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Extended Kalman Particle filters applied to model-based
noise compensation for noisy speech recognition
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Abstract We suggest viewing noisy speech recognition based on Jump Markov State Space model. In this
model, noise parameters and state sequences are hidden and estimated by a computational Bayesian approach
for parameter estimation. Particularly, the Monte-Carlo particle filters were adopted to estimate time-varying
additive noise parameter for model-based noise compensation. Each particle corresponds to a certain state space of
noise. The particles randomly transit to new state spaces of noise according to the transition probability given by
acoustic models and language models for speech recognition. Higher likelihood particles generate larger number of
new particles with newly evolved state space, whereas the lower likelihood particles may be stopped by a selection
step. The state space after a particular transition was evolved using an extended Kalman filter. Likelihood of each
state space contributes to Minimum Mean Square Error (MMSE) estimation of the noise parameter from all the
particles. Primary experiments on N-Best rescoring are shown in this paper.

Key words  Speech recognition, Noise compensation, State space model, Kalman filter, Monte-Carlo method,
Particle filter.
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1. INTRODUCTION

For speech recognition in noise, several representative noise
compensation methods [1, 2, 3, 4] have been proposed, and
have shown their potential applications for robust speech
recognition in real noisy environments. A survey of the meth-
ods can be seen in [5]. Most of the methods assume that the
noise statistics are constant, so that noise parameter can be
estimated in advance, e.g., based on the Maximum Likeli-
hood estimation [5], and plugged into the noise compensa-
tion procedures. Though it is possible to use more Gaussian
mixtures or states to represent time-varying noise statistics,
the modeled noise statistics can not adapt to unseen environ-
ments.

As aresult, for speech recognition in non-stationary noise,
the above methods may lack effectiveness. In order to give
more insights on noisy speech recognition in non-stationary
noise, we view speech recognition in noise as a non-stationary
parameter estimation problem. Accordingly, we suggest to
represent noisy speech recognition in the framework of the
Jump Markov State Space model [6], i.e.,

z(t+1) = A(z(t)) + Br(z) (1
y(t) = F,(z(t) + Dv(t) @)
spr1 = O(sy) 3

where 2(t) € R, y(t) € R and s; € Z each represents
continuous state, observation, and the discrete state. A(-),
F,,(-) and ®(-) each represents the environment transition
function, observation function and the state transition func-
tion. They can be linear or non-linear. v(¢) and v(t) re-
spectively represent continuous state driving noise and the
measurement noise. The objective is to estimate the hidden
continuous state parameter z(£) and the hidden discrete state
parameter $; given observation y(t).

‘We note that, given state s, the combination of the Equa-
tion (1) and Equation (2) represents a state space model.
Also, given z(t), the combination of the Equation (2) and
Equation (3) represents Hidden Markov Model (HMM).

For noisy speech recognition, the z(t) represents chang-

ing environment parameter and the sequence of s(t) is (phoneme)

state sequence. This can be understood in the following way.
Given a correct state sequence s, we can estimate noise pa-
rameter (¢); Given the noise parameter estimation z(t), we
can do HMM decoding to decide the state sequence s;.
Normally, joint estimate the noise parameter (%) and
the discrete state sequence s; is an N-P hard problem. One
suboptimal way can be done as an iterative way as follows.

1. Step 1: Noise parameter z(¢) can be estimated given a
(hypothesized) state sequence, and the estimated noise
parameter can be plugged back to Equation (2) to do
noise compensation in feature space or model space.

2. Step2: The compensated feature or model can be used
for HMM decoding to decide a new state sequence
which may be used for noise estimation in Step 1.

If we assume that the noise is stationary, as we have said
previously, we can do one pass of the above steps and then

plug the estimated noise parameter for speech recognition
afterwards.

On the other hand, if the noise statistic is changing dur-
ing recognition, we may have to run Step 1 and Step 2 in
several iterations, where each iteration will assume that the
previous estimation of (%) or s; is reliabie for the current
parameter estimation. For example, we can use a sequential
Expectation Maximization (EM) algorithm [7] to do itera-
tive sequential compensation of the mean vector of acous-
tic models, and the compensated model are used for noisy
speech recognition.

