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Representation of Phone Correlation by Phone Pair Model

Baojie LI Keikichi HIROSE? Nobuaki MINEMATSU!
tSchool of Engineering, University of Tokyo
School of Frontier Sciences, University of Tokyo

In view of human’s ability of accurately recognizing speech in spite of large distributions of
phone features, information on the relationship between phones should play an important
role in speech recognition. The phone relationship can be modeled by our proposed Phone
Pair Model(PPM). PPM statistically models the relationship between two phones using joint
probability of acoustic features. After integrating PPM into HMM-based recognition sys-
tems, recognition experiments are conducted. The results showed remarkable increases in
recognition rates only by a short phrase for adaptation. The Phone Pair Modeling was also
shown valid for robust speech recognition.

1 Introduction our recent works on this approach. We inves-
tigate the property of PPM, give some sug-
gestions on its implementation and improve-
ments. As described in Section 2, PPM is
proposed to describe the relationship between
two phones in a statistical fashion. In Section
3, PPM is then integrated with phone HMM
to re-calculate the likelihood of words in the
recognition network within a HTK [4] frame-
work. Its application to speaker adaptation
is introduced in Section 4, where two series
of recognition experiments are conducted. In
Section 5, the robustness of PPM in speech
recognition is shown by some experiment re-
sults. Section 6 concludes the paper.

Speaker adaptation techniques have been
broadly studied. However, most of them suf-
fer from insufficient adaptation data. In view
of human’s ability of accurately recognizing
speech in spite of large distributions of phone
features, information on the relationship be-
tween phones should play an important role
in speech recognition. Extended Maximum a
posteriori estimation[1] and Regression-based
Model Prediction[2] gave some suggestions in
utilizing phone relationships, but their effect-
s were rather limited. We proposed a Phone
Pair Model (PPM) re-scoring adaptation ap-
proach previously[3]. In this paper, we report
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2 Phone Pair Model

When we have some phones known in the
decoding stage, we can determine the un-
known phones based on the probabilities cal-
culated on the known-unknown phone pairs.
For example, if X = ®,%9, - ,xr, and
Y = y;,Y2 Y1y are two observation
sequences generated from phone phonex’s
mode! Ay and an unknown phone model re-
spectively, we can calculate the condition-
al probability on each phone model pair
(Ax), Ay Ai € {A1, -+, Am}, (M the number
of phones), and then select the model that
generated Y as follows.

Ay = argmazp(Y(X, Ax, \))
Ai
_ argmaxp((Y,X)K)\i,)\X))
A; p(X)

Since p(X) is invariant to %, we have

Ay = arg;na:vp((Y, X)), Ax)). (2)

In conventional HMM-based recognizer,
each phone is modeled with an HMM. The
joint probability of (X,Y) can be approxi-
mated by

p(X,Y) = [[(0(Zs.757)) (3)
0.

where Tj; is the average of vectors be-
longing to state s; of the HMM of phoney,
and ¥; is the average of vectors belonging
to state s; of the HMM of phoney. Let
variable vector X, has normal distribution
N(pgi, Xsi) and Y has N(ug;, ¥s;), Then
the distribution of joint vector (X, Ys;) is

N(/J‘ij: Eij) in which

Mg

Hij =
N Hsj

is the mean of joint vectors (¥, ¥y;), and

Esi.sj (4)
Esj‘sj

.= EsiAsi
v Esj.si

the covariance. When the four sub-matrix of
%;; are assumed diagonal, ;5 is equal to
X §i.87

3 Incorporating PPM intc
Phone HMM

We use HTK(Ver.2.1.1)[4] as the baseline
recognizer. In HTK, each word is represented
as a sequence of phone HMMs(see the recog-
nition network in Figur 1). The square boxes
represent word-end node, and the circles de-
note HMMs of phones composing the word.
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1: Recognition process using PPM

Each HMM has 3 states with self-
transitions, one initial state and one final s-
tate, totally 5 states. For simplicity, our cur-
rent PPM only exploits the information of s-
tate 3. Before recognition, the adaptation ob-
servations from the new speaker are aligned
into the states of the HMMs. Although the
detected boundaries of each phone may in-
clude errors, we can extract the phones we
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are interested in (here are the five Japanese
vowels {a,%,u,e,0} ) with enough accuracy.
Then we average the vectors in state 3 of each
HMM and get 5 vectors {vg, V4, Vy, Ve, Vo } for
the 5 vowels {a,,u,e, 0} respectively.

