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LONG-TERM EFFECT REMOVAL FOR NOISY SPEECH RECOGNITION
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Abstract: Noise speech recognition is of great interests in speech research recently. To make an automatic speech
recognition system robust to noise, we will probably have to solve two problems. One is the detection and identification
of noise. Another is the consideration of noise effect during recognition process. In this paper, we will address a new
method to estimate the noise effect using a long-term Fourier analysis. We will then discuss how to remove the noise
effect from corrupted speech to make recognition system immune to uncertainties.

The rationale behind our noise estimation and removal approach can be described as follows. Speech signal is a non-
stationary stochastic process. Much phonetic information in speech is encoded in the changes of the speech spectrum
over time. Relatively less phonetic information is encapsulated in the long-term speech spectrum. Noise, however can
be treated as a stationary process. Long-term spectrum will provide a good estimate of noise. Hence the subtraction of
long-term effect from short-term spectra will keep the discrimination information which is necessary for speech
recognition, and meanwhile remove the noise effect.

We will report on experiments on DARPA speech in noise environments evaluation (SPINE) database to demonstrate
the properties of the proposed approach. :
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1. INTRODUCTION

Significant advances have been made in recent years in
the area of automatic speech recognition. It is now
possible to use speech recognition successfully in a
controlled environment. However, the performance of a
speech recognizer suffers dramatic degradation when
there is a mismatch between training and testing
conditions [1-3]. There are many factors that contribute
to the mismatch. The main factor, that causes the
mismatch, is the presence of noise. Maintaining good
accuracy in noisy conditions has become one of the most
challenging areas of the speech recognition research
currently.

There have been considerable interests in dealing with

noise. The efforts may be roughly classified into three

categories.

1. Filtering noise from noisy speech signal in the
front-end processing stage. This approach aims at
removing noise components or estimating the
parameters of the clean speech from corrupted
speech signal. The representative methods in this
category include spectral subtraction [4], RASTA
[5], Cepstral bias removal [6], iterative signal bias
removal [7], etc. Recently, microphone array in
which several to tens of microphone elements are
arranged in a specific configuration has been
intensively investigated for speech analysis and
speech recognition [8]. The fact that a microphone
array can get different realizations of noise signal
and noise corrupted speech signal provides
considerable potential in filtering noise and
improving the effective SNR of speech as it is input
to the recognition system. The widely application
of microphone array, however will depend upon
many factors such as the size of an array, the cost
of an array, to what degree can we deal with the
reverberation when an array is used somewhere
other than an anechoic chamber, etc.

2.  Compensation of HMM model parameters to
include the effects of noise or adaptation of HMM
model to take into account the environmental
changes. Parallel model compensation (PMC) in
fog spectral or cepstral domain [9], vector Taylor
series approximation based model compensation in
log spectral domain [10], MLLR [11] based model
compensation are representatives of this type.
Amongst them, the PMC like methods are
intensively studied for robust speech recognition.
Though reported results showed their significant
advantages for noisy speech recognition, the
effectiveness of these methods depends on an
accurate estimation of a noise model. Besides, the
heavy computational load casts another barrier for
the application of this type of methods in real the
world.

3. Representing speech features which are more
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robust to noise. This has been being of great
interests for decades. Achievements in this area
[12-13] have led tremendous improvements of
speech rtecognition. Recently, a sub-band based
feature representation drew much attention because
some evidences showed that human beings process
speech on a sub-band basis. In this technique[14-
16], the full-band speech is divided into several
sub-bands and each sub-band is represented
individually. Various experiments have
demonstrated the substantial advantages of this
technique for robust speech recognition in colored
noise conditions. The performance of this method,
however will hinge upon our knowing which sub-
band is more or less corrupted by noise.
Although these techniques were experimented in speech
recognition with certain success, there remains a great
need to investigate new techniques that can accurately
recognize speech in degradation environments.
To make an automatic speech recognition system robust
with respect to noise, we will probably have to solve two
problems. The first one is the detection and identification
of noise. Many noise robust recognition approaches
require noise or noise parameters. For example, spectral
subtraction needs to know the power spectrum of the
noise. PMC requires an accurate noise model. Most
speech enhancement methods need to know the SNR or
noise parameters. Currently, majority of methods
estimate noise during the period of absence of speech.
They operate under the assumption that noise is
stationary as compared to speech signal and that noise
has same statistics during speech or absence of speech.
This noise estimation approach often needs a front-end
point detector which can distinguish noise segments
from speech segments.
The second problem with which we will have to face is
the consideration of the effect of noise during
recognition. This can be achieved through two ways
which are: 1. Removing noise from corrupted speech to
recover clean speech parameters. 2. Compensating clean
speech parameters to match the noise conditions.
Spectral subtraction belongs to the first kind. It assumes
that speech and noise are additive in spectral domain.
Hence directly subtracting the spectrum of noise from
that of the corrupted speech will recover the spectrum of
clean speech signal. PMC, on the other hand, transforms
the HMM model parameters which trained in a noise-
free speech environment to noisy speech environment
using an estimated noise model.
In this paper, we will report a new method to make
recognition system robust to noise. We will address how
to estimate noise spectrum using a long-term Fourier
analysis. We will then discuss how to take into account
the noise effect during speech recognition. The method
used is long-term subtraction which remove noise
spectrum from the spectrum of corrupted. We shall
report experiments to justify our approach.
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Fig. 1. A model for distortions

