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Improvements in TCP Robustness for Asymmetric Bandwidth

DA1GO TANAKAt and HIROSHI SHIGENO*

The Transmission Control Protocol (TCP) proves degraded performance at the environment
which has bandwidth asymmetry, since the uplink is filled with ACK packets. In order to
solve the issue, we present a TCP option, Pulsed ACK. To apply this option, TCP brings
down the number of ACKs and allows receivers to send ACKs at intervals. We consider d,
the number of data packets acknowledged by an ACK to achieve these effects, and using this
value, receivers adjust the interval of sending them. The senders also control the increment
of cwnd at the recerpt of an ACK packet so that it increases by 1 every RT'T. For evaluation
we use computer simulations. The results show that TCP with the Pulsed ACK option gains
1.85 times higher throughput compared to TCP without the option.

1. Introduction

The diversification of telecommunication in-
frastructure has brought forth numerous mod-
els of networks. Among them, links with band-
width asymmetry such as Asymmetric Digi-
tal Subscriber Line (ADSL), satellite and wire-
less networks have been deployed rapidly these
years. Bulk data transfer such as Peer-to-Peer
(P2P) connections and multimedia streaming
also induces bandwidth asymmetry, since they
use large amount of bandwidth in one direction,
while the opposite direction is hardly used.

Researchers have pointed out that TCP has
difficulty gaining throughput at links with
bandwidth asymmetry!)~"), either in capacity
or due to the connections in the reverse direc-
tion, since its ACK packets are delayed or lost
because of the saturation of the uplink. Al
though there are many works addressing this is-
sue, most of them require high performance in-
termediate nodes, which make them difficult to
deploy. Also, in all works, the number of ACK
packets increase as the cwnd hecomes large;
just as regular TCP does.

We focus on this characteristic of increasing
ACK packets. It is obvious that ACK packets
are crucial to the performance of TCP, though
regular TCP connections use much more than
necessary. When the cumnd increases at the
sender, it means the number of ACK pack-
ets sent from the receiver increases too, which
means the connection uses more of the uplink
bandwidth. In other words, if the usage of the
uplink bandwidth is proportional to that of the
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downlink bandwidth, the connection can not
cope with links that are extremely asymmet-
ric. As mentjoned above, asymmetric links are
omnipresent, therefore it is necessary for TCP
connections to reduce the usage of the uplink
in case they transfer such links.

To address the issue, we propose Pulsed
ACK, which enables receivers to send a fized
number of ACK packets per RTT, making the
usage of the uplink small. It also enables re-
ceivers to send ACK packets at intervals, to
minimize the burst of the increase of cund. We
do this by redefining d, the number of data
packets the receivers receive to send an ACK
packet, as a function of cund. Using this d, the
receivers adjust the interval of sending ACKs.
Also, the senders adjust the increment of cund
at the receipt of an ACK packet so that it in-
creases by 1 every RTT.

We evaluate the performance of Pulsed ACK
through computer simulations.

This paper is organaized as follows. We first
describe Delayed ACK, which is one of some
works to address the issue above in Section 2.
We then present the details of Pulsed ACK de-
sign in Section 3, and we evaluate the perfor-
mance of our proposal in Section 4. We then
conclude the article in Section 5.

2. Related Work

In this section, we show a TCP option, De-
layed ACK, which is one of some approaches to
tackle the issue.

There are two standard methods that can
be used by TCP receivers to generate acknowl-
edgments. The method outlined in®) generates
an ACK for each incoming data segment (i.e.,
d = 1). d is the number of TCP data seg-
ments acknowledged by a TCP ACK. In other
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words, a TCP receiver generates an ACK every
d packet(s).

9) states that hosts should use “delayed ac-
knowledgments.”  Using this algorithm, an
ACK is generated for at least every second full-
sized segment (d = 2), or if a second full-sized
segment does not arrive within a given time-
out which must not exceed 500 ms®, and is
typically less than 200 ms. Relaxing the lat-
ter constraint (i.e., allowing d > 2) may gen-
erate Stretch ACKs!®). This reduces the rate
at which ACKs are returned by the receiver.
An implementer should only deviate from this
requirement after careful consideration of the
implications!?).

