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Abstract It is well known that the performance of automatic speech recognition degrades severely in presence of
noise or reverberation. Speech enhancement techniques may reduce such acoustic perturbations, but often do not
interconnect well with speech recognizer. To cope with this problem, model adaptation is usually used to reduce
the mismatch between the speech enhanced features and the acoustic model used by the recognizer. However,
conventional model adaptation techniques assume static mismatch and may therefore not cope well with dynamic
mismatch arising from noise or reverberation. There seems to be a lack of optimal ways to combine model adap-
tation and speech enhancement. In this paper we propose a novel adaptation scheme that may cope with dynamic
mismatch. We introduce a parametric model for variance adaptation that includes static components, and dynamic
components derived from a speech enhancement pre-process. The model parameters are optimized using adaptive
training. An evaluation of the method with a speech dereverberation for pre-processing revealed that a 80 % relative
error rate reduction was possible compared with the recognition of dereverberated speech, and the final error rate
was 5.4 % which is close to that of clean speech (1.2%).

Key words Robust ASR, Variance compensation, Model adaptation

. the clean speech data used for training the ASR system and
1. Introduction . .
the noisy observed data used for testing. One way to tackle

It is well known that the performance of Automatic Speech  the problem consists of modifying the acoustic model param-
Recognition (ASR) is severely degraded when attempts are eters to fit better with the observed speech features. This
made to recognize speech in the presence of noise and/or re-  is usually referred to as model based approaches, [1] [2] [3].

verberation. The problem arises from a mismatch between For example, adaptive training, such as Maximum Likeli-
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hood Linear Regression (MLLR) [1], estimates a new acoustic
model using the clean speech model and observed speech fea-
tures. The model adaptation relies on likelihood maximiza-
tion, which assures a reduction in the mismatch. Adaptive
training is effective in removing stetic mismatch caused for
example by speaker variations, but it may not cope well with
dynamic mismatch arising for example from non-stationary
noise or reverberation.

Alternatives to model based approaches are feature based
approaches that consist of estimating clean speech features
using the observed speech. For example, speech enhance-
ment methods can be used as a pre-process to ASR [4] [5].
Many speech enhancement algorithms can efficiently reduce
non-stationary noise. However, remaining noise or the exces-
sive removal of noise may introduce distortions that prevent
high recognition performance.

Recently, there have been several proposals suggesting the
use of information on feature reliability to improve the ASR
performance of speech enhancement pre-process [6] [7]. The
idea consists of focusing during decoding on reliable feature
components. As an example, dynamic variance compensa-
tion proposes increasing the model variance for unreliable
feature components by adding the variance of enhanced fea-
ture. In [6], substantial ASR improvement has been reported
when accurate feature variance could be obtained as in an
Oracle experiment. However, with estimated feature vari-
ance, the performance was much poorer than that obtained
with Oracle. There have been several proposals as regards
estimating the variance of enhanced feature[6] [7], but the
methods are usually dependent on the speech enhancement
pre-process and therefore lack generality. Moreover, the es-
timated variance may be far from the Oracle variance and
therefore, high levels of performance may not be obtained.

In this paper, we aim at interconnecting a speech enhance-
ment pre-processor with a speech recognizer by simultane-
ously realizing good performance and generality. To this
end, we propose introducing a dynamic variance compensa-
tion scheme into a static adaptive training framework. We
design a novel parametric model for the dynamic feature
variance. The dynamic component can be derived from the
speech enhancement pre-processor output as the estimated
observed noise. This calculation can be performed for any
pre-processor, thus assuring the generality of the proposed
method. The static adaptation is realized by weighting the
acoustic model variances as it is done with conventional static
variance adaptation. The model parameters are optimized
using an adaptive training approach and therefore may ap-
proach better Oracle feature variance. Moreover, the pro-
posed variance adaptation method could be combined with
conventional mean adaptation techniques such as MLLR to

further reduce the mismatch.

The organization of the paper is as follows. In Section 2,
we introduce some notations and review the principles of dy-
naemic variance compensation. In section 3, we introduce the
parametric model of feature variance and show how the pa-
rameters can be estimated using an adaptive training scheme.
In section 4, we show simulation results we obtained when
using the proposed method in combination with a speech
dereverberation pre-processor. Finally, we conclude the pa-
per and discuss some future research directions.