2. NOISE EFFECT ESTIMATION

Many signal processing algorithms use an implicit model
shown in Fig. 1 for environment degradation. Assuming
that the distortion-free speech signal s(¢) is first passed
through a linear filter whose output is then corrupted by
uncorrelated additive noise n(t), we write the corrupted
speech signal y(f) as

y(£) = h(t)*s(t) +n(t) = x()+n() )]
where x(¢) denotes noise-free speech.

Many robust speech recognition algorithms involve the
estimation of the linear distortion and the noise effect
from the corrupted speech. Since channel distortions and
the noise are additive to speech signal in different
domains, they cannot be simultaneously estimated and
removed in one domain. The linear distortion, which is
additive in log-spectral or cepstral domain, is often
estimated by an expectation (or averaging) operation in
these two domains. This is well addressed in many
papers [5-7][17-18]. Noise effect, however, is found to
be additive in spectral domain, and is often estimated
and suppressed in linear or power spectral domain.

Due to the fact that speech signal is a non-stationary
stochastic process and that much of the phonetic
information in speech is encoded in the changes of the
speech spectrum over time, speech signal is often
analyzed on a frame basis in which signal is divided into
segments of tens of milliseconds and each segment is
represented separately. Rewrite Eq. (1) as

y() = yOWE) + y(Owt —7)+---+ y(O)wlt = (L-D7)
=3O+ y, O+ 4y, O++y, () @

where w(z) is a window function which only has non-

zero values when t is in [0,7]. T is length of the

window. 7 is the window shift. L is the number of
frames. y,(r) is the k" frame of speech signal which is

Y @)=yt — k-

=[x@+nOwi-k-DD) =x,O+n, @) (3)

In short-term analysis, a set of transformations is applied
to the k" frame of speech signal, y,(¢), to convert it to
several parameters. Attempts to remove noise effect
from the short-term parameters are often done in power
spectral domain in which the corrupted speech can be
written as

L(NH=X.N+NU “
Assuming noise to be a stationary process, the above
equation can be expressed as

L(H=X,(H)+N({) (&)
The noise effect estimation in short-term analysis
becomes to estimate the noise term in the right hand side
of Eq. (5). Much work has addressed how to estimate the
noise effect. One typical method is to use a speech
activity detector to distinguish speech segments from
noise segments. Then the noise effect is estimated from
the noise segments [4]. This method has two drawbacks.
One is that it depends on the effectiveness of the speech
activity detector. Another, as it will become clear soon,
is that in some applications, non-speech segments do not
contain noise as much as that in speech segments (such
as push-to-talk case). In this case, the effects estimated
from non-speech segments do not represent the noise
during the presence of speech. To avoid a speech activity
detector, a continuous spectral subtraction (CSS) was
proposed [20-21]. In this approach, the average of short-
term power spectra over both speech and noise frames is
used as the estimate of noise. The estimated power
spectrum of noise, however, is found far from being
satisfaction. In this paper, we propose to use long-term
analysis to estimate noise effect. This approach is shown
to be able to yield a good estimate of noise.

