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Spoken languégé acqmsition based on the conceptual pattern
~analysis in perceptual information
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This paper describes a ‘machine learning‘ algorithm for spoken language acquisition by using
concepts extracted from nonliguistic perceptual information, based on a pattern recognition
technique. Thgé algorithm projects the raw sensor-observed signals into perceptually appropri-
ate feature spaces. Lexicon and gramniar are respectively represented in stochastic form in
the feature space and in the possible grammar parameter space. Their learning is based on
the association between speech and perceptual information. The syntactic structure is inferred
from the conceptual structure obtained by analyzing the conceptual patterns in the perceptual
information. The grammar is generalized according to the similarity of concept distributions
in the feature space. The algorithm is robust against noise, ambiguity, and sparseness in the
learning data because it uses statistical learning, such as Bayesian learning In the learning pro-
cess, cross-situational learning and the principle of exclusivity applied between word meanings
are partly implemented in a statistical way. The implemented algorithm includes the processes
of the speech recognition and the analysis of graphical scenes containing stationary or movmg
objects. A preliminary experiment is also described here.

fMasatsune Tamura is also with Interdlsmphnary Graduate School of Science and Engmeermg, Tokyo Institute
of Technology.



1 Introduction

The computational study of language aquisi-
tion has been attracting interest in various re-
search areas, and the recent progress in both
linguistics and machine learning theory has
made it a very fruitful field of study. Language
acquisition algorithms for machines {1, 2] have
provided us with an intuitive understanding
of and profound insight into the phenomena
associated with language acquisition. They
have also led to new machine learning meth-
ods. On the other hand, the recent progress of
such application technologies as computation,
telecommunications, sensing, and robotics has
made the development of natural language in-
terfaces with machines more important be-
cause it has increased the demand for easy and
comfortable relationships with machines. The
use of language acquisition schemes in inter-
active machines has been studied in attempts
to increase the flexibility of the language in-
terface, and one of the practical application-
- s investigated was on automatic call-routing
system using speech recognition {3]. While lin-

guistic theories are inevitably applied in ma-

chine learning technology, our resesarch was
motivated by this demand for better interfaces.

The language for communication with ma-
chines should be grounded in the process dealt
with by the machines, which might be either a
liguistic or nonlinguistic one. This paper ad-
dresses the question of how a language acqui-
sition algorithm can utilize nonlinguistic per-
ceptual information. Several pioneering stud-
ies exploring this problem have implemented
algorithms based on inductive learning using
a set of pairs each consisting of a word se-
quence and its nonlinguistic or semantic infor-
mation. For instance, algorithms for learning
the meanings of English prepositions with sur-
rounding words, using the symbolic attributes
for spacial relationship, were presented in [4]
and [5]. In addition, Siskind [6] described a
word-to-meaning mapping algorithm using the
set of pairs each consisting of a sentence and
a bunch of its possible whole referencial mean-
ings represented symbolically with Jackendoff
style expression. This algorithm is based on
cross-situational learning [7] and the principle

of exclusivity [8] applied between word mean-
ings, and it succesfully addressed the problems
due to homonyms and to noisy learning da-
ta. Visual graphical information rather than
symbolic nonlinguistic information was used in
simple word-to-meanining learning tasks in [9]
and [10]. The judgement of whether or not the
system’s response is appropriate has also been
used as nonlinguistic information in [3, 11],
where the meaning of a word was defined as the
action the system should take. And spoken-
word acquisition algorithms based on unsuper-
vised clustering of speech tokens were present-
ed in [9, 12, 13]. There have been some studies
[14, 15] on the use of semantic information in
learning of syntactic rules. An algorithm for
the learning of stochastic regular grammar in
a visually-grounded way was presented in [9],
in which the linear order of words in utterances
was dealt with.

