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Abstract This paper presents a speaker identification system based on Gaussian Mixture Models (GMM) using
the variational Bayesian method. Maximum Likelihood (ML) and Maximum A Posterior (MAP) are well-known
methods for estimating GMM parameters. However, the overtraining problem occurs with insufficient data due to

a point estimate of model parameters. The Bayesian approach estimates a posterior distribution of model param-

eters and achieves a robust prediction. To solve complicated integral calculations in the Bayesian approach, the

variational Bayesian method has been proposed. This paper investigates the performance of the Bayesian approach

in large speaker identification tasks.
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1. Introduction

In speaker identification systems, users are required to en-
roll by recording their speech as training data. However, it
is desired that the amount of recorded speech be as small as
possible. To develop such a system, it is important to reli-
ably estimate statistical models, i.e., Gaussian mixture mod-
els (GMMs) (1], [2] from limited amounts of training data.

The current successes in speaker recognition are based on
pattern recognition techniques which use statistical learning
theory. The Maximum Likelihood (ML) and Maximum A
Posterior (MAP) methods have become the standard tech-
niques for constructing speaker models in speaker recogni-
tion. However, those methods use a point estimate of model

parameters. Therefore, insufficient training data leads to

the overtraining problem. In order to avoid this problem,
the Bayesian approach [3] has been employed. The Bayesian
approach deals with model parameters as random variables
and marginalizes them for constructing prediction distribu-
tion of observations. Based on this posterior distribution
estimation, the Bayesian approach can generally achieve a
more robust prediction than the ML approach. However,
the Bayesian approach requires complicated integral calcula-
tions to obtain posterior distributions in GMMs.

Recently, the Variational Bayesian (VB) approach [4]
which employs the variational approximation technique [5],
[6] has been proposed and applied to many classifications
using latent variable models. However, the performance of
this approach has not been extensively investigated in large
speaker recognition tasks. In this paper, we propose speaker
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recognition based on the VB approach and investigate its
effectiveness.

In the Bayesian approach, the determination of prior dis-
tribution is an important problem for estimating appropriate
models, because prior distributions affect the estimation of
posterior distributions. In the MAP approach, an Universal
Background Model (UBM) [7] has been widely used. This
model is typically constructed by using training data of all
speakers, and GMM parameters of each speaker are esti-
mated by adapting the UBM trained with sufficient training
data. In this paper, we utilize an UBM as the prior dis-
tribution of Bayesian approach. However, there is an ad-
justive parameter which determines the degree of influence
of UBM in estimating the posterior distribution. To auto-
matically determine this adjustive parameter, we evaluate an
optimization technique based on a Bayesian criterion which
maximizes the marginal likelihood in a speaker identification
experiment.

The rest of this paper is organized as follows. Sec-
tion 2 describes speaker identification based on the ML ap-
proach. Section 3 describes speaker identification based on
the Bayesian approach. In section 4, experimental results on
the ATR Japanese dataset are presented. Finally, conclu-

sions and future works are drawn.

2. Speaker identification based on the
Maximum Likelihood (ML) approach

GMM is a probability model which is represented by the
linear combination of Gaussian basis functions. Let O =
(01,02, ...,0r) be a training data of D dimensional feature
vectors. The likelihood function is defined by the following
equation:

T

PO|A) =T Plor,z | A)

t=1 2z

T [ M
=TI [ W N (0t | pynr S7) 8
t=1 Lm=1
where Z = (21, 22, ..., zr) is a latent variable sequence repre-
senting mixture components, A is a set of model parameters
which consists of the mixture weights w = {w,}M_, and a
Gaussian N(-|g,,, Sm') with the mean vector u,, and the
covariance matrix S;!.

Given training data O, optimal model parameters of the

ML method can be written as follows:
ArL = arg max P(O|A) (2)

The identification system is a straight-forward maximum-
likelihood classifier. For a reference group of K speakers
represented by models {AM),A®, . AU}, the objective

is to find the speaker model which has the maximum pos-
terior probability for the input feature vector sequence X.

The decision rule is
kmax = arg max P(X | A®) (3)

The ML method uses a point estimate of GMM parameters,

thus the overtraining problem can occur.

3. Speaker identification based on the
Bayesian approach

The Bayesian approach is based on posterior distribution
instead of a constant model parameters in the ML approach.
The posterior distribution for a model A is obtained with
the famous Bayes theorem as follows:

P(O|A)P(A)

P(A|0) = =20, @

where P(A) is a prior distribution. Once the posterior dis-
tribution P(A | O) is estimated, the predictive distribution
for X is given as follows:

P(X|0)= / P(X | A)P(A | O)dA (5)

From Eq. (5), prior information can be utilized via the es-
timation of the posterior distribution, which depends on the
prior distribution. Therefore, the Bayesian approach is su-
perior to the ML approach.