From Eq. (1), the long-term power spectrum of corrupted
speech signal can be written as

Y(H)=X(H)+N() ©)

The long-term power spectrum is estimated by taking
Fourier transform for the whole utterance, and followed
by a magnitude square operation. Since noise is assumed
to be stationary, N(f) in (6) is approximately equal to
N(f)in (5). Thus equation (6) can be further written as

Y(H=X(F+N) Q)
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Fig. 2. Long-term effects for two utterances



Fig. 2 plots the long-term power spectra for two
utterances. For power spectra, the y-axis is plotted in a
log-scale. The speech signals are from SPINE evaluation
database. (For detailed description of this database, refer
to Section 4.)
An inspection of Fig. 2 reveals that the long-term power
spectra for two utterances resemble each other even
though the phonetic compositions for the two utterances
are different. This may indicate that the long-term power
spectra do not contain much phonetic information which
is necessary for speech recognition. On the contrary, the
long-term power spectrum of noise provides a good
estimate of noise due to its stationary property. Based on
this observation, we treat (7) as an estimated noise effect,
ie.,

N(fY=Y(H)=X(H+N() ©)
In the following section, we will discuss how to remove
noise effect for speech recognition.

3. NOISE EFFECT REMOVAL

Previous section discussed the estimation of noise. This
section will address the problem in suppressing the noise
effect in spectral domain. This can be done by
subtraction of noise effect from the short-term power
spectrum as follows:

L) =Y()=N(f) ©)
where ¥, (f) is the short-term power-like spectrum after
noise suppression. Y,(f) is the short-term power

spectrum of k" frame of speech signal. N(f) is the

noise estimate.
Substituting (4) and (8) to (9) gives:

L) =X, (D) + N (A-LX, () + N()
=X, ()= X (f) (10)

One can see from this equation that the noise effect is
removed. We call ¥,(f) the noise suppressed power

spectrum (NSP).

Fig. 3 shows the power spectra and noise suppressed
power spectra of one utterance in both noise-free and
noise conditions. The clean speech signal is from RM
database. (Sr0009.wav from ADGO_4.) In short-term
analysis, the window length is 24ms. To show both
power spectrum and noise suppressed spectrum in noise
condition, we add some noise to the clean speech signal.
The noise samples is from NOISEX database (06.ns).
The signal-to-noise ratio is controlled to be 10dB.

An inspection of a) and b) shows that power spectrum
and noise suppressed power spectrum are similar,
excepted that NSP may have some negative values. This
indicates that the removal of long-term effect will not
affect the phonetic information which is encapsulated in
the power spectrum.

Comparing a) and ¢), and b) and d), one may find that
the noise suppressed power spectrum is less affected by
noise. This suggests that the NSP may be more robust to
noise. This point will be verified through experiments
reported in the next section.
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Fig. 3. Power spectrum and noise suppressed power
spectrum of noise-free and noisy speech

Most of the current speech recognition systems do
pattern matching in cepstral domain in which the
convoluative distortions are additive.  To convert
¥.(f) to cepstral parameters, we pass it through a set of
mel-scale triangle filter banks whose outputs are further
transformed by a log operation and a DCT. However,
since ¥ (f) may have negative values, the outputs of the

filter banks are not guaranteed to be positive. Hence the



log operation used in the estimation of the MFCCs is not
applicable in such case. Two ways may be used to deal
with this issue. One is to set a positive floor. If a certain
output falls below this threshold, it is compulsively set to

this floor so that all outputs are guaranteed to be positive.

In this paper, however, we introduce another
way—redefine a new log operation. Denote the outputs
of the filter bands as E[k,n], where n=1,2,---,N , N is
the total number of filters. The log-operation to the
outputs is defined as

log E[k,n] = log|E[k,n] +iarg E[k,n] (11)
where

0, if Elk,n]=20
arg Elk,n] = (12)
7z, if E[k,n]<0

This log operation yields complex values. In this paper,
we take the magnitude of the output of log operation as
the inputs to a DCT.

After these transformations, we get an MFCC-like
feature set. We call these features noise suppressed
MFCCs (NSMFCCs).

4. EXPERIMENTS

We carried out various speech recognition experiments
to test the efficiency of the proposed approach. We here
select one experiment based on a DARPA noise speech
database issued recently for speech in noisy environment
evaluation to show the validity of the method.

