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Abstract In this paper, we propose a distributed speaker recognition method using a non-parametric speaker
model and Earth Mover’s Distance (EMD). In distributed speaker recognition, the quantized feature vectors are
sent to a server. The Gaussian mixture model (GMM), the traditional method used for speaker recognition, is trained
using the maximum likelihood approach. However, it is difficult to fit continuous density functions to quantized
data. To overcome this problem, the proposed method represents each speaker model with a speaker-dependent VQ
code histogram designed by registered feature vectors and directly calculates the distance between the histograms
of speaker models and testing quantized feature vectors. To measure the distance between each speaker model and
testing data, we use EMD which can calculate the distance between histograms with different bins. We conducted

text-independent speaker identification experiments using the proposed method. Compared to results using the

traditional GMM, the proposed method yielded relative error reductions of 32% for quantized data.
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1. Introduction

In recent years, the use of portable terminals, such as cel-
lular phones and PDAs (Personal Digital Assistants), has
Additionally, it is expected
that almost all appliances will connect to the Internet in the

become increasingly popular.

feature. As the result, it will become increasingly popular
to control these appliances using mobile and hand-held de-
vices. We believe that a speaker recognition system will be
used as a convenient security system in this case. In conven-
tional mobile telephone speaker recognition systems, speech
signals are encoded at the terminal side and the coded speech
is transmitted to the server where the recognition system is
installed. However, because there are problems of channel
distortion and codec distortion, recognition performance de-
grades significantly.

In speech recognition, a Distributed Speech Recognition
(DSR) system has been proposed to avoid these problems [1].
DSR separates the structural and computational components
of recognition into two components - the front-end process-
ing on the terminal and the speech recognition engine on
the server. The European Telecommunications Standards
Institute (ETSI) has published standard DSR. front-end al-
gorithms based on Mel-Cepstrum technology [2]. In the fu-
ture, we expect that speaker recognition will also shift to the
distributed system. One advantage of distributed speaker

recognition systems is that they can use a high frequency

Distributed Speaker Recognition, speaker identification, non-parametric, Earth Mover’s Distance

component. This is a very important point for speaker
recognition. Recently, some researchers have focused on dis-
tributed speaker recognition and have reported their results
of distributed speaker recognition using ETSI standard DSR
front-end [3]~[6].

Distributed systems compress the sending data by estab-
lishing a lower bit rate for transmission. The ETSI standard
DSR front-end employs a split vector quantization (SVQ) al-
gorithm for this compression algorithm. Fukuda et al. have
reported that the quantized data negatively affect recogni-
tion performance [3]. Chin-Hung Sit et al. have also reported
that it is difficult to use the maximum-likelihood approach
(based on the EM algorithm) to train a Gaussian mixture
model (GMM) whose output probability is represented with
a continuous density function to fit the quantized data [5].
If unquantized feature vectors are used to train the speaker
model, we can avoid this problem. However, unquantized
data can not be obtained in a distributed environment.

To investigate the reason behind recognition performance
degradation, we conducted the speaker recognition experi-
ment described in section 2.. From this investigation, we
concluded that it is difficult to estimate the variance of GMM
using the quantized feature vectors because many variance
elements are floored.

In this paper, we propose a novel non-parametric speaker
recognition technique which does not require estimating

statistics parameters of the speaker model. We represent
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Figure 1 A block diagram of distributed speaker recognition sys-

tem

a speaker model using a histogram of speaker-dependent VQ
codebook. Using this speaker model, we can avoid the prob-
lem of estimating the variance. To calculate the distance
between this speaker model and the recognized feature vec-
tors, we apply a Earth Mover’s Distance (EMD) algorithm.
The EMD algorithm has been applied to calculate the dis-
tance between two image data represented by histograms®?
of multidimensional features [7]. Since the proposed method
does not need estimation of statistics parameters, it is ex-
pected that the proposed method is robust to the quantized
data.

Section 2. describes the distributed speaker recognition
system and the influence of feature compression based on
ETSI standard DSR front-end. Section 3. explains the pro-
posed speaker identification method, and section 4. presents
our experiments for speaker identification. Section 5. de-
scribes the discussion of these experimental results. Finally,

we sumimarize this paper in section 6..