Reducing the number of ACKs per received
data segment has a number of undesirable ef-
fects including:

(1) Increased path RTT

(2) Increased time for TCP to open the cumd
(3) Increased TCP sender burst size, since

cumd opens in larger steps

The last effect mentioned above does not apply
to Delayed ACK, which is a characteristic of
it. Since it does not require any changes to
the sender, Delayed ACK is a simple method
to apply in the network. However, it leads to
have the difficulty of gaining the cumd because
it requires twice as many ACKs as the method
outlined in® to increase cumd by 1.

In addition to the effects mentioned above, a
TCP receiver is often unable to determine an
optimum setting for a large d, since it will nor-
mally be unaware of the details of the properties
of the links that form the path in the reverse di-
rection.

3. Pulsed ACK

In this section we propose Pulsed ACK, a
TCP option so that the issue mentioned above
is addressed at end nodes with a simple algo-
rithm. It reduces the number of ACK pack-
ets compared to regular TCP and enables re-
ceivers to send a fized number of ACK packets
per RTT, making the usage of the uplink small
and constant, regardless of the throughput it
gains.

After the description of redefining d, we ex-
plain the detail of our method.

3.1 Redefining d

The original version of TCP receiver sends
an ACK packet to every single data packet it
receives. This allows TCP connections to use
unnecessary uplink bandwidth. Decreasing the
frequency of sending ACK packets at receivers

Table 1 The Value of d used

TCP versions or options d
Pulsed ACK %cwnd"
Original TCP 1
Delayed ACK 2

will be a way to address this issue.

In order to cope with this, we consider d,
which is the number of data packets acknowl-
edged by an ACK, described in Section 2. As
shown in Table 1, existing TCP versions or op-
tions use fixed number for d, and this makes
them use unnecessary uplink bandwidth.

d can be redefined as a function of cund. Let
us redefine d as

d= lcwnd". (1)
a
Using this equation, the number of ACKs sent
in a RTT is expressed as
cwund  a-cwnd
d ~ cwnd®

a
" cwndo-1’ @

While the original TCP and Delayed ACK op-
tion use fixed number for d, we state d as a
function of cwnd for Pulsed ACK, so that it
will be robust against bandwidth asymmetry.
In the later sections, we deseribe our Pulsed
ACK option considering this d.

First of all, we will determine 2 and «. Since
the value of d depends greatly on «, we will
determine it first. o is the exponent of cwnd
in (1), (2). As you can see from (2), it deter-
mines whether the number of ACKs per RTT
increases or decreases as cumd gets larger.

From Table 1 and equation (1), we can see
that the value of o is 0 for both the original
TCP and Delayed ACK. This means if a < 0
the number of ACKs sent will be larger than
the original TCP. Recall that the purpose of
our proposal, Pulsed ACK, was to reduce the
number of ACKs. Therefore a must be greater
than 0.

Ifa=1,(2) will be

cwnd a _a
d ~ cwnde-l " cund®
= a, (3)
which means the receiver sends fixed number
(a) of ACKs per RTT regardless of the size of
cwnd.

If a > 1, the number of ACKs decreases sig-
nificantly as cwnd becomes larger; the larger
the cwnd, the less ACKs. The problem is, that
if cwnd®~! becomes larger than a, the number




of ACKs sent in a RTT becomes less than 1,
which means the sender has to wait for more
than a RTT to receive one single ACK. This is
too long for TCP to work properly, therefore it
is inadequate to choose o > 1.

From the inspection above, wereach0 < o <
1. Taking into account that a is an exponent,
we should determine a so that the calculation
does not overload the sender or the receiver.

We described the fatality of increasing uplink
bandwidth in Section 1. Since 0 < a < 1 will
have increasing uplink bandwidth and the val-
ues other than 0 makes calculation complicated,
we will choose & = 1 so that the uplink band-
width will be constant regardless of the usage
of the downlink, along with simple calculation.

As you can see from above, a determines
the usage of the uplink bandwidth. We want
to make it small so that connections using
our Pulsed ACK option can take advantage of
bandwidth asymmetric links and make good use
of them, both downlink and uplink bandwidths,
without having its uplink saturated.

