管理知識の継承・修正・追加,あるいは機器構成の 変化への柔軟な対応が容易に可能となる. さらに, K-AIR は他の K-AIR とも連携・協調するため,単 一の K-AIR が単純な管理知識しか持たない場合も, 複数の K-AIR が連携・協調することで複雑な管理 知識を構成することができ,より高度な管理知識を 提供することが可能になるという利点を持つ.

図 4: AIR-NMS の動作(管理者による駆動)

3.2 AIR-NMSの動作

AIR-NMS は , 以下の 2 種類の状態が発生した場合に , その活動を開始する .

- K-AIR が管理者からの支援要求を受信(図4)
- I_d-AIR が機器の状態情報から障害を検知(図5)

[管理者による駆動] "サブネット A 内でメールが 送信できない"という状況が発生した場合,管理者 は,AIR インタフェースを通して支援要求を送信す る. その際, 支援要求は"障害対象"と"障害状況" に基づいて分類される,この例の場合,障害対象は "サブネット A", 障害状況は "メールが送信できな い"となる. AIR インタフェースを介して, 支援要 求(障害対象・状況)を受信した K-AIR $_i$ はまず, 図 3 (c) の管理知識 A) を実行する.次に, K-AIR_i は,サブネット A内のSMTP サーバを特定するた めに, サブネット A の構成情報を持つ I_s-AIR と連 携・協調し, サブネット A内のSMTPサーバのIP アドレス等を特定する.この作業により, K-AIR; は 管理者より送られてきた障害対象を "サブネット A の SMTP サーバ, IP アドレスは 192.168.255.3" と 詳細化を行い,次のK-AIR,へと要求を伝播させる. $K-AIR_i$ により詳細化された要求を受けた $K-AIR_i$ は,図3(c)の管理知識B)を実行し,メール送信障 害の原因を特定するための各種状態情報の取得作業 を行う. 例えば, SMTP サーバのログ情報を獲得す るためには,SMTPサーバのログを情報資源として 持つ I_d -AIR を呼び出す . K-AIR i は各種状態情報 を取得後,それらの情報を基にエラー箇所を特定し, エラー情報を障害状況として付加し,次のK-AIR $_k$

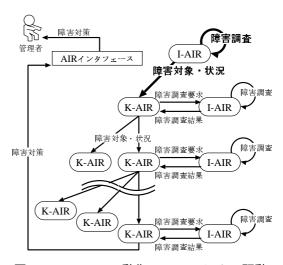


図 5: AIR-NMS の動作 (I_d-AIR による駆動)

へと伝播させる.そして,十分に"障害対象"と"障害状況"が詳細化されると,その要求は障害対象における障害状況を回復させるための対処法を持つ $K\text{-}AIR_l$ へと伝播し, $K\text{-}AIR_l$ は対処法を AIR インタフェースを介して管理者に提示する(図 4).

このように,K-AIR 間の協調は"障害対象"と"障害状況"の 2 種類の情報を送受信することで行われる.そして,I-AIR は K-AIR から呼び出されることで自身の持つ状態情報を加工し,K-AIR に提供する.

 $[\mathbf{I}_d$ -AIR による駆動] \mathbf{I}_d -AIR は機器の状態情報を常時モニタリングしており,自らの知識を用いて機器等の障害を自律的に検知することができる. \mathbf{I}_d -AIR が機器等の障害を検知した場合,"障害対象"と"障害状況"の 2 種類の情報を \mathbf{K} -AIR へと送信する.その後の動作は,先に述べた管理者要求駆動と同様に行われ,原因の特定・対処法の獲得を自律的に行い,対処法を管理者へと提示する(図 5).