The algorithm we wanted to develop, in
contrast, is one that acquires hierarchical char-
acterisitcs of syntax from speech by utilizing
the nonsymbolic perceptual information from
visual and kinematic sensors, and so on. It
projects the raw sensor-observed signals into
perceptually appropriate feature spaces. Lexi-
con and grammar are respectively represented
in stochastic form in the feature space and in
the possible grammar parameter space. Their
learning is based on the association between
speech and perceptual information. The syn-
tactic structure is inferred from the conceptual
structure obtained by analyzing the conceptu-
al patterns in the perceptual information. It
could be considered an algorithmic implenta-
tion of the part of the semantic bootstrapping
scheme [16] in grammar acquisition. In or-
der to obtain the semantic information from
the sensor input, many intermediary processes
have to be considered on the feature extraction
from sensor input, conceptual representation,
and the analysis of semantic structure. The al-
gorithm uses pattern recognition and analysis
techniques for implementing these processes.
On the whole, it considers many ambiguities
due to dealing with contiuous perceptual and
speech signal, in a statistical way. ,

In addition, the word meanings grounded
in perception are expected to play an impor-

—_0—




tant role in generalizing the grammar. Al
though the.use of hand-written symbolic con-
ceptual attributes have been studied for gram-
mar generalization, we have found no report-
s of algorithms based on conceptual relation-
ships in perceptual signal space. Particularly,
the role of conceptual similarity in perceptual
signal space appears to be esssential, and its
algorithmic implementation is considered.

The algorithm described in this paper deal-
s with graphical scenes as perceptual infor-
mation. It includes the process of speech
recognition and the conceptual pattern analy-
sis of graphical scenes. The parameters in ini-
tial stochastic grammar are gradually changed
adaptively in a statistical way. As in the previ-
ous studies, cross-situational learning and the
principle of exclusivity are used in the learning
process.

2 Learning Task

We set up the following spoken language acqui-
sition task. A human and a machine see the
same scenes on a display on which some graph-
ical objects are shown. Each graphical objec-
t is either stationary or moving. The human
participant’s possible action is the combina-
tion of speaking about the scene into a micro-
phone, poiting and moving one of the graphical
objects in the scene by using a pointing de-
vice. The machine learns language through a
sequence of such strokes, which provides the
set of pairs consisting of the operation in a
scene and the speech describing that operation.
During the course of the task, the human may,
to confirm how well machine has learned, ask
the machine to speak about a given scene and
may also ask the machine to move objects in
response to the speech input.

3 Algorithm

Outline

The system initially has a simple and neutral
stochastic grammar with no lexicon. The al-
gorithm is based on inductive learning using
the set of pairs made up of the operations

in scenes and the speech describing those op-
erations. Sequences of spoken words in the
speech are recognized. Possible individual con-
cepts are extracted from each operation, and
then a possible structural relation among them
as a whole is constructed, by scene analysis.
This conceptual structure is the chandidate of
meaning of the given speech, and possible as-
sociation between the recognized spoken word-
s and the individual  concepts extracted is
obtained. The learning of both the lexicon
and the grammar are based on this association.
Speech recognition is carried out as a part of
the unsupervised clustering process for lexicon
acquisition. The system generates sysnthetic
speech according to the learned grammar, and
graphical scene based on maximum likelihood
criterion[17]. No text is dealt with in either
input or output of the system.

Features for concept representation

The raw speech and graphical data are pro-
jected into the appropriate feature spaces. It
appears to be important that the perceptu-
al characteristics of a human and the system
are shared in the feature space. The features
for the speech and the scene are, respective-
ly, decided by the requirements from speech
recognition and conceptual scene analysis. In
speech recognition there are many proposed
features which adopt auditory characteristic-
s, such as Mel frequency scaling and time-
frequency masking effect. In scene analysis, we
have found few studies on the perceptually ap-
propriate features that are physically ground-
ed in the scene. While simply the use of per-
ceptually uniform color space L*a*b* and egde
information may be effective, the perceptually
grounded primitives [18] for the concept repre-
sentation should be explored. While each fea-
ture may be either discrete or continuous, de-
pending on the task, the algorithm described
here deals with only continuous ones.