2. Dynamic variance compensation

2.1 Notations
Recognition is usually achieved by finding a word sequence,

W, that maximizes a likelihood function as:
W = arg max p(X|W)p(W), 0y

where X = [zi1,...,27] is a sequence of speech features and
p(W) is a language model. Speech is modeled using a Hid-
den Markov Model (HMM) with state density modeled by a
Gaussian Mixture (GM):

M M
p(:rt|n) = Z p(m)p(mdn, m) = Z p(m)N(xt;ﬂn,m; En,m)a
m=1 m=]

(2)
where n is the state index, m is the Gaussian mixture com-
ponent index, M is the number of Gaussian mixtures, and
fin,m and Dy m are a mean vector and a covariance matrix re-
spectively. In the following, we consider diagonal covariance
matrices and denote the diagonal elements of X, . by a?.,ml.;,
where ¢ is the feature dimension index. The parameters of
the acoustic model are trained with clean speech data.

In practice, speech features used for recognition &: may dif-
fer from clean speech features used for training, x;, because
of noise, reverberation or distortions induced by speech en-
hancement pre-processing. In this paper, we focus on the
latter case. Let us model the mismatch, b;, between clean

speech feature z: and enhanced speech feature . as:
& =z + by, (3)
where b, is modeled by a Gaussian as:
p(be) = N(by;0,%23,), (4)

and X;, represents the feature variance, or uncertainty,
which may be time-varying.

2.2 Principles

Recently, a new ASR decoding rule has been proposed to
account for the mismatch between the acoustic model and
the speech feature[6]. The likelihood of a speech feature
given a state n, can be obtained by marginalizing the joint

probability over mismatch b; as[6]:
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00 4o
p(x;ln)=/_+ p{xe, be|n)dby = /_ p(zt|be, n)p(ben)dbe

M
= Z p(m)N(i‘z; Hn,m, En,m + zi( )1 (5)
m=1

where they assumed the mismatch to be state independent,
i.e. p(bs|n) = p(be). It is shown in [6] that dynamic variance
compensation is very effective, especially when Oracle fea-
ture variance is used. In practice, such an accurate feature
variance estimation may not be available, and therefore the
performance of dynamic variance compensation is not opti-
mal. Here, in an effort to improve the performance of vari-
ance compensation, we propose a novel parametric model
for the feature variance, and a procedure for estimating the

model parameters using adaptive training.

3. Proposed method for variance adapta-
tion

3.1 Parametric model of variances

In theory, feature variance should be computed as the
squared difference between clean and pre-processed speech
features. However, this calculation may not be possible be-
cause clean speech features are unknown. Here we assume
that the feature variance is proportional to the estimated
observed noise, i.e. the squared difference between observed
noisy and pre-processed speech features. Intuitively, this
means that speech enhancement introduces more distortions
when a great amount of noise is removed. One way to model
feature variance is thus:

(B2.(@)is = bi,j0e(ues — £4,5)° 2 8:,503, 4, (6)

where 6; ; is the Kronecker symbol, u; is the observed noisy
speech feature and «; are model parameters.

Moreover, in order to also account for static mismatch, we
introduce a weight A in the variances of the acoustic mod-

els [2]. The sate variance can thus be written as:
Tnmi(A) = X0 m i M

The parameters a; and A; can be optimized by using adap-
tive training. Note that if a; = 0 the model is equivalent to
that of conventional staiic variance compensation [2] and if
a; is constant and A; = 1 it is equivalent to the model of con-
ventional dynamic variance compensation [6]. The proposed
model enables us to combine both static and dynamic vari-
ance compensation within an adaptive training framework.

It is important to note that the proposed method can be
further combined with mean adaptation techniques such as
MLLR [1)], in order to further reduce the gap between model
and speech features.