The typical size of an ACK packet is 40 bytes,
and also some satellite links use dialup connec-
tions for ACK channels. In a connection whose
RTT is 100 msec in average, 20 ACK packets
(or packets having 40 hytes in size) salurate a
64 kbps bandwidth. This means if a = 20, a
connection using Pulsed ACK can use as much
downlink bandwidth as it wants even if dialup
link is used as.the upward channel. In order to
determine a, we focused on connections using
dialup links, since they are the most common
examples of narrowband links that are provided
as an infrastructure today. We chose an even
smaller value of a = 5, one-fourth of 20, which
means 4 Pulsed ACK connections are able to
share the dialup link as upward channels. Ob-
viously, a = 5 uses 16 kbps of uplink band-
width. We can say this is small enough for any
connection to make efficient use of any link. In
order to compare its effect, however, we also use
a = 10 in Chapter 4 for evaluation.

Therefore we use « = 1, 2 = 5 for 4, and (1),
(2) will be

% cwnd, (4)

1
d= —cuwnd® =

a
cwnd a
— =
3.2 %odiﬁlgggons
3.2.1 The Packet Header

We add 1 bit and 2 fields in the TCP packet
header: pulsed, v, and a.

=5. (5)

The pulsed bit is used to trigger Pulsed ACK
option, working as a flag. The good thing is,
Pulsed ACK works only if both the sender and
the receiver react to this flag. That is, if either
of the end nodes has not implemented Pulsed
ACK option, it ignores this flag and works as
a orginal TCP node. This fact makes it possi-
ble for Pulsed ACK option to be implemented
gradually, since there will not be any errors or
disturb normal data transfers by only one node
using this option.

The w field is used by the sender to store the
size of eumd. This field is used only in the trans-
fer from the sender to the receiver. How this
cwnd is used is described in the later sections.

The a field is used by the receiver to store the
value of a it used, to tell the sender how many
ACK packets are sent in a RT'T. This field is
used only in the transfer from the receiver to the
sender. Again, how this a is used is described
later.

3.2.2 The Sender Algorithm

There are 2 modifications to the sender.

The first modification is to set the pulsed
bit to 1 when it sends a packet, unless cwnd is
smaller than ssthresh. It also stores its cwnd
to the w field and sends the packet. The rea-
son why the sender does not set the pulsed
bit during slow start is that since slow start
usually takes place either at the beginning of
the connection establishment or after a severe
congestion indicated by multiple packet losses,
both ends must know quickly the condition of
the network. Although this leads the connec-
tion to use much uplink bandwidth, we can say
it does not overload the network, since it lasts
only several RTTs.

We add the following codes to realize this
modification.

if (cwnd < ssthresh) pulsed = 0
else{ pulsed = 1
w = cwnd}

The second modification is to adjust the in-
crement of cwnd when the sender receives the
ACK packet. Compared to the number of pack-
ets sent, incoming ACK packets are much less.
It is possible, just like Delayed ACK, to make no
modification to this decreased ACKs and make
this option simple, but this decrease is too much
to ignore. If we leave this as it is, Pulsed ACK
senders will suffer from severe unfairness, since
the cund increases by only 5/cwnd per RTT,
while others increase by at least 0.5 (this is the



value for Delayed ACK) per RTT. Therefore,
we modify the sender so that its cwnd increases
by 1 every RTT.

Its method is rather simple. When it receives
the ACK packet, it modifies the default incre-
ment of 1/cwnd, using current cwnd and the
a stored in the a field of the incoming ACK
packet, as

1 cund 1
cond. & q (6)
This mogiﬁcatlon maﬁ:&s the sender to increase
its cwnd by 1 every RTT, theoretically realizing
fairness between the original TCP.

The code for this modification is as follows.

if (pulsed == 1)
increment = increment * cwnd / a

Again, this works only if the pulsed flag of
the incoming ACK packet is set. Thus, the
sender increments its cund as the original TCP
during slow start or when the receiver is not
Pulsed ACK-capable.

3.2.3 The Receiver Algorithm

The receiver also has 2 modifications.