4.1 SPINE database

This noisy speech database was developed by DARPA
to provide a first step forum for assessing the state of the
art and practice in speech recognition technology for
noisy military environments. The speech data was
generated by ARCON corp. for the DoD digital Voicing
Processing Consortium (DDVPC) under controlled
conditions. The data contained two parts, i. e. training set
and test set. However, since only training part is released
to public, we will use this part as a test bed to evaluate
algorithms and will report results on it. We use SPINE
database to refer to the training part of the original
database.

This speech data consists of conversations between two
communicators working on a collaborative task in which
they seek and shoot at targets (ARCON
Communicability Exercise, ACE). The speakers can talk
freely, but the total vocabulary used is fairly limited.
Each person is seated in a sound chamber in which a
previously recorded military background noise
environment is accurately reproduced. The participants
use the microphone that is resident to the particular
environment (e. g., ship or helicopter). The whole data
include 10 talker pairs. Each talker pair contains twelve
5-minute conversations, and hence about one hour
speech. The whole database has about 600-minute
speech in total, which include 4 military noise

environments: Quiet, Navy Aircraft Carrier CIC, Army
HMMWY and Air Force E3A AWACs. We should point
out that Push-to-Talk has been used during recording
some conversations. This cause the non-speech segments
of these conversation do not contain background noise.
Hence some noise robust algorithms such as spectral
subtraction are not applicable.
The male/female distribution in the database is show
below:

P02: male, male

p03: female, female

p04: female, male

p06: female, male

p07: male, male

pO8: female, male

p09: female, male

p10: male, male

pll: female, male

p22: female, female
where pxx denotes the index for certain talker pair. We
see from above that the whole database have 11 male
speakers and 9 female speakers.
Speech is digitized at a sampling rate of 16kHz with 16-
bit quantization value for each sample. More detailed
decription of this database please refer to [19].

4.2 SPEECH RECOGNITION SYSTEM

In the experiment, the HTK large vocabulary speech
recognition system is used to perform the recognition
task. This is configured as a gender-independent word-
internal triphone mixture Gaussian HMM system. The
base phone set contains 42 phonemes, a silence model
and a short pause model. A set of word-internal triphone
is formed from a dictionary which contains 5250 words
(5000 words are from switch board corpus). A left-to-
right tee HMM model with 3 emitting states is
constructed for each phone. A 4-component mixture
Gaussian distribution is used for each emitting state to
approximate the probability density function. Word pair
language model provided by CMU is included in the
decoding processing.

4.3 RECOGNITION RESULT

In the first experiment, we divide the whole database
into two sets. P22 which contains two female talkers is
used for evaluation. All the other nine pair is used for
training. The feature sets we investigated include:
MFCC: 12 MFCCs along with the energy plus the first
and second differentials of these features.

NSMFCC: 12 NSMFCCs along with the energy plus the
first and second differentials of these features.

Table 1 shows the recognition results for both training
and test sets.

Feature set | Training set word | Testing set word
accuracy (%) accuracy (%)
MFCC 68.57 58.38
NSMFCC 69.21 60.44

Table 1. Recognition accuracy for P22



In the second experiment, we use P11 as the test bed,
while all the other nine pairs are used to train HMM
model parameters. Table 2 presents the results for this
experiment.

Feature set

Testing set word
accuracy (%)

Training set word
accuracy (%)
MFCC 68.63 49.49

NSMECC 68.69 52.21

Table 2. Recognition accuracy for P11

One can see from Table 1 and Table 2 that the noise

suppressed MFCCs yield a little bit bitter performance

than MFCCs for the training set. For test set, about 2

percent improvement of the word accuracy is obtained.

This justify the validity of the NSMFCCs.

SUMMARY

This paper addressed two problems involved in the noise
robust speech recognition. One was the estimation of
noise effect. To achieve an estimate of noise, we
presented a long-term Fourier analysis method.
Experiment showed that this approach could provide a
good estimate of noise as long as the noise to be dealt
with was a stationary process. Another problem
addressed was the consideration noise effect during
speech recognition. To accomplish this task, we
proposed a long-term effect removal to estimate the
noise suppressed power spectra from the corrupted
speech and a new approach to convert the noise
suppressed power spectra to a MFCC-like feature sets.
Experiments performed on the SPINE database released
by DAPRA recently justified the validity of the proposed
approach.
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