During the recognition process, when a to-
ken (refer to [4]) reached a word-end node,
boundaries of the phones composing the cur-
rent word are known. With the boundary
information, we can make up 5 vector pairs
v — oi(k € {a,i,u,e,0} ) for each obser-
vation o) (the i'th observation in state 3
of phone ph;’s model). Then the probabili-
ty density of each vy — o}, generated by the
corresponding PPM Ag_, is calculated. Thus
a PPM score p2%", which is the average on
the 5 PPMs and all the observations in state
3, is obtained for phone phy.

Since each word consists of different num-
ber of phones, we average the PPM scores
of all the phones that compose the word, to
assure that PPM contributes to every word
equally. Moreover, since PPM decreases the
score of a longer sentence more largely than
that of a shorter one, and therefore involves
errors in recognition results, PPM compen-
sation is used to alleviate this effect. Ad-
ditionally, PPM scale is used to weight PP-
M score. If the logarithmic likelihood of the
partial path till current word is v (which is
calculated in conventional way), we add the
logarithmic PPM score of this word to v and
get the modified score psi™°¢ as

mod 1 d air
¥ =1/’+k(ﬁ prn _Pcomp) (5)
m=1

where &k is PPM scale, peompensation 18 PP-
M compensation and M is the number of the
phones composing the word. Detailed expla-
nations are schematically shown in Figure 1.

4 Applying PPM to Speaker
Adaptation

A recognition task is designed to test PPM.
As many other adaptation algorithms, a frag-

ment of an utterance from the new speaker is
necessary for adaptation.

4.1 Training Phone Pair Models

We can use the same data as we used to
train SI HMMs to train PPMs, though the
following steps:

1. Aligning the training data into proper
states with SI phone HMMs.

2. Averaging the vectors in the middle state
of the SI phone HMMs.

3. Selecting the combinations of two
phones(which we are interested in) as
one phone pair event, using the average
vectors of the middle state of their H-
MMs to estimate the mean vector p,;
and covariance matrix X; of this phone
pair.

4.2 Preparing Adaptation Data

By performing forced-alignment, the mean
vector of the middle states of the 5 vowels
{a,%,u, e, o0} are extracted from a given adap-
tation utterance and registered for the follow-
ing decoding stage.

4.3 Some Problems
4.3.1 PPM Score

Since we aim at distinguishing the correct
word from the others, only the partial score,
which causes difference in likelihood scores
between words, is exploited as PPM score

PP (0) = —0.5%(log| Z|+(0—p) T (0-p)).

(6)
where o is an observation of input speech, X
and g the covariance matrix and mean vector
of corresponding PPM respectively.

4.3.2 Computational Load

In Equation(6) the determinant and the
inverse matrix of X need to be calculated,



When the input vector is D-dimensional, X
is a 2D x 2D square matrix, and a heavy com-
putational load is imposed on the recognizer.
This computational problem can be solved by
utilizing the property of £ that its 4 sub-
matrices are diagonal (refer to Equation (4)).
When X is represented as

a1 0 -+ 0 b1 0--- 0
0a22--- 0 0b22~'~ 0
0 0 --app 00 "'bDD (7)
b7 0 --- 0 110 -+ 0 ’
0 bys-- 0 Oy O
0 0---bpp O O---cpp
then X! is
A1 0 -+ 0 Bn o0 0
0 Agy--+ O 0 Bgy--- 0
0 0 ---App O 0 ---Bpp (8)
Bip 0+ 0 Ci 0 o |’
0 Byy--- 0 0 Cyy--v O
0 0 Bpp 0 0 ---Cpp
where
Cii —bi;
- By = ,
A aicii — 0% " agci — b,
Qi .
Cyp= —20 1,---,D}.
YT aiici — b3 ed }
The determinant is given by
D
12 = TTascs - B2). ©)

g=1

4.3.3 Setting PPM scale and PPM com-
pensation

PPM scale is used to adjust the relative
effect (to phone HMMs) of PPMs. Addition-
ally, since PPM decreases score of longer sen-
tence more largely than that of a shorter one,
PPM compensation is also necessary.