Learning concepts and spoken words

Individual concepts of graphical objects and
spoken words are acquired as membership func-
tions on the respective feature spaces, and are

—3—



represented by a probability density functions.
These membership functions are used as dis-
criminant functions in speech recognition and
scene analysis. Hidden Markov models (H-
MM) [26] are used to represent the dynamic
characteristics of graphical objects and speech
sounds. In each HMM, the output probalitity
density function (p.d.f.) at each state is given
by. a multivariate normal distribution. A nor-
mal distribution is used to represent the static
characteristics of graphical objects. The values
of the parameters in these p.d.f.s are calculated
by inductive learning methods. Particularly,
Bayesian learning [19] is used for the learning
of the p.d.f.:s on static graphical characteristic-
s.'Bayesian learning reduces the severity of the
problem of data sparseness and the so-called
curse of dimensionality, and makes it easy to
use high-dimentional features.

Lexicon acquisition

Fach lexical item in the lexicon includes con-
cept and spoken word representations. The set
of pairs of the features of the spoken word and

graphical scene is divided into clusters, each of

which corresponds to a lexical item. Using to-
kens in each cluster, each the p.d.f. for graph-
ical concept and spoken word is estimated as
described above. The' lexicon is built up by
using an unsupervised clustering method [20]
in an incremental manner with regard to to-
ken input. When a new word (one not in the
lexicon) is spoken, a new cluster should be gen-
erated. Any phonemic units are not assumed
as prior knowledge to exclude language depen-
dency. The algonthm is implemented as fol-
lows:

1. Get a new speech sample o, and add o to
the sample set O.

2. Select the HMM h, associated with clus-
ter ¢ which gives the highest value of like-
lihood with regard to o, and add sample
o to cluster c.

3. If ¢ is to be split, spht it into new two
clusters and estimate new HMMs, other-
wise reestimate HMM h,. :

4. Resplit O into. clusters by selecting the
HMM h; that gives the highest likelihood
. for each o; € O.

5. For all clusters, estlmate HMM h; for
each ¢;. Then go to step 1.

The determination of the number of HMM
states is based on cross validation in a clus-
ter. Although the splitting decision in step 3
is the problem of recognition verification [21],
likelihood gain is used as threshold criterion as
in the conventional regression tree[22]. Split-
ting the set of time sequential signals of speech
is not as straightforward as the conventional
cluster splitting, and is carried out by splitting
HMM based on expectation-maximization al-
gorithm [23]. In the algorithm described here
the clustering is based only on speech informa-
tion, but the algorithm can be extended to also
use perceptual information.

Conceptual scene analysis

Each scene is analyzed in order to obtain its
conceptual expression (CE), which is defined
by a rudimentary form consisting of the in-
dividual concepts in the lexicon with seman-
tic attributes!, such as [object]; [action], and
[to]. The scene analysis assigns the semantic
attributes to each extracted graphical concep-
t. In the process, the system judges whether
the object movement is spontaneous or forced
by the human. For instance, if the concept ro-
tate is extracted as the state of an object, the
attribute [object] is assigned. And if it is ex-
tracted as theaction to an object; the attribute
[actlon] is ass1gned When the operatxon is

to put a 'rotatmg red ball on the blue block on
the right-hand side,

the CE might be

[action] put
[object] rotate, red, ball
[to] blue, block, right

!These can be defined dependently on the task. We
may be able to use the semantic primitives described
in [24] and [25], although how to extract such semantic
primitives from a scene'is a problem. -



where written in the right-hand column are
the concepts in the lexicon. The CE is con-
structed using the individual concepts of pos-
sible words in a speech such that the likelihood
of the membership fuction made by the com-
position of the individual concept membership
functions is maximized for the operation in the
scene. '

Grammar learning

Grammar is learned through the adaptation
of the initial grammar. Learnable grammar is
rather restricted so far: functional words such
as prepositions and articles, for example, are
not treated. Let a constituent of a sentence be
defined as a word group that describes a con-
cept, which may be a structural combination
of multiple concepts. Each constituent is char-
acterized by the semantic attribute assigned
to the concept that the constituent describes.
The initial grammar counsists of the following
three parts:

1. The set A of semantic attributes a; ( =
1,2,..).

- 2.-A constituent formation rule:
If two words are used to describe a con-
cept, which may be constructed using mul-
tiple. concepts, the word between these t-
wo words must be used to describe same
concept.

3. rY]_“he stochastic grammar SG consisting of
_probabilities P(a; = ajax) that the con-
_stituent with semantic attribute a; con-

~ sists of two constituents each with se-

mantic attribute a; and ay, in this _erder.