2. Problems of GMM under the condition
of distributed environment

In this section, we first describe the distributed speaker
recognition paradigm and the influence of compression.
Next, we conduct a speaker recognition experiment using
GMM to investigate the influence of quantized feature vec-
tors and discuss the results of the experiment.

2.1 Distributed speaker recognition

It is expected that the distributed speaker recognition sys-
tem follows the block diagram shown in Fig. 1. This block di-
agram is almost the same as for the distributed speech recog-
nition. The paradigm of distributed speech recognition has
become standardized. In actually, the front-end of the dis-
tributed speech recognition has been recommended by ETSI.
Although the distributed speaker recognition standard has

(1) : In (7], EMD is defined the distance between two signatures.
Although the signatures are histograms that have different bins, we

use histogram in this paper
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Figure2 A scatter chart of the feature vectors (1st and 2nd order

MFCCs). x is the unquantized feature vector. * is the

quantized feature vector.

not been recommended yet, in this paper, we use the ETSI
standard DSR front-end, ES 201 108, for distributed speaker
recognition front-end. In DSR, many researchers use the
8kHz standard DSR front-end. The 8kHz sampling speech
data have been used in the AURORA2 database [8] which is a
standard database for evaluating the DSR methods. Never-
theless, in speaker recognition, we should use higher sampling
frequencies to improve recognition accuracy. Accordingly, in
this paper, we try to use the 16kHz standard whose trans-
mitting bit rate is the same as for the 8kHz standard, i.e.,
4.8kbps.

The ETSI standard DSR front-end compresses the feature
vectors for transmitting over the network. As a compression
method, ETSI employed split vector quantization. Since the
feature vectors at the server-side are quantized data, the dis-
Fig. 2
shows the scatter chart of the feature vectors of 25 utter-
ances, which are 1st and 2nd order MFCCs extracted by
ETSI standard DSR front-end, and the centroid vectors in
codebook which are employed by ETSI DSR front-end. This

figure illustrates that many input vectors are quantized into

tribution of the quantized data becomes discrete.

one centroid. In the next section, we investigate the influ-
ence of the quantized feature vectors on the speaker recogni-
tion performance when using the parametric speaker model,
GMM.
2.2 Speaker
GMM

We conducted the speaker identification experiment using

identification experiments using

GMM to investigate the influence of feature compression.
The training data and the conditions of acoustic analysis are
explained in section 4. 1. We used the 16-mixture GMMs in
this experiment.

Table 1 shows the experimental results. From this table,




Table 1 The Identification Error Rate (IER) at 8 and 16 kHz

Sampling rate
feature vector | 8kHz 16kHz
Unquantized 70% 3.3%
Quantized 23.5% 4.0%

we can see that the performance of quantized feature vec-
tors at 16kHz is better than for unquantized feature vec-
tors at 8kHz. This result indicates that the distributed
speaker recognition system can improve recognition per-
formance compared with the traditional telephone speaker
recognition systems. From this result, we used the 16kHz
sampling speech data in the following sections.

Comparing the performances of the quantized feature vec-
tor and the unquantized feature vector in the table, we can
observe that the quantization of feature vectors negatively
affects the recognition performances. We consider that the
reason is that the dispersion of the feature vectors by the vec-
tor quantization negatively affects the speaker model train-
ing. In fact, we observe that many variance elements are
floored when we investigate the speaker models. Hence,
it is difficult to estimate the variance, which is a statisti-
cal parameter, using the quantized feature vector. To over-
come this problem, Chin-Hung Sit et.al. [5] proposed to add
zero-mean, random vectors to the quantized MFCCs to pro-
duce the training vectors. On the other hand, we try to
use the non-parametric speaker model instead of the para-
metric speaker model like GMM. In the following section,
we describe a proposed speaker recognition method using a

non-parametric speaker model representation and EMD.