Kalman filter can also be used in model-based noise com-
pensation [8, 9]. The method in [8] uses a single-state multiple-
observation state space, which corresponds to estimate the
environment noise parameter by using only one state func-
tion plus a large amount of observation functions from state
mixtures. Once a state mixture has been invoked, it will last
until it reaches to the end of a utterance or it is pruned out
during speech recognition. The interacting-multiple-model
(IMM) based method [9] uses a parallel set of Gaussian mix-
ture representing a set of state space models. Each Gaussian
mixture will be valid during the whole utterance. From the
above explanation, we can view the above two methods us-
ing Kalman filter as the case of setting ®(-) as a 1(-) in
Equation (3). For this reason, the above two methods are
in the category of the deterministic Gaussian mixture ap-
proximation of the posterior probability [6] for estimating
non-stationary noise parameter for noisy speech recognition
problem. Intuitively, the deterministic Gaussian mixture ap-
proximation is not consistent to the situation in speech recog-
nition, since the phonemes are changing in an utterance. It is
better to select the state space according to some probability.

Another possible strategy is to compute a grid approx-
imation to the filtered posterior density. The grid point is
called as “particle”, and evolves in either a fixed way (Gen-
eral particle filter) or a randomized adaptive way (Monte
Carlo particle filter). The particles might cover the evolu-
tion of the noisy speech statistics.

This paper is the first step trying to introduce Monte
Carlo particle filters into the noise parameter estimation for
noisy speech recognition. We will briefly outline our method
in section 2. Detailed procedure will be shown in section 3.
Experiments and discussions are in section 4 and section 5.

2. THE MONTE CARLO PARTICLE FILTER FOR
NOISE PARAMETER ESTIMATION IN NOISY
SPEECH RECOGNITION

Following our statement that we can formulate noisy speech
recognition by Equation (1) to Equation (3), specifically, for
our problem of noisy speech recognition with the Log-Add
noise compensation [7], assuming that there is no correlation
among log-spectral filter banks, we can write Equation (1) to
Equation (3) by the following equations for each filter bank
7 in particle s = sy, i.e.,

M’lnj(t +1) = Ui;j(t) + Vj(t)
yi(t) = pb, () +log (1 + exp (up; () — p4;(1)))
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+ v s (t)
s = O(sy)
Note that the Equation (5) is derived as the observation func-
tion in the Log-Add noise compensation [7]. Subscript j
represents log-spectral filter bank index, and J is the total
number of the log-spectral filter-banks. v; (£) is state driving
noise in Normal distribution N (0, E;(¢)), and v,;(2) is the

measurement driving noise in Normal distribution N (0, V;(2)),

where N (11, ) represents Normal distribution with mean 4
and covariance X. Superscript [ represents log-spectral do-
main. $(-) represents the state transition function.

For each filter bank j in particle s, the state space given
by Equation (4) and Equation (5) is nonlinear. The extended
Kalman filter may be used to update the corresponding state
space model analytically. The updating formula is given
by [10],

Prior estimateatt :

Pt = 1) = fip;(t—1) ™
One — step forecast :
futlt=1) = py(®) _ ®
+ log(1 + exp(pn; (2t — 1) — pi; (1))
(10)
Qsi(tlt —1) = Fy;(t) Ru;(tt — 1)Fy;(2)

+ Vit
Posterior estimateatt: -

an

Ky(t) = Ruj(tlt— 1)Fy(t)Qutt—1)7"
(12)
e (t) = y;(t) — fo;(tt—1) (13)
Ans(8) = po(tlt —1) + Ky (t)es; (1) (14)
R;(t) = Ry(tlt—1)
- Ksj(t)Qsj(t|t - 1)Ksj(t)l
R (t]t — 1)V (t)
Qut—1) 1
where F;(t) = 38yj((t))[ _ o, () —pi; (1)
s, . ,,,LJ_ t) 15t=8

Ltexp (ul; () —pl;(8)

For speech recognition, the sequence of s; in Equation
(6) represents the state mixture sequence with constraints
from the language model and acoustic model, i.e., ®(s;) =
P(8441]8¢), where p(l|m) is the transition probability from
mixture 77 to mixture [. Note that the above state space evo-
lution by Equation (7) to Equation (15) is carried out at state
8§ = §g, where 8 is stochastic during speech recognition.