The first one, which is the key modification
of Pulsed ACK option, is to control the interval
of sending ACKs. The receiver holds 2 vari-
ables for this algorithm: @ and receivecount.
receivecount is used to count the number of
data packets received. This is the process.

(1) When the receiver receives a packet, it
sees if the pulsed flag is set and calcu-
lates cwnd/a using the w field of the re-
ceived packet and a it holds.

(2) If receivecount is smaller than cwnd/a,
it does not send any ACK packets to
this received packet, and increments
receivecount instead.

(3) If receivecount is larger than cwnd/a,
it sends an ACK packet and resets
receivecount.

This results in a pulsing flow of ACKs, send-
ing ACKs at intervals. The name of “Pulsed
ACK?” derives from this characteristic.

Note that as we described in Section 3.2.2,
this process at the receiver also works only if
pulsed flag is set, and if not, it works as an
original TCP receiver.

This process is described with the following
codes.

if ( pulsed == 1 &k receivecount < w
/ a )
delay this ACK

receivecount = receivecount + 1
}else{

send ACK

receivecount

0}

Recall that we chose @ = 5 in the previ-
ous section. If the downlink is narrow enough,
there will be a point where the cumd becomes
less than 5 (roughly 600 kbps with an average
RTT of 100 msec), which means the receiver
may send more ACKs than the received data
packets. However, in this case, this algorithm
makes receivers send an ACK every 2 packets
received. Therefore this algorithm works even
when the downlink bandwidth is narrow.

The second modification is simple. When the
receiver generates an ACK packet, it copies the
pulsed flag of the received packet header to the
ACK packet header regardless of its value, and
it also stores a to the a field.

3.3 Theoretical Performance Compar-

ison

In this section we compare the performance
of Pulsed ACK option with Delayed ACK and
the regular TCP (referred to as Regular TCP),
theoretically.

We assume a connection of 100 msec link, ei-
ther symmetric or asymmetric in bandwidth. A
data packet is 1500 bytes, and an ACK packet
is 40 bytes in size.

At a symmetric link, when a Pulsed ACK
connection gains as much as 100 Mbps at down-
link, it uses only 0.016 Mbps of uplink band-
width. On the other hand, the usage of Regular
TCP connection is approximately 167 times as
large as the usage of Pulsed ACK. A Delayed
ACK connection uses less than Regular TCP,
though it is still about 83 times as large as that
of Pulsed ACK. Uplink usage at a symmetric
link is shown in Table 2. The difference be-
comes much more apparent at 1 Gbps downlink
usage.

At an asymmetric link, if the uplink band-
width is 1 Mbps, Regular TCP connection sat-
urates it when it uses 37.5 Mbps at downlink.
Delayed ACK connection saturates it at the use
of 75 Mbps. On the other hand, since a Pulsed
ACK connection uses only 64 kbps for uplink,
it can use as much bandwidth as it wants. The-
oretical upper bound of the downlink usage is
shown in Table 3. We can see Pulsed ACK
shows great performance when the uplink is
narrow.



Table 2 Theoretical Uplink Usage at a Symmetric Link

70 Mbps link 100 Mbps link 1 Gbps link
Pulsed ACK 0.016 Mbps 0.016 Mbps 0.016 Mbps
Regular TCP 0.267 Mbps 2.67 Mbps 26.7 Mbps
Delayed ACK 0.133 Mbps 1.33 Mbps 13.3 Mbps
Table 3 Theoretical Upper Bound of Downlink 100
Usage at an Asymmetric Link
64 kbps uplink 1 Mbps uplink 80
Pulsed ACK no limitation no-limitation )
Regular TCP 2.4 Mbps 37.5 Mbps s 6o o -
Delayed ACK 4.8 Mbps 75 Mbps § w0l G
=] Pulscd ACK (a=5) —e— o
Pulsed ACK (8=10) -—e-—
20 Dclayed ACK o 1
Regular TCP ---@--
° .
10 100 1000

receiver
Fig.1 Simulation topology.

Table 4 Common Parameters
Data Packet Size 1500 bytes
ACK Packet Size 40 bytes
Queuing Algorithm  DropTail

4. Evaluation

4.1 Simulation Environment

We evaluate Pulsed ACK using Network Sim-
ulator Version 2.2712). The protocol we use is
TCP Reno. We also use Delayed ACK option,
which is the only method that addresses the is-
sue by end nodes, and, which has become the
standard today.