3.2 Adaptation of variance model parameters

The model variance parameters, § = (a, A), can be ob-
tained by maximizing the likelihood as:

(8, W) = arg r;gg,xzo(x |W, 8)p(W). (8)

For simplicity, we consider supervised adaptation, where the
word sequence W is known. The maximum likelihood esti-
mation problem can be solved using the Expectation Max-
imization (EM) algorithm. We define an auxiliary function

Q8]0 as:

=% [ o PEBS,CI00)
s C =

log(p(X, B, S,C|¥,8))dXdB
T N M

“ZZ Z/L+B=XP(X,B,n,m|W,0')

t=1 n=1m=1

(log(p(b:|@)) + log(p(zln, m, ))) dXdB,
£Q(ale’, ) + Q(Ae, X) 9)

where B is a mismatch feature sequence, S is a set of all pos-
sible state sequences, C is a set of all mixture components, N
is the number of states, and ¥ represents the acoustic model
parameters. The auxiliary function of Eq.(9) is similar to
that used for stochastic matching[2]. The difference arises
from the model of the mismatch given by Eq.(6) that includes
a dynamic part. 6 should be obtained by maximizing Eq.(9).
We observe that the auxiliary function decomposes into two
functions Q(ala’, )') and Q(A|a’, \'). However, there is no
closed form solution for the joint estimation of (a, A). There-
fore, we consider the three following cases, o = const. (i.e.
static Variance Adaptation (SVA)), A = const. (dynamic
Variance Adaptation (DVA)) and a combination of the two
(static and dynamic Variance Adaptation (SDVA or DSVA)).

3.2.1 Static Variance Adaptation (SVA, a = const.)

Let us here consider the maximization of Q(6}8') with re-
spect to A for a constant . By considering the model of
Eq.(7) and doing similar calculation as in [2], we can show
that a close form solution may be obtained as:

Az i n,m,¥,0’
YLLEN  TM  w(n,m)Auipmte) w0
— 7, T, L , 10
E?:: Ef:l Z:{:l 1(n, m)

where v:(n, m) is the state occupancy probability, which can

i

be obtained using the forward-backward algorithm, and
Alzei,n,m, U, Y=k s — 2inm i E{milze,n,m, ¥,a'}
+E{z}|ze,n,m, ¥, o'},
(11)

¢ 1ap(2, by, I, 8 Yoy
Blwl,nym, ¥, o y= =g Toipl@e by T, O )daedte

p(‘illn1 m, \I’y 9’)

2 2 -

o: .o . Fe .

2 £1,1 n,2m,t ( 2,1 + ﬂ;,m,: )’ (12)
o: .+ 0 : 0% :

£4,i nm,i Tz

n,m,i

(13)
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ffX+B=X x?,ip(xty bh n, mlqu al)dmtdbt

214 M
Biailé,n,m, ¥ a'}= PGl m, 0, 0)

2 2
_ 0%,i%nmi

agl,i + arzz,m,i
(14)
Equations (12) and (14) follow from similar derivations as
those in [8]. Note that if & = 0, the problem is reduced to
conventional static model variance adaptation as proposed
in [2] and sometimes referred to as variance scaling. We can
interpret A; as the average of the ratio between the enhanced
feature variance and the model variance.
3.2.2 Dynamic Variance Adaptation (DVA, A = const)
When A
the maximization problem. By inserting Eqs.(6) and (4) in

const, we can find a close form solution to

Eq.(9) and maximizing with respect to o, we find the fol-
lowing expression:
E;T=1 Z:’:l Z:{=1 (ut'ti:.l;:i)! E{b?lﬁ:g, n,m, ‘P: a’}
T Sy Loy 1e(n,m)

[s4] ’

(15)
where E{b?|2:,n,m, ¥,0’} follows from a similar definition
as Eq.(12) and Eq.(14):

214 n_ f’g,,iﬂi,m,i o 2%
E{b{|g:,n,m, ¥,a }=—""2— + E{b|%:,n,m, ¥, }".

2
9%,.,i T Onmi

(16)

2
O3%y,i

E{be|&e,n,m, ¥,a'}= (& — pmymii). - (17)

”g‘,i + Ui,m,;
Note that a; can be interpreted as the average of the ra-
tio between the mismatch variance, i.e. (£:: — 2::)%, and
estimated noise variance (us,: — 21,:)°.

3.2.3 Static and Dynamic Variance Adaptation (SDVA

or DVSA)

It may not be easy to find a close form solution of the
EM algorithm when the maximization relatively to & and A
is done at the same time. However, we saw that solutions
could be found if we considered the maximization relative to
a and ) separately. As these two maximization problems in-
volve the same likelihood function, the likelihood would also
increase if we perform maximization relatively to each pa-
rameter in turn. This procedure may approach the general
case.