To find the proper PPM scale and PPM
compensation, we conduct two series of recog-
nition experiments, one uses poorly trained
ST mono-phone models (SI-6 models), which
are trained using 150 sentences of each of 6
male speakers from ATR Continuous Speech
Corpus for Research. The other uses the SI
mono-phone HMMs provided by IPA (called
IPA-SI models in contrast to SI-6 models,
with 16 mixture components in each state of
HMM, trained with ASJ Continuous Speech
Corpus for Research and Japanese newspa-
per article sentences, totally 20k sentences
uttered by 132 speakers).

The test conditions are

Vector size The vector size for IPA-
SI is 25-dimensional, containing
12th order MFCCs,AMFCCs,
AAMFCCs, A power. It is 38-
dimensional for SI-6 models and
PPMs, with AAMFCCs, A pow-
er, AApower in addition.

Dictionary size 886 words for the ex-
periments using SI-6 models and
2947 words for those using IPA
models

Test data : 50 sentences from each of
3 new speakers from ATR Contin-
uous Speech Corpus for Research

The results of the former series of exper-
iments are shown in Figure 2 and Figure 3,
where SI, SD mean recognizing with speaker-
independent models and speaker-dependent
models, respectively.  The other curves
show results using speaker-independent mod-
els integrated with PPM, with different
PPM scales and PPM compensations. Fig-
ure 4 and Figure 5 are the results for the lat-
ter experiment series.

As shown in the above figures, in both of
the two series experiments, PPM generally
results in an obvious increase in both word
correct rate, defined as

Number of correct words
Total number of words

* 100,
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3: Recognition word accuracy of SI-6 mod-
els

and word accuracy, defined as

Number of correct words — insertions

« 100.
Total number of words *

In each experiment series, when the PPM
scale increased, we get only a little increase
in recognition rate, however the range of PP-
M compensation, within which PPM outper-
forms conventional HMM (called PPM ac-
tive range), becomes narrower dramatically.
And this also occurs when the performance
of the SI models improved. This may be
attributable to the relative performance of
PPMs compared to the SI models. When the
PPMs are well-trained, a larger PPM scale is
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4: Recognition word correct rate of IPA-SI
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preferable. PPM scale and PPM compensa-
tion may be set properly by a few tests pre-
ceding the adaptation.

4.3.4 Weighting Phone Pair Models

In the above experiments, each PPM con-
tributes to the likelihood scores equally. But
each PPM has a recognition error rate dif-
ferent from others. Hence we should find the
optimal weight set to improve the recognition
rate further. This problem is left for future
investigation.

5 Robustness of PPM

After the investigation on the relationship-
s between phones within a speaker, we con-
tinue to investigate how these relationships
exist across speakers. Instead of extracting
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6: Comparison of the recognition results
between the two type experiments

the 5 vowels from an utterance of the speak-
er to be recognized in the previous experi-
ments (called Type-1 experiments), the vow-
els are extracted from an utterance of an ar-
bitrary training speaker in the following ex-
periments (called Type-2 experiments). The
recognition results of the two types of exper-
iments are shown in Figure 6. As shown in
Figure 6, there is only a little difference be-
tween the results of the two type experiments.
While this shows the robustness of PPM in
speech recognition, larger improvements of
Type-1 experiments are expected when com-
pared with Type-2 experiments. This may
be achieved by setting different PPM com-
pensation for each PPM and modeling phone
relationships more precisely.

6 Conclusion

We incorporated PPM into phone HMM
and tested it on a speaker-independent recog-
nition task. A remarkable increase of recog-
nition rate was achieved, even given only one
sample of each of the 5 vowels from the new
speaker. The robustness of PPM was al-
so shown by experiments. Some suggestions
were given on properly setting PPM scale and

PPM compensation. Further improvements
of PPM may be made by defining the PPM
more precisely.
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