3. Non-parametric speaker recognition
method using EMD

In section 2., we described that it is difficult to use the
continuous GMM which is a statistical parametric model
as a speaker model for distributed speaker recognition. In
this section, we propose a distributed speaker recognition
method using a non-parametric speaker model and EMD.
The proposed method uses a histogram of speaker-dependent
VQ codebook as the non-parametric speaker model and cal-
culates the EMD between speaker model and testing fea-
ture vectors. Since we use a histogram of VQ codebook,
we avoided the estimation problem of statistical parameters,
variance flooring. The EMD algorithm is used for directly
calculating the distance between histograms that have dif-
ferent bins.

First, we provide a brief overview of Earth Mover’s Dis-
tance. Next, we propose the distributed speaker recognition
method using a non-parametric speaker model and EMD

measurement and illustrate the flow of this method.

3.1 Earth Mover’s Distance

The EMD was proposed by Rubner et al.[7] for an effi-
cient image retrieval method. In this section, we describe
the EMD algorithm according to their paper.

The EMD is defined as the minimum amount of work
needed to transport goods from several suppliers to sev-
eral consumers. The EMD computation has been formal-
ized by the following linear programming problem: Let
P ={(py,Wp,),--. , Pm>Wp,)} be the discrete distribution,
such as a histogram, where p; is the centroid of each clus-
ter and wy, is the corresponding weight (=frequency) of the
cluster; let Q@ = {(g;,wq,),--- , (4, Wq,)} be the histogram
of test feature vectors: and D = [d;;] be the ground distance
matrix where d;; is the ground distance between centroids
p; and g,.

We want to find a flow F = [f;;], with fi; the flow between

p; and g;, that minimizes the overall cost

WORK(P,Q,F) = f: zn: di;fij @

i=1 j=1

subject to the following constraints:

fi; 20 (1<i<m,1<5<n), (2)
> fi £ wp, (1£i<m), (3
i=1
D fis < wy, (1<j<mn), 4)
=1
3" £, = min (z wp,.,zwqi) | ®
i=1 j=1 i=1 =1

Constraint (2) allows moving goods from P to @ and not
vice versa. Constraint (3) limits the amount of goodsthat can
be sent by the cluster in P to their weights. Constraint (4)
limits the amount of goods that can be received by the clus-
ter in @ to their weights. Constraint (5) forces to move the
maximum amount of goods possible. They call this amount
the total flow. Once the transportation problem is solved,
and we have found the optimal flow F, the EMD is defined

as the work normalized by the total flow:

EiiXiadufs
E?;l Z;'l=1 fij

The normalization factor is the total weight of smaller dis-

EMD(P,Q) = (6)

tribution, because of constraint (5). This factor is needed
when the two distributions have different total weight, in or-

der to avoid favoring smaller distribution.



3.2 The recognition flow of the proposed method

In the previous section, we described that EMD is calcu-
lated as the least amount of work which fills the requests of
consumers with the goods of suppliers.

If we define the speaker model as the supplier and the
testing feature vectors as the consumer, the EMD can be ap-
plied to sparker recognition. Hence, we propose a distributed
speaker recognition method using a non-parametric speaker
model and EMD measurement. The proposed method rep-
resents the speaker model and testing feature vectors as a
histogram. The detail of the proposed method is described
as follows:

Fig. 3 illustrates the flow of the proposed method.

e Speaker model generation:

The speaker recognition system obtains each speaker’s
quantized feature vectors extracted using ETSI standard
DSR front-end for generating a speaker model. Using these
feature vectors, the system generates each speaker’s VQ
codebook and then makes a histogram of this VQ codebook.
The histogram is used as a speaker model which is the sup-
plier’s discrete distribution, P, described in the previous sec-
tion.

e Testing data:

The testing feature vectors are extracted and quantized
using ETSI standard DSR front-end. Using these quantized
feature vectors, the system makes a histogram of VQ code-
book that is employed by ETSI standard DSR front-end.
This histogram is used as the consumer’s discrete distribu-
tion, @, described in the previous section.

e Identification:

The system calculates the distance between the histogram
of each speaker model and the histogram of the testing data.
Then, the system selects the speaker model that has the
minimum distance. This procedure requires a distance mea-
surement between histograms which have different bins. We
apply the EMD algorithm to calculate this distance. In the
proposed method, the weight value, w;, is equivalent to the
occurrence frequency of a corresponding VQ centroid and
the grand distance, d;;, is the Euclidean distance in MFCC

vector space.
4. Experiments

We conducted text-independent speaker identification ex-
periments to evaluate the proposed method using a de facto
standard Japanese speech database for speaker recognition.