Here we investigate two cases. With the first case, we
start by removing the static bias with stetic variance adap-
tation as described in section 3.2.1 and setting a = 0.
Then, using the previously adapted acoustic model, we per-
form dynamic variance adaptation as shown in section 3. 2. 2.
This is referred to as Static and Dynamic Variance Adap-
tation (SDVA). We also consider the opposite case, where
first dynamic variance adaptation is performed followed by
static variance adaptation (i.e. Dynamic and Static Variance
Adaptation - DSVA).

+ E{z:|3:,n,m, ¥, 0}

4. Experiments

Reverberation is a good example of dynamic mismatch
that is challenging for conventional static model adaptation
techniques. Therefore, here we test the proposed method
with a speech dereverberation for pre-processing recently
proposed in [5].

4.1 Experimental settings

To test the proposed method, we used the SOLON recog-
nizer [9] medified to account for the decoding rule of Eq.(5).
The recognition task consisted of continuous digit utterances.
The acoustic model consisted of speaker independent word
based HMMs with 16 states and 3 Gaussians per state. The
HMMs were trained using clean speech drawn from the TI-
Digit database. The sampling rate was 8 kHz. The acoustic
features consisted of 39 coefficients: 12 MFCCs, 0Oth cep-
strum coeflicient, delta and acceleration. Cepstral mean nor-
malization (CMN) was applied to the features. We generated
reverberant speech by convolving clean speech with a room
impulse response. The impulse response was measured in
a room with a reverberation time of around 0.5 sec., and a
distance between the speaker and the microphones of 1.5 m.
The clean speech utterances were obtained from the TI-Digit
clean test set. The test set consists of 561 utterances spoken
by 104 male and female speakers. The average duration of
the utterances is around 6 sec.

We measure the ASR performance using the Word Er-
ror Rate (WER). Table 1 gives the baseline recognition re-
sults for clean speech, reverberant speech and dereverberated
speech. We observed severe degradation induced by rever-
beration. Only a small error reduction was achieved when
using single channel dereverberation. We also show the result
obtained using variance compensation with variance given by
the estimated observed noise (without adaptation, i.e. a =1,
X = 1) and with ideal variance (Oracle). Variance compen-
sation reduces the error especially with Oracle variance, in
which case the WER is very close to that of clean speech.

Our objective is to approach Oracle performance.

Clean 1.2 %
Reverberant 32.7 %
Dereverberated 31%
Variance Compensation (without adaptation) 15.9 %
Oracle 33%

# 1 Baseline ASR results.

4.2 Results of variance adaptation

‘We use speaker independent adaptation data to adapt
the model to the speech enhanced data without performing
speaker adaptation. The adaptation data consists of 520 ut-
terances spoken by the same female and male speakers as the
test set. To test the influence of the number of adaptation
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—SVA

2 4 8 16 32 64
Nb utterances

128 256 512

B 1 WER as a function of the number of adaptation data for
SVA (thin solid line), DVA (dash line) and SDVA (thick
solid line) and DSVA (dash-dotted)

data, we used subsets of adaptation data containing from 2
to 512 utterances extracted randomly from the 520 adapta-
tion utterances. Figure 1 plots the WER as a function of
the number of adaptation utterances for SVA (a = 0), DVA,
DVSA and SDVA. The results are averaged over 5 randomly
generated adaptation data sets.

We observe that in all cases, convergence is almost
achieved after 2 utterances. A great reduction in the WER
from 31% to 15.2% is achieved using SVA. DVA achieved
similarly good results although they were slightly worse than
SVA. In contrast, when using DSVA and SDVA the perfor-
mance improved by an additional 1% and 2%. These re-
sults show that even though there remains a gap compared
with the clean speech case or Oracle results shown in Ta-
ble 1, the proposed method could significantly improve the
ASR performance by reducing the error by 56% compared
with the recognition of dereverberated speech. This exper-
iment proves the effectiveness of combining static and dy-
namic variance adaptation.

Figure 2 plots the values of A and « obtained after adap-
tation using 16 utterances for SDVA and DSVA. Looking at
Fig-(a), when dynamic adaptation is performed first, we ob-
serve a large peak in a and X for the 13th components which
corresponds to the Oth cepstrum coefficient. It is not surpris-
ing that speech enhancement introduces large uncertainty in
that coefficient which is related to feature energy. Look-
ing at Fig-(b), we observe the same large peak in A but the
peak has disappeared in a. This suggests that the mismatch
in the 13th components cepstrum coefficient is essentially
static. By using only dynamic adaptation, the model may
not be well suited for compensating static component and
consequently, performance are not optimal. By first remov-
ing the static mismatch with SVA, we may then focus only on
optimizing the model for the dynamic part and consequently
better performance is obtained. This illustrates the need to
include both static and dynamic variance compensation, and
suggests that the order in which the optimization is carried

influences the results.

i
4
8 H
3 13 .
2 ' -
= 0 1 2 R
5 08 IO S ]
B AL H
06 N 1 '
. N }
A ' :
oab BIN, d \ :
TR
N e 5 H
A .
o2b 2t g ..