なお,この時獲得された対処法を実行するための機能を AIR へ付与すれば,障害の検知から復旧までを自律的に行い,障害の発生そのものを管理者から隠蔽するシステムが実現できると考えられる.この場合,管理者の負担はさらに軽減されることになるが,これを実現するためには,管理権限の確認方法等,セキュリティ上の課題を多数解決する必要がある.このため,現在の AIR-NMS では,ネットワークシステムの維持・管理の場面に必要な「状況の把握/原因の特定/対策の決定」までをその機能として想定している.

```
(rule SMTP-Server-Check
 (Message :performative request :from
  AIR-Interface :content (SMTP-Server-Check
  :network ?network :cl_os ?cos :cl_soft ?csof
  :cl_ip ?cip))
 ({\tt SendMessage}\ : {\tt performative}\ {\tt request-information}
  :to broadcast :content Ask-SMTP-Server-IP
  :network ?network)
 (make (SMTP-Server-Check :network ?network
  :cl_os ?cos :cl_soft ?csof :cl_ip ?cip))
)
(rule GET-SMTP-Server-IP
 (SMTP-Server-Check :network ?network :cl_os ?cos
  :cl_soft ?csof :cl_ip ?cip)
 (Message :performative information :from ?Is-AIR
 :content SMTP-Server-IP :ip ?ip)
 (SendMessage :performative accept :to ?Is-AIR)
 (make (SMTP-Server-Check :network ?network :ip
  ?ip :cl_os ?cos :cl_soft ?csof :cl_ip ?cip))
(rule Run-SMTP-Check
 (SMTP-Server-Check :network ?network :ip ?ip
 :cl_os ?cos :cl_soft ?csof :cl_ip ?cip)
 (control Server-Log-Check(SMTP ?network ?ip))
 (control Server-Stat-Check(SMTP ?network ?ip))
 (control Client-Soft-Check(SMTP ?cos ?csof ?cip))
 (control Client-Net-Check(SMTP ?cos ?csof ?cip))
 (control Route-Check(?ip ?cip))
```

図 6: K-AIR における利用支援知識の記述例

このように, AIR-NMS を導入することにより, 管理者が行うべき作業は

- 1. AIR-NMS に対する支援要求の送信
- 2. AIR-NMS が提示した対処法の実行

の2つに集約され,管理作業にかかる負担の大幅な 削減が期待できる.また,

- Ⅰ_d-AIR が機器等の障害を自律的に検知することにより,障害への早期対応が可能
- K-AIR の協調・連携の履歴を保持することにより、同一の障害への早期対応が可能
- 従来のネットワーク管理業務では困難であった 障害原因の特定作業を AIR が代行

等の,AIR-NMSの持つ特長により,さらなる効果が期待される.

4 AIR-NMS の実現方法

AIR-NMS における各 AIR は,ルール型の知識に基づき自律的・能動的に活動するプログラムとして実装される.このような AIR の実現方法として,

マルチエージェントシステムを用いる方法が提案されている [6, 7]. これは, AIR の持つ

- 知識に基づいて活動を行う
- 複数の AIR が連携・協調を行い問題を解決する
- 外部からの要求・イベントに応じて活性化される

等の特徴を実現する上で,マルチエージェントシステムが提供する機能や動作特性が効果的に活用できることによる.

そこで、本稿では、分散環境上でマルチエージェントシステムを実現するためのフレームワークである ADIPS/DASH フレームワーク [8, 9] を用い、AIR-NMS の実装を試みる。ADIPS/DASH フレームワークでは、ルール型の知識記述言語によりエージェント知識が記述され、また、このフレームワークが備えるインタフェースを介することで、エージェント知識に基づいた Java プログラムの自律的な制御が可能となっている。ADIPS/DASH フレームワークを用いることで、AIR-NMS を構成する AIR は、ルール型知識として与えられた利用支援知識に基づき、Java プログラムとして実装された利用支援機能を起動し、情報資源(経験的管理知識/機器の状態情報)の加工処理や他の AIR との連携・協調処理を実行する。

AIR-NMS における AIR 利用支援知識の一例として,K-AIR が図 3 (c) の管理知識 A) を実行する際の利用支援知識を図 6 に示す.また,AIR-NMSにおける AIR が保持する情報資源の記述例として, I_s -AIR が扱う静的な情報資源(図 3 (a))の記述例を図 7 に示す.図 7 に示すように,AIR が扱う情報資源は,RDF/XML [10] に準拠した形式で記述される.このように,RDF/XML データ形式を用いることにより,AIR による情報資源の扱いを容易にし,AIR 間における連携・協調を柔軟に行わせることが可能となる.