4.1 Experimental conditions

From the database, we use 21 male speakers’ utterances.
These utterances are recorded in 7 sessions over 19 months,
from Aug. 90 to Mar.

sentences, ten four-digit utterances, and five eight-digit ut-

'92. Each speaker spoke ten text
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Figure 3 The block diagram of proposed method

terances in each session. The average length of the text sen-
tences, the four-digit utterances, and the eight-digit utter-
ances are about five seconds, one seconds, and two seconds,
respectively. These utterances were sampled at 16kHz.

For the registered data, i.e., the speaker model training
data, we used five text sentences which were uttered in Aug.
’90 by all speakers. The utterances of the remaining six ses-
sions were used for testing. In this experiment, we defined
three test sets. For the first test set, we used five text sen-
tences in six sessions by all speakers, in total 630 utterances
(21 speakers x 5 sentences X 6 sessions). The text of these
utterances is not contained in the training data. We called
this test set “text sentences”. For the second test set, we
used ten four-digit utterances in six sessions by all speakers,
in total 1,260 utterances (21 speakers x 10 sentences X 6
sessions). We called this test set “four-digit”. For the third
test set, we used five eight-digit utterances in six sessions by
all speakers, in total 630 utterances (21 speakers X 5 sen-
tences X 6 sessions). We called this test set “eight-digit”.
The total number of all testing utterances was 2,520.

These utterances, sampled at 16kHz, were segmented into
overlapping frames of 25ms, producing a frame every 10ms.
Mel-

filtering was performed to extract 12-dimensional static Mel-

A Hamming window was applied to each frame.

Frequency Cepstral Coefficients (MFCC), as well as a loga-
rithmic energy measure in the DSR front-end. The twelve di-
mensional delta MFCC were extracted from the static MFCC
received at the server to constitute a feature vector of 25
MFCC’s (12 static MFCCs extracted from the DSR front-
end + 12 delta MFCC + delta log-power). Cepstral Mean
Subtraction (CMS) was applied on static MFCC vectors.

In this experiment, we set the number of centroids to 256
for the text sentences test set and 1,024 for the four and eight-

digit test set. For comparison with the proposed method,




Table 2 The IER for all test set

Method IER
GMM 11.9%
VQ-distortion | 9.0%
EMD-VQ 8.1%

we also conducted experiments with the speaker recognition
methods based on GMM and VQ-distortion. The GMM with
64 mixture was trained with the same feature vectors. The
codebook of VQ-distortion method was the same as the pro-
posed method.

4.2 Experimental results

Table 2 shows the speaker identification error rate (IER)
obtained using the proposed method (EMD-VQ). For com-
parison, we also show the IER obtained using GMM and
VQ-distortion in the table. The results shown in table 2 are
calculated by using all test sets, that is, the text sentences,
the four-digit, and eight-digit.

We can see from these results that the VQ-distortion
method had a lower IER than the GMM method; 9.0%
for VQ-distortion and 11.9% for GMM. From this result,
we conclude that the VQ-distortion method, which is a
non-parametric technique, is a better method for model-
ing quantized data than GMM. When we investigated each
speaker's GMM, we observed that many variance elements
were floored. This estimation would negatively affect recog-
nition performance. Thus, we conclude that non-parametric
modeling is the proper method for distributed speaker recog-
nition.

In addition, we can also see from this table that the pro-
posed method, EMD-VQ, decreased the IER over the VQ-
distortion method. Although these two methods, EMD-
VQ and VQ-distortion, use the same VQ codebook, the
EMD-VQ method shows a lower IER than the VQ-distortion
method. We expect the reason for this result is the differ-
ence of distance measures. The proposed method directly
calculates the distance between histograms, while the VQ-
distortion method calculates the distance by totaling the VQ
distortion of each frame. The proposed method can compare
the distribution of speaker model with the distribution of the
testing feature vectors. Therefore, the proposed method im-
proved the IER of the VQ-distortion method. To this end,
we conclude that the EMD is a useful distance measure for
speaker recognition and the proposed method is an effective
method for distributed speaker recognition.