20 30 a0
Feature index

(a) DSVA

Feaiur:olndex i
(b) SDVA
2 ) (solid line) and « {dash line) for DSVA and for SDVA.
4.3 Results of variance adaptation combined with
MLLR for mean adaptation

Here we investigate the use of feature variance adaptation
with mean adaptation using MLLR. Figure 3 plots WER as a
function of the number of utterances when using only MLLR
(mean), SVA + MLLR (mean), DVA + MLLR (mean}), and
SDVA + MLLR. (mean). Note that SVA + MLLR (mean) is
somewhat similar to conventional mean and variance MLLR
[1}. With only MLLR, WER converges to around 17%. By
combining SVA with MLLR WER is reduced to up to 11%.
Using DVA + MLLR can reduce WER further to 8%. Fi-
nally, SDVA + MLLR converges to a WER close to 5% which
corresponds to more than 80 % relative error rate reduc-
tion compared with the recognition of dereverberated speech.
This WER is pretty close to that of clean speech. This ex-
periment prove the effectiveness of combining the proposed
method with mean adaptation.

Note that with MLLR, SVA + MLLR, DVA + MLLR and
DSVA + MLLR, more than 16 utterances may be needed
to converge. When SDVA is used, better performance is
achieved at the cost of more adaptation data (here more
than 128 utterances). When using SDVA + MLLR, we ob-
tain poorer results when too few utterances are used. The
problem may arise from instabilities that occur when per-
forming the EM algorithm in turns.

4.4 Discussion

Since the proposed adaptation scheme adds a dynamic
variance term to the acoustic model variances, the acous-

tic model variances will become time-varying and therefore
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Nb utterances

128 258 §12

3 WER as a function of the number of adaptation data for
MLLR (dotied line), SVA + MLLR (thin solid line), DVA
+ MLLR (dash-dotted line) and SDVA + MLLR (thick
solid line)

we may expect poor convergence property of the EM algo-
rithm. Here we briefly discuss the convergence of the pro-
posed adaptation scheme. Figure 4 plots the distortion (mi-
nus log-likelihood) and the WER as a function of the num-
ber of iterations of the EM algorithm for SVA, DVA, DSVA
and SDVA. The EM algorithm converges after only 2 itera-
tions for SVA. In contrast, the convergence is much slower
with DVA. The poor convergence is due to the difficulty of
handling dynamic component, and from the fact that the
mismatch may not be well modeled with only a dynamic
component, as it was suggested in section 4.2. Such a poor
convergence property would become a problem especially for
online applications. Fortunately, we observe that the conver-
gence is improved when both static and dynamic adaptations
are used jointly. In particular, SDVA and DSVA converge in
terms of WER after only 2 iterations of the EM algorithm
which would be reasonable for online use.

5. Conclusion

‘We investigated the use of variance adaptation to improve
the ASR performance of speech pre-processed with a speech
enhancement method. We proposed a novel method for cal-
culating the feature variance, which involves a parametric
model whose parameters are estimated using adaptive train-
ing. By combining static and dynamic adaptation, we de-
signed a general and high performance way of interconnect-
ing a speech enhancement pre-processor and a speech rec-
ognizer. We tested the method with a blind dereverberation
algorithm for pre-processing. We showed that variance adap-
tation was very effective in reducing the WER, especially
when we combined both static and dynamic adaptation. We
also demonstrated that the proposed method could be com-
bined with conventional mean adaptation methods such as
MLLR. In which case the ASR performance was comparable
to that of clean speech. Future work will include investiga-
tion on the use of the proposed method with other speech
enhancement methods such as spectral subtraction for noise
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[ 4 Distortion and WER as a function of the number of itera-
tions of the EM algorithm for SVA, DVA, SDVA and DSVA.
In this experiment, 4 utterances were used for adaptation.

reduction.
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