このような知識を持つ AIR-NMS を実現することにより, ネットワーク管理者は管理作業の大部分をAIR の連携・協調処理に任せることが可能となり,管理者の労力を大幅に削減することができる.

5 まとめ

本稿では, AIR の概念を導入したネットワーク管 理支援システム AIR-NMS を提案し, その設計と特

```
<subnet>
<subnetname>A lab</subnetname>
<admin>Mr.Noname</admin>
<adminE-mail>
 noname@noname.nohost.jp
</adminE-mail>
<addrspace>192.168.255.0/24</addrspace>
<gateway>192.168.255.1/gateway>
<firewall>yes</firewall>
<server>
 <service>SMTP</service>
  <hostname>SMTP.noname.nohost.jp</hostname>
 <ipaddress>192.168.255.3</ipaddress>
  cprocess>postfix
</server>
 <server>
 <service>DNS</service>
  . . . . . . . .
</subnet>
```

図 7: I_s-AIR における情報資源の記述例

徴について述べた.

AIR-NMS を用い,ネットワークシステムの維持・管理に必要な一連の作業を部分的に代替することにより,ネットワーク管理者の労力を大幅に削減できることが確認された.さらに,本システムを用いることで,管理者の経験的知識の継承や初級管理者の支援を行うことができ,より高度かつ柔軟なネットワーク管理をネットワーク管理者に依存せずに容易に行えるようになる.

今後,提案手法に基づく実用的な知的管理支援 ツールの実現を目指して,AIR-NMS における AIR 相互の連携・協調手法を中心に,実環境での実験を 含めた検討を継続してゆく予定である.

謝辞 本研究の一部は,平成14年度石田(實)記念財団研究助成金,および,日本学術振興会科学研究 費補助金(萌芽15650007)により行われた.

参考文献

- M.P. Consens and M.Z. Hasan, "Supporting network management through declaratively specified data visualizations," Proc. IEEE/IFIP 3rd Int. Symposium on Integrated Network Management, pp.725-738, 1993.
- [2] M. Hasan et al., "A conceptual framework for network management event correlation and filtering systems," Proc. 6th IFIP/IEEE Int. Symposium on Integrated Network Management, pp.233–246, 1999.
- [3] A. Virmani et al., "Netmon: Network management for the SARAS softswitch," Proc. IEEE/IFIP Net-

- work Operations and Management Symposium, pp.803–816, 2000.
- [4] N. Damianou et al., "Tools for domain-based policy management of distributed systems," Proc. IEEE/IFIP Network Operations and Management Symposium, pp.203–218, 2002.
- [5] 木下, "分散情報資源活用の一手法 能動的情報資源の設計—," 信学技報, AI99-54, pp.13-19, 1999.
- [6] B. Li et al., "Active information resource: Design concept and example," Proc. 17th Int. Conf. Advanced Information Networking and Applications, pp.274–277, 2003.
- [7] 加藤 他, "能動的情報資源によるネットワーク管理支援機構," 2003 信学総大, SD-1-7, 2003.
- [8] 藤田 他, "分散処理システムのエージェント指向アーキテクチャ," 情処学論, vol.37, no.5, pp.840-852, 1996.
- [9] "DASH Distributed Agent System based on Hybrid architecture," http://www.agenttown.com/dash
- [10] "RDF/XML Syntax Specification (Revised) W3C Working Draft 23 January 2003," http://www.w3.org/TR/rdf-syntax-grammar/