In the following section, we discuss the details of these

results.
5. Discussion

This section shows the details of the results of the pre-

Table 3 The IER for each test set

test set
Method four-digit | eight-digit [text sentences
GMM 16.7% 10.3% 4.0%
VQ distortion 14.8% 5.6% 1.0%
EMD-VQ 13.3% 5.2% 0.6%

vious speaker identification experiments and our discussion.
We discuss about

e [ER for the each test set, text sentences, four-digit,
and eight-digit (5.1).

e influence of codebook size on IER (5. 2).

5.1 IER for the each test set

We investigate the influence on the identification perfor-
mance of each test set. The differences of each test set were
the contents of the text and the length of the utterance.
The average length of the text sentences was five seconds,
the eight-digit was two seconds, and the four-digit was one
seconds.

Table 3 shows the IER for each test set. First, these re-
sults show that the proposed method gave consistently better
performance than the conventional methods. Consequently,
we conclude again that the proposed method is an effective
method for distributed speaker recognition regardless of the
length and the phoneme contents of the testing sentence.

From the table, we can also find the difference of IER for
each test set. For both the proposed method and conven-
tional methods, the IER decreased as the length of the test-
ing utterances became longer.

Additionally, this table shows that the proposed method
gave better improvement in the IER for text sentences than
for digit test sets. This result suggests that the proposed
method yielded better identification performance if the kind
of sentence in the testing data is the same as in the registered
data, i.e., the phoneme occurrence frequency is similar be-
tween the testing data and the registered data. Comparing
with the VQ distortion method, the proposed method makes
the best use of the distribution of the speaker model, which
is the occurence frequency of each cluster (w; in section 3. 1)
for speaker identification. Hence, we are planning to study
the relationship between the phoneme occurrence frequency
and weight, w;, in the proposed method.

5.2 Influence of VQ codebook size on IER

In the above experiments, we used the optimum codebook
size which indicates the best performance for each test set.
We investigated the influence of the VQ codebook size on
the identification performance. Fig. 4 and Fig. 5 show the
IER of the proposed method for each test set as a function
of the number of VQ centroids. From these figures, we can

see that the optimum codebook size changes with each test
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set. The optimum codebook size (the number of centroids)
is 256 under the condition of text sentences test set, while it
is 1,024 under the condition of digit test sets. This tendency
was also observed in the VQ-distortion method. When a test
utterance and registered utterance are similar, the VQ code-
book of small size may be sufficient. On the other hand, the
proposed method and VQ-distortion method may require a
large VQ codebook for different kinds of utterances. Now,
we are conducting further investigations to study the deci-

sion function of optimum VQ codebook size.
6. Summary

In this paper, we have proposed a novel distributed speaker
recognition method using a non-parametric speaker model
and Earth Mover’s Distance (EMD). To avoid the problem
of estimating the variance of GMM, the proposed method
represents the speaker model with the histogram of speaker-
dependent VQ codebook. In the proposed method, testing
data are also represented with the histogram of ETSI DSR

standard codebook. To calculate the distance between the
speaker model and the testing data, we have applied EMD
which calculates the distance between histograms with dif-
ferent bins.

Experimental results on Japanese speaker identification
showed that the proposed method gave a consistently better
performance than the conventional methods, GMM and VQ-
distortion. We confirmed improvements in the identification
error rate (31.9% over the GMM method and 9.1% over the
VQ-distortion method) by using the proposed method. We
also confirmed that the proposed method is more effective
when the kind of registered utterance is the same as testing
data.

In this paper, we used five text utterances for the regis-
tered data. We are now planning to conduct further exper-
iments by using digit utterance for the registered data. In
future work, we will evaluate the performance of the pro-
posed method using a larger database, and apply the pro-

posed method to speaker verification.
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