In all simulations, we use TCP Reno with no
option (Regular TCP) and TCP Reno with De-
layed ACK option (Delayed ACK), TCP Reno
with Pulsed ACK option (Pulsed ACK). Figure
1 shows the simulation topology. It is a sin-
gle bottleneck link, and each flow has a RTT
of 100 msec in average. In each simulation, we
change the number of flows, bottleneck band-
widths, and send bulk data from the senders to
the receivers. The parameters we used in com-
mon are shown in Table 4.

We evaluate the performance at steady state,
and use the average value of 10 same simula-
tions.

4.2 Bandwidth Usability

In this section we conduct simulations to eval-
uate the usage of the bandwidth.

Downlink Bandwidth [Mbps]
Fig.2 Downlink usability at asymmetric links.

We change the bottleneck bandwidth and
start flows at the same time. We conduct sim-
ulations at asymmetric links, at which we use
a fixed value of 1 Mbps for the uplink. For the
number of flows, we use 5, 10, and 50.

Figure 2 shows the usability of the downlink
of 10 lows. We can say from this figure that
Pulsed ACK flows have much greater robust-
ness to asymmetric links than Regular TCP or
Delayed ACK flows. While Regular TCP be-
gins to degrade its throughput at 100 Mbps,
Pulsed ACK keeps a high range of almost 90
% until 500 Mbps. Furthermore it gains 68.5
% of the 1 Gbps downlink bandwidth, which is
1.85 times as much as Regular TCP. However
all three protocols do not gain much throughput
at 1 Ghps. The reason for this is the underly-
ing issue of TCP Reno that it can not use wide
bandwidth efficiently because of its congestion
control algorithm!®. In fact, most of the sim-
ulations end before the aggregated throughput
reaches 1000 Mbps.

Figure 3 shows the usability of Pulsed ACK
flows, with the same condition of Figure 2.
The filled circle shows the result of 10 flows of
a = 5, which is the same as that shown in Fig-
ure 2. This figure shows that the greater the
number of flows, obviously, the more efficient
use of the bandwidth they make. Taking a look
at the value of 50 flows at 1000 Mbps, they
use over 82 % of the bandwidth, which demon-
strates Pulsed ACK is capable of using band-
width this wide, even when the uplink is very
narrow. On the other hand, the graph of 5 flows
shows they have difficulty gaining much band-
width at wide links of over 500 Mbps, again,
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Fig.3 Downlink usability of Pulsed ACK at
asymmetric links.
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Fig.4 Uplink usability at asymmetric links.

due to the issue of TCP Reno.

Figure 4 shows the usage of the uplink (in
Mbps) of the simulation shown in Figure 2.
As we described in Section 3.3, the uplink us-
age of Regular TCP and Delayed ACK becomes
1 Mbps at early stage of 50 or 100 Mbps, sat-
urating the link. This leads to the degradation
of the downlink throughput, as seen in Figure
2. On the other hand, Pulsed ACK stays at a
range of less than 0.3 Mbps.

5. Conclusion

Researchers have pointed out that TCP has
difficulty gaining throughput at links with
bandwidth asymmetry, either in capacity or due
to the connections in the reverse direction.

In order to address this issue, we proposed
Pulsed ACK. It reduced the number of ACKs
compared to Regular TCP and enabled re-
ceivers to send a fixed number of ACK packets
per RTT, making the usage of the uplink small
and constant, regardless of the throughput it
gains. It also enabled receivers to send ACKs
at intervals, to minimize the burst of the in-
crease of cumd. Also, the senders adjusted the
increment of cund at the receipt of an ACK
packet so that it increased by 1 every RTT.

We conducted computer simulations and
compared the performance of Pulsed ACK with
Regular TCP and Delayed ACK. Simulation

results showed the significant performance of
Pulsed ACK at asymmetric links: it gained 68.5
% of the 1 Gbps downlink bandwidth, which
was 1.85 times as much as Regular TCP. There-
fore, Pulsed ACK is an effective TCP option for
bandwidth asymmetry.
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