Our method will generate a set of particles by sampling
the state transition probability given by acoustic model and
language model. Once a particle has been given, the state
space related with this particle evolves by the above extended
Kalman filters. The likelihood of the state space will give
a weight of this particle for Minimum Mean Square Error
(MMSE) estimation of the noise parameter. A selection step
is followed to keep particles with high weights and accord-
ingly let the particle with high weight give more newly evolved

(5) state space. After the selection step, all the particles will be
P P p:
(6) assigned to equal weights, however, since the number of par-

ticles closer to the higher posterior probability is much larger
than those particles far away from the ranges of higher pos-

" terior probability, the parameter estimation will be efficient.

MMSE estimation can be carried out at this stage. A Monte-
Carlo Markov Chain is followed to possibly reduce the to-
tal variation norm of the current distribution of the particles
with respect to the “target’ posterior distribution.

/\v/uixtures

Sampling ® g0 ® @ ®
t

Selection

Sampling
t+1

Selection

Fig. 1. Monte-Carlo evolution of the particles. The curve
represents the ’target’ posterior probability. Sampling will
expand the search space. Selection step will condense the
search space according to the weight of each particles. Note
that some particle may give more ’children’, while others
may be dead after the selection step. As aresult, particles are
concentrating in the ranges of higher posterior probability.

Detailed explanation of the procedure is in the following
sections.

3. PROCEDURES IN THE MONTE CARLO
PARTICLE FILTERS

3.1. Minimum Mean Square Error estimation of noise
parameters by Monte Carlo Particle Filters

For the aim of estimating y},;(), which is used by the Log-
Add noise compensation [7], we apply the Minimum Mean
Square Error (MMSE) estimation. The estimation of the
noise parameter in filter bank j from time O to ¢ is given
by,

i) =
3 [ b0 Op(s0, s 0 DIy (L < )y (051

50:t

where y(1 : t) is the observation vector sequence with el-
ement of y;(1 : 1), 5 = 1---J. sp4 denotes the state
sequence from 0 to t. p(sou, tl; (0 = B)|y(1 = ) is the
posterior probability of state sequence Sq.; and hidden con-
tinuous state jut,; (0 : t) given observation y(1 : ).
Empirical distribution of the posterior probability is given



by,
Py (ds@t,d#;,.(o Oly(1: ) =

25(30 = dﬁo:n/ﬁl,f; = dpt,;(0: 1))

(i ) is the state

where M is the total number of particles. s,
sequence of particle 2. f,; 9 (0:1)isthe esumatlon of noise
parameter in filter bank j from 0 to t at particle filter . §(-)
is the delta function. dsg.; and d,ulnj(O : t) each denotes a
small *area’ of sq.; and !, (0 : £).

Using the empirical estimate of the posterior probability
to approximate the true posterior probability, we can approx-
imately estimate I (gy;) for any function gy;.

I;w (9t|t) =

Z/gtit SOt’/“‘n] 0 t))

50:¢

PM(d30~t7 dﬂnj(o ()|y(1: 1)

_thlt Sot,l‘iz(;) 0:1))

i=1

This estimate is unbiased and form the strong law of large
number, i.e., as M — +00, Ing(gs)e) = I{geje)- I(gee) is
the MMSE estimate of the y},;(t) in this paper.

Thus, one of the key points in the algorithm is to estimate
the empirical posterior probability by particle filters. To es-
timate the empirical posterior probability and I(gy;), the
Bayesian Importance Sampling (BIS) [10] method is used.
This method assumes the existence of an arbitrary impor-
tance distribution (5.1, 1t4; (0 : t)[y(1 : £)) which can
be easily simulated from, and p(so.¢, ph; (0 : 1) ]y(1 : 1)) >
0 implies (9., s}, (0 = €)|y(1 : t)) > 0. Using this dis-
tribution, 1{gy;) can be expressed as,

I(gtlt)
Eﬂ(somﬂ,‘,‘j(ﬂit)ly(lzt))[,gt]t(sO:t’ Mfw'(o : t))w(so:t,/ilnj (0:1))]

Eﬁ(.qg;,,pij(O:t)fy(lzt)){w(so:tv ltlnj (0:1))]

where Ey(.)(+) is the expectation with respect to 7 (-), and
the importance weight w(So., uﬁu-(O : t)) is given by,

p(SO:h/J’lnj(O : t)|y(1 : t))
W(So:uﬂfzj(o st)y(L: 1))