However, Eq. (4), (5) are difficult to solve analytically in
general. Therefore, an effective approximation technique is
required.

3.1 Maximum A Posterior (MAP) approximation

In a simple approximation for Bayesian approach, the
MAP method can usually be evaluated. An appropriate
model structure approached by the MAP method can be

written as follows:

Apap = a.rgmg.xP(A | 0)
= arg max P(O|A)P(A). (6)

The MAP method can be seen as a regularization of the
ML method. Therefore, it also uses a point estimate of pa-
rameters. While we can utilize prior information which is
represented by the prior distribution P(A) in MAP method,
the integral calculation is not employed to estimate the pre-
dictive estimation P(X | Amap) as same as the ML method.
Thus, it still has the effect of the overtraining due to a point
estimate.

3.2 Variational approximation

Given a training data O, the Bayes approach aims at op-
timizing the log marginal likelihood £(O) as follows:

L(0) = log P(O)
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=logy / P(0, Z,A)dA
z

Using Jensen’s inequality, a lower bound of log marginal like-
lihood F is defined as follows:

£(0) = logz / Qz,0)E0.Z.A) éo(zz A‘)‘)dA

> Z / Q(Z,A)log Li g()zz A‘)‘) dA

= 7" ®)

where P(A) is a prior distribution. In the VB approach, the
VB posterior distributions Q(A) and Q(Z) are introduced to
approximate the true corresponding posterior distribution.
By setting Q(Z, A) = Q(Z)Q(A) to make integral calcula-
tions possible, F is obtained as follows:

7% / {Q(Z)Q(A) log {P(0, Z | A)P(A)}

—Q(2)Q(A)log {Q(Z)Q(A)}} dA )

The optimal VB posterior distributions over A and Z can be
obtained by maximizing F with respect to Q(A) and Q(Z)
with the variational method. The optimal VB posterior dis-
tributions Q(A), Q(Z) are obtained as follows:

Q(A) = CaP(A) exp {Z Q(2)1og P(0,Z | A)} (10)
¥4

Q(Z)=Czexp { / Q(A)log P(O, Z | A)dA} (11)

where Ca and Cz are the normalization terms. These opti-
mizations can be effectively performed by iterative calcula-
tions as the Expectation Maximization (EM) algorithm [8],
which increase F at each iteration until convergence.

In speaker identification using the VB method, the predic-
tive distribution for the unknown data X is given as follows:

Px|0)=>)" / P(X,Zx | A)P(A | O)dA (12)

where Zx is a latent variable of the unknown data. By the
approximation P(A |O) o Q(A), the lower bound of predic-
tive distribution is obtained as follows:

log P(X | O)oclog ) / P(X,Zx | A)Q(A)dA

Zx
P(X,Zx |A)
TQZx A

P(X,Zx | A)
QZx) A

=logy / Q(Zx)Q(A)log
Zx
2y [a(zxem)g
Zx
-3 [a@xemospix, zx | 4)
Zx

- Q(Zx)105Q(Zx)

Zx

=F(X|0) (13)

Using this lower bound as an approximate predictive distri-

bution, the decision rule becomes as follows:
kmax=a.rgml?xP(k | X,0)
=arg max P(X | k,O)P(k)

=arg max F(x|0®) (14)

3.3 Prior distribution

In this paper, a conjugate prior distribution is utilized as
the prior distribution P(A). The definition of the conjugate
prior distribution is that the posterior belongs to the same
functional family as the prior. In GMM, the conjugate dis-
tributions become Dirichlet distribution for mixture weights
w, and Gauss-Wishart distribution for the mean vector p,,

and the precision matrix Spm.

P(w) = D({wm}m=1 | {®m}m=1) (15)
P(”’my Sm) =N(I"’m | Vm, (gmsm)_l)
XW(Sm | Nm, Bm) (16)

where {¢m, Em, N, Vm, Bm }M_, represents a set of param-
eters of prior distributions and these parameters are called
hyper-parameters in the Bayesian approach.

In this paper, we assume that the prior distribution is set
as P(A) = P(A|O) by using the data O given in advance (we
call this prior data). By using the same approximation tech-
niques as the VB method, the prior distribution is obtained

as follows:
P(A) ~ 51: exp |3 Q(Z)log PO, Z | A)
z
= D({"-”m}x:ll{Tm}fI:{:l)
M

x [I W (em |8m, (TnSm)™)

m=1

XW(Sm | Tm + D, (TnCm))] @a7)

where D is the dimension of a feature vector, Cp is a nor-
malization term and Q(Z) is an approximate distribution of
P(Z|0, A) which can be estimated via EM algorithm using
prior data O. Statistics Trm, &m, Cm denote the amount, the
mean vector, and the covariance matrix of prior data in the
m-th mixture component, respectively.