The constituent formation rule is fixed, but the
SG is adapted by Bayesian learning. The adap-
tation is based on the association between the
speech and the scene. The following is an ex-
ample of the procedure of de't‘efmini‘ng such an
association. Ideally, the speech recognizer rec-
ognizes the word seqence ‘put’-‘rotate’-‘ball’-
‘blue’-‘block’ perfectly. Then the scene ana-
lyzer produces a CE by using the concepts of
these words under the constraints of the con-
stituent formation rule. That is, the CE is

produced so that the likelihood of the over-
all conceptual structure based on each con-
cept pattern’s likelihood is maximized under
the constraints. The comparison of the recog-
nized word sequence with the C'E results in the
sentence being divided into the following three
constituents:

(([action], ‘put’), ([object], ‘rotate’-‘ball’),
([target] ‘blue’-‘block’)).

The S’G‘ is adapted using the 1nf0rmat10n of
the order [action]-[object]-[target] of the con-
stituents’ attributes. Although any. adapta-
tion schemes for. stochastic language models
[27] can be used, we should consider that the
algorithm does not always produce the prop-
er constituents and their semantic attributes
because there are many uncertainties in the w-
hole process. The input utterance itself could
be ungrammatical or could not even describe
the scene correctly. The algorithm therefore
utilizes Bayesian learning, by which the values
of SG probabilities are adapted robustly. That
is, a small number of improper samples will not
influence the grammar adaptation much

Grammar generalization

The generahzation of the grammar is consid-
ered in the speech generation process ‘The
system generates synthetic speech describmg
a given scene on demand, and the word set
associated with the 'scene is selected by using
concept membership functions. The word or-
der in the synthetic speech is determined ac-
cording to the learned grammar. If a grammar
rule including the selected word set exists, the
word order is determined by this rule. If such
a rule does not exist, the word order is deter-
mined using the grammar rule including the
word set most similar to the selected word set.
The calculation of the similarity of words is
based on the distance between the correspond-
ing concept p.d.fs, such as the Bhattacha.ryya
distance or the KL divergence. To focus on the
shape of p.d.f. rather than the their location
we use the similarity measure R,, as follows:

2

|
Bk

Ry(wi,wg) = —1n (1)
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where the term related to mean vectors has
been eliminated from Bhattacharyya distance.
3 and ¥, denote the covariance matrices of
concept p.d.f.s for words w; and wy, respective-
ly. The word sequence is determined by search-
ing an appropriate grammar rule so that the
sum of word similarities between the selected
word set and the word set in the rule. For in-
stance, when the word set { ‘red’, ‘right’, ‘ball’
} is selected in the association with a object in
a scene, the rule ( [object], ‘yellow’‘left’-‘ball’
) is chosen as a rule which has the word set
most similar to the selected word set, where
the distributions of the concepts right and left
are far apart in the feature space but the their
shapes are similar.

4 Experiments

The algorithm was tested using the follow-
ing setup.. The position on the display (two-
dimensional: horizontal and vertical coordi-
nates) and the color information (three-dimen-
sional: L*a*b* parameters) were used as the
features of the concept representation of graph-
ical objects. Mel-scale cepstrum coefficients
[28] and their delta parameters (thirty-two di-
mensional) were used as the features of speech.
A normal-Wishart distribution was used as pri-
or distributions of the parameters in normal
distribution for each concept representation.
The parameters in the prior distribution were
set empirically.

A male participant taught language to the
machine, according to the task described in
Section 2, under acoustic conditions typical of
an office environment. In the first step, fifteen
lexical items consisting of concepts about po-
sition, color, and movement were taught (Ta-
ble. 1). Note that for convenience each concep-
t in Table. 1 is denoted by a text word which
has a concept similar to it. These lexical items
were taught in sixty learning strokes. In each
stroke, either concepts about the static char-
acteristics of objects (static position and col-
or) were taught by uttering one or more word-
s and pointing to a stationary object, or else
concepts about dynamic characteristics (move-
ment) were taught by uttering one word and
moving an object.