Accordingly, a Monte Carlo estimate of J(gy¢) is given by,

W(So0ut, i (0 1 1)) o (16)

gt)t Z wo tgtlt 50 it Mn]) (0:¢) 7N

where the normalized importance weights are

w(si), 10 1)
Y M w(sS), ud (0 1))

(18)

wi =

3.2. Rao-Blackwellisation

Variance reduction of the above estimation procedure can be
achieved by Rao-Blackwellization [11], where importance
distribution is the marginai distribution of s¢.; given y(1 :
t),ie.,

w(soely(1: 1) = / (S0 10 B)[y(1 = £))did (0 : 1)

(19)
As aresult,
p(s0:4ly(1 : )
w(So. o 20
(o) o1 ) 0
. M
IM(gt\t) = Zﬁ)(()ngp(u' ®)]s$) u(1: t))[.‘hlt(so tvp’n])(t))]
i=1
2
(4)
- (1) w(sp4)
B —Alot) 22)
‘ Z;\ll ,w(s(ﬂ))

As we have seen in Section 2, the expectation operation of

i), U0
Ep(u;j(t)[s{)ii,y(xzt))[gtlf(st()t:t’ i (£))] can be done by the
extended Kalman filter on the non-linear state space model
shown in Equation (7) to Equation (15).

3.3. Sequential Importance Sampling (SIR)

Factorization the posterior probability and the importance
distribution allows a recursive evaluation of the importance
weights, i.e., w(80.c) = w(So.1—1)wW(s), with,

p(y(®)ly(1L : £ — 1), s14)p(sels1-1)

W)= )yl st = Dymlsaly(L s ), sra)
ply(®)ly(L:t — 1), 51.0)p(84]86-1)
7(sly(1 : £), 51:601) @)
Specifically, we choose (s |y (1 : t), S1.4—1) = P(S¢|Se—1)s

the state transition probability representing the acoustic model
and the language model, as the proposal importance distribu-
tion. Thus, we have,

o ply@y(1:t— 1), 81.)

Calculation of the above parameter needs only one step of
Kalman prediction, which is given by szl N(fs(tlt —
1), Qs; (¢}t — 1)) in Equation (10) and Equation (11).

However, the weight is only related with likelihood in-
stead of the posterior probability, which can possibly in-
crease estimation variance.

w(s;) (24)

3.4. Selection step

The variance of the above estimation procedure is increas-
ing over time [12]. This is observed as, after a few above
iterations, all but one of the normalized importance weights
are very close to zero and a large computational burden is
devoted to updating trajectories whose contribution to the fi-
nal estimation is almost zero. A selection step is followed
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by using residual re-sampling [13], which assigns the num-
ber of the “children” of a particle according to the weight of
this particle. The larger the weight, the larger the number of
its ”children”. After the selection step, all the particles are
assigned with equal weight.

3.5. Monte Carlo Markov Chain (MCMC) step

After the selection step at time ¢, we obtain M particles dis-
tributed approximately according to p(sg.|y(1 : t)). Note
that the discrete nature of the approximation can lead to a
skewed importance weights distribution. Particles may have
no children (M, = 0), whereas others have a large number of
children. The extreme case being M, = M for a particular
value s. In this case, there is a severe depletion of samples.
A strategy for improving the results is introducing MCMC
steps of invariant distribution p(so.¢|y(1 : t)) on each par-
ticle. In this paper, Metropolis-Hastings step [14] is used as
follows,

1. Sampling

e v ~ U1y, where Upp 1j is the flat distribution
between 0 and 1.

2. Sample the proposal candidate

o 51~ p(slsiy)
3. Move
I p(yi(®)lul;(2-1),57)
* lfvs II]]’== zf<yj(<3;tu;j<t—1),§£i>>
—  then accept move: si) = {55)_,, sf(i)}
— —else reject move: s((,lz = 53’1
End if.

The method can possibly spread the particles in a mode.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

Speaker-Independent TI-Digits recognition experiments were
carried out with a Viterbi recognizer to test the application
of the particle filters for noisy speech recognition. The digits
models and background noise model were trained on clean
speech utterances. The contaminated speech for the test was
generated by artificially adding different levels of noise to
the clean speech. All noise signals were from a Noisex-92
database.