Typically, a Universal Background Model (UBM) is used
as prior information in MAP approach based speaker recog-
nition. The UBM is trained by using training data of all
speakers. Therefore, even if training data is limited, each
speaker model can be derived from adapting the parameters
of UBM. Using the UBM as prior information in the VB, the
hyper-parameters are given as follows:

=tpn =Twl'BM | . = Tu{UBM 4 D,
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Table 1 Experimental condition

Database ATR Japanese
database c-set
Number of Speaker | 80 (Male/Female 40/40)

216 words, 5 words

Training data

Test data 520 words
Sampling rate 10kHz
Frame size 25.6ms
Frame shift 10ms
‘Window Blackman

Feature vector

12 Mel-Cepstrum Coefficients

Vm =0, B =TCR™ (18)

where T corresponds to the amount of prior data O. By ad-
justing T', we can control the degree of influence of the prior
distribution on the posterior distribution.

4. Experiments

4.1 Experiments Condition

To confirm the effectiveness of the proposed method,
speaker identification experiments were performed. In this
experiment, the three approaches “ML,” “MAP,” and “VB”
were compared. The experimental conditions are summa-
rized in Table 1. Two sets of the training data consist of 216
and 5 words were prepared from ATR Japanese database c-
set. The test set consists of 520 words which are not included
in the training data. In the ML method, the parameters
of UBM are used for the initial value of model parameters.
From the results of preliminary experiments, the value of
the adjustive parameter T is set to 100 in the MAP and VB
methods.

4.2 Experiments Results

4.2.1 Number of mixtures and identification error rate

Figure 1, 2 show identification error rates for the text in-
dependent speaker identification using 216 and 5 words as
training data, respectively. Among the three methods, “VB”
achieved the best results. Especially in Fig.1, when the num-
ber of mixtures is small, “VB” is more effective than “ML”
and “MAP”. In Fig.2, in the case of 64 mixture models, the
identification error rates of “ML” and “MAP” significantly
increased because of the overtraining problem. On the other
hand, the identification error rate of “VB” did not increase
unlike “ ML” and “MAP”. This indicates the VB method
can improve the overtraining problem.

4.2.2 Lower bound of log marginal likelihood F and

identification error rate

In the previous experiment, the adjustive parameter T was
set to 100 for all speaker models. However, it is not an opti-
mal value for each speaker model. Using the VB approach,
it might be possible to obtain a more appropriate posterior
distribution by setting 7. In this paper, we optimized the
parameter 7' so as to maximize the lower bound F for each
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Fig 2 Identification error rate (5 words)

speaker model. To evaluate this approach, we performed
speaker recognition experiments. Figure 3, 4 show the aver-
age of adjustive parameter T obtained by maximizing F and
the sum of lower bound F, respectively. From these figures,
it can be seen that when the number of mixtures increases,
larger adjustive parameters were obtained. This is because
sufficient data is required for each mixture component and
training data is compensated by using larger adjustive pa-
rameters. Figure 5, 6 compare the identification error rates
of the optimization methods (7' = 100 for all speaker models
and varied ’f’) in 216 and 5 words, respectively. In 216 words
case, no notable difference was observed between the fixed
and varied T. However, the identification error rate with
fixed T is lower than that with varied 7" in 5 words. Figure
7, 8 show the lower bound of log marginal likelihood F in
216 and 5 words, respectively. And, Fig. 9, 10 show identi-
fication rate in 216 and 5 words, respectively. In both 216
and 5 words cases, the values of adjustive parameter pf prior
informaiton 7' which give the highest F are different from
that achieve the highest identification rates. This indicates
that the hyper-parameters which maximize the lower bound
of log marginal likelihood F is over adapted to the train-
ing data, therefore the generalization ability for test data
was reduced. Therefore, another criterion which represent
the classification performance directly is requied. Figure 11,
12 focus on the lower bound of log marginal likelihood F
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with smaller value of adjustive parameter of prior informa-
tion (10 £ 7" £ 100) . In 216 words case, the value of T' which
maximizes the lower bound F is around 50 with 32 mixture
models. In 5 words case, the value of T' which maximizes the
lower bound F is around 40 with 32 mixture models. From
these figures, it can be seen that the number of mixtures M
and the adjustive parameter T' should be determined simul-
taneously.

5. Conclusions

This paper has evaluated speaker recognition based on
variational Bayesian method. Experimental results show
that the VB approach improves overtraining problem than
the conventional ML and MAP approach. We also evalu-
ated an optimization technique of an adjustive parameter in
prior distributions based on the Bayesian criterion. How-
ever, the generalization ability was degraded because of over
adaptation to the training data. As a future work, we will in-
vestigate the prior distribution determination techniques and
other criteria which represent the classification performance
directly to construct speaker models.
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