Table 1:' The concepts taught in the experi-
ments ' ' :

[ position | color | movement |

right red up
left blue down
top yellow rotate
bottom | green put
middle | gray slide

In the next step, grammar was taught by
uttering one or more words while pointing or
moving a object which is stationary or mov-
ing. Utterances in the experiments were rather
simple. If, for example, the operation was ‘to
lift a red rotating object at the bottom’ and the
utterance was “up rotate red bottom ” , the ex-
tracted CE was:

[action] : up
[object] : rotate, red, bottom

The following probability was learned:
P([S] — [action] [object]) =

1—-P([S] — [object] [action])

A beta distribution (e = 8 = 5.) was used as
a prior distribution of the value of this proba-
bility in Bayesian learning. o

As a result, the lexicon was learned after
sixty strokes. The concepts could be acquired
with such a small number of learning strokes
because of the Bayesian learning. When maxi-
mum likelihood learning was used instead, the
concept p.d.f. often became too sharp due to
small amount of samples. This often led to
unintuitive errors in scene analysis. For exam-
ple, a position near the edge of the left-hand
side of the display was recognized as right be-
cause the p.d.f. so far obtained for the concept
left was much sharper than the p.d.f. for the
concept right. Bayesian learning reduced the
severity of this problem by making the p.d.f.
less sensitive to distributions of small amounts
of learning samples.

The stochastic grammar was also learned
robustly. The change of the value of probabil-
ity P([S] — [action][object]) is shown in Fig-
ure 1, where it is obvious that the learing was
robust against early errors in the learning pro-
cess.
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Figure 1: The change of probability in the SG
during the course of learning
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The grammar generalizaion process was al-
so tested. After ‘right’-‘top’-‘red’ was uttered
in the previous stroke, a red object at the bot-
tom of the left side of the display was point-
ed to and the system was asked to describe it.
Then the phrase ‘left’- ‘bottom’-‘red’ was gener-
ated using the rule ( [object], ‘right’-‘top - ‘red’

)-

5 . Discussion

Although algorithm tested was a preliminary
version and the spoken language used was not
natural, the experimental results are promis-
ing. We found that statistically robust learn-
ing provides human participants with an intu-
itive understanding of how well the machine is
learning. Such information appears to be im-
portant when considering what strategy should
be used in later teaching. The learning efficien-
cy depended on learning samples. The distri-
bution of learning samples the teacher showed,
for example, greatly influenced on the learn-
ing performance. Bayesian learning provides
robustness in learning individual concepts but
does not improve directly the efficiency of the
cross-situational learning. A mechanism for
improving the cross-situational learning is nec-
essary.

Robustness is quite important in the learn-
ing of SG because the speech recognition pro-
cess uses the SG which has been learned so
far. If the SG is learned wrongly because of er-
rors in the early stage, the speech recognition
becomes likely to be erroneous. This would

make it difficult to get the correct grammar by
adapting the SG.

The scheme for learning the SG proba-
bilities can be expanded to deal with other
kinds of grammars, such as one based on the
principles-and-parameters (P&P) approach [29].
Indeed, the SG probability obtained in the ex-
periments can be taken as the parameter which
determines the order of the head and the com-
plement in a verb phrase. The robust statis-
tical learning might be part of the solution to
poverty of stimulus problem: “how can chil-
dren learn language using only a small amount
of learing samples?”.

Although the presented formulation of the
word similarity is rudimentary, it shows a con-
crete method of measuring the relationship of
concepts represented in continuous feature s-
pace. In dealing with metaphor with anole-
gies between coneepts, sucn an approach based
on geometrical relation in the feature space is
worth pursuing.

6 Conclusion

The preliminary framework for the acquisition
of spoken language grounded in perception,
that does not use symbolic imformation, was
presented. The method described is a statis-
tical method based on the conceptual analy-
sis of the perceptual information. Its algorith-
m recognizes words in an utterance and infer-
s their conceptual structure by analyzing the
scene associated with the speech. The gram-
mar generalization method was implemented
using a measure of concept similarity based on
the relation of the concept p.d.f.s in the fea-
ture space. Simple experiments demonstrated
that the lexicon and the grammar were learned
robustly. ' The natural expansion of the range
of learnable language, and the development of
the perceptually plausible features are future
works.
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