Five hundred connected digits utterances from 15 speak-
ers and 100 connected digits utterances from four speakers
unseen in the training set were used for training and testing,
respectively. There were 11 whole word models for 10 dig-
its (zero is pronounced as oh or zero) and one silence model.
Each digit was modeled by a four-Gaussian-mixture 10-state
(including a non-emitting initial and final state) left-to-right
HMM without skip states. Gaussian output probability dis-
tributions with diagonal covariance matrices were used for

each state. The silence model was a four-Gaussian-mixture
3-state (with a first and last non-emitting state) HMM.

The speech signals were down-sampled from 20kHz to
16kHz. The window size was 25.0ms with a 10.0ms shift.
Twenty-six filters were used in the binning stage. The fea-
tures were the static MFCC with the dynamic MFCC.

State driving noise of all the particle filters were intial-
ized to be the variance of the estimated noise parameter at
each log-spectral filter bank. The initialized noise parameter
was estimated from 5 seconds of noise before recognition.
The measurement noise in all of the state space is set to be
the same as the state driving noise.

4.2. Results

Fig. 2. Evolution of the histogram. The target distribution is
the up-right most curve.

We firstly look at the evolution of the histogram of the es-
timated noise parameters. Specifically, in Figure 2, we plot
the evolution of the histogram of the estimated noise param-
eter at 10-th log-spectral filter bank. The up-right most curve
is the target distribution of the contaminating noise param-
eter at the filter bank. 357 particle filters were used to do
noise parameter estimation. Utterance 1500a' was contami-
nated by White noise in signal-to-noise ratio of 2.87dB. We
did the parameter estimation of the utterance in two times,
and then concatenated the histograms of the estimated noise
parameter. As can be seen from the figure, the histogram
of the estimated noise parameter goes from its initial distri-
bution far away from the true distribution, and at most of
the time, the histograms of the estimated noise parameters
are in the range of the true distribution of the contaminating
noise parameter. However, we notice that there some jump-
ings which result in wrong parameter estimation. We notice
that the jumping is almost periodic, showing that it might be
because of the large state driving noise we set in our experi-
ments.

!One utterance in TI-Digits database



We then use particle filters for N-Best re-scoring. 10-
Best lists were generated by a speech recognition system
compensated by Log-Add method [7] in each SNR noisy en-
vironments.

We tested the performance of the particle filters with dif-
ferent number of particle filters. Performances of the particle
filters are shown in the following tables. Particle (20), parti-
cle (50), and particle (150) each represents performance by
using 20, 50,and 150 particle filters for noise parameter esti-
mation and noise compensation afterwards.

Table 1. Word Error Rate (in %) of noise compensation
methods in White noise.

SNR (dB) 8.8 | 16.0 | 204 | 404

Baseline 813 | 62.0 | 373 | 223
particle (20) | 61.7 | 42.7 | 10.3 | 10.0
particle (50) | 59.3 | 413 | 13.0 | 11.0
particle (150) | 61.7 | 32.0 | 87 | 3.7

Table 2. Word Error Rate (in %) of noise compensation
methods in Babble noise.

SNR (dB) 07 | 94 | 129 | 326
Baseline 90.7 { 97.7 | 44.0 | 20.7
particle (20) | 80.7 | 57.0 | 13.7 | 7.0
particle (50) | 79.7 | 48.7 | 9.0 | 6.7
particle (150) | 74.7 | 54.0 | 11.7 | 6.7

Accuracy of the parameter estimation by particle filters
is important to noise compensation afterwards. As we can
see from the tables, in order to improve the accuracy of the
particle filter for parameter estimation, we may have to in-
crease the number of particle filters.

5. DISCUSSIONS

A Monte-Carlo method for parameter estimation in noisy
speech recognition has been presented in this paper. The
Monte-Carlo method provides a general way for parameter
estimation in the framework of the Jump Markov State Space
model. We notice that the accuracy of the parameter estima-
tion is critical to the performance for noisy speech recogni-
tion. For this reason, it is better to increase the number of
particle filter for parameter estimation. Also, the importance
distribution for sequential sampling is important for variance
reduction in parameter estimation. Currently, we use only
the transition probability without consideration of likelihood
during recognition. Better variance reduction and parame-
ter estimation can be expected with importance distribution
considering likelihood, which corresponds to weighting pa-
rameter estimation from each particles by posterior proba-
bility instead of the likelihood we used in our primary exper-
iments.
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