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CAMERA ROTATION INVARIANCE OF IMAGE CHARACTERISTICS
Ken-ichi Kanatani
Department of Computer Science, Gunma University

The image transformation due to camera rotation relative to a stationary
scene is analyzed, and the associated transformation rules of features given by
weighted averaging of the image are derived by considering infinitesimal genera-
tors and projective geometry. The result is applied to shape recognition and
computer vision problems where camera. rotation is involved. Some numerical
results are given.



1. INTRODUCTION

The problem we consider is as follows. Suppose
the camera is rotated by a certain angle around its
focus relative to a stationary scene. As a result, a
different image is seen on the image plane. If the
amount of camera rotation is known, the original
image can be recovered. (Here, we do not consider
the effect of the image boundary. We assume that
the image plane is sufficiently large and that the
object or scene of interest is always included in the
field of view.) Suppose the viewed image is charac-
terized by a finite number of parameters or features.
If the camera is rotated, the image is accordingly
changed so that the features also change their values.
If the set of features is invariant in the sense that
these new values are completely determined by the
original values and the amount of the camera rota-
tion, we can predict the values of the features which
would be obtained if the camera were rotated by a
given amount, or conversely we can compute the
amount of camera rotation which would transform
the values of the features to prescribed values. These
consideration are very important in many problems
of computer vision and pattern recognition when the
camera orientation is controlled by a computer. We
will discuss, as a typical example, the centroid and
principal axes of a given region to see how the formu-
lation presented here works for actual problems.

Some numerical examples are also given.

2. CAMERA ROTATION AND FEATURES

Let f be the focal length of the camera. The
camera image is thought of as the projection onto an
image plane located at distance f from the focus F; a
point P in the scene is projected onto the intersec-
tion of the image plane with the ‘“ray” connecting
point P and the focus F. Let us choose an XYZ-
coordinate system such that the focus F is at the ori-
gin and the Z-axis coincides with the camera optical
axis (Fig. 1). Choose an zy-coordinate system in
such a way that the z- and y-axes are parallel to the
X- and Y-axes with origin (0,0,f). This zy-plane
plays the role of the image plane. A point (X,Y,7) in
the scene is projected onto (z,y) on the image plane,
where

e=fX/Z, y=JY/Z. (2.1)

Consider a camera rotation around its focus F
and the induced transformation of the image. Sup-
pose the camera is rotated by rotation matrix R,
which is an orthogonal matrix; RRT=I, where T
stands for transpose. As a result, the point in the
scene which was seen at (z,¥) now moves to another
point (z’,y'), which is given by
Theorem 1. The image transformation induced by
camera rotation R=(r;) is given by

—
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(2.2)
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Fig. 1 The XYZ-coordinate system is fixed to the cam-
era, the origin O being the camera focus. The image
plane is taken to be Z=f, where f is the camera focal
length. A point (X,Y,Z ) in the scene is projected onto
point (z,y) on the image plane.

Proof. A rotation of the camera by R is equivalent
to rotation of the scene in the opposite sense. If the
scene is rotated by R™{(=RT), point (X,Y,Z) moves
to point (X', Y’,Z’) where ’

X! i1 T21 731 >
Y’ == r Tog T Y
[Z’] 12 32 [Z’]
Tz 723 T33
This point is projected to (2',y") on the image plane,

where 2'=fX'/Z' and y'=fY'/Z'. Combining this
with eqns (2.1), we obtain eqn (2.2).

(2.3)

Suppose the image is characterized by a finite
number of parameters J;, i=12,...,N, which we call
features of the image [1,2]. If the image is
transformed by eqns (2.2) as a result of camera rota-
tion R, these features take different values J !,
i=1,..,N. We say that a set of features J;, i=1,.. N
is dnvariant if the values J, i=1..N, are deter-
mined by the original values J;, i=1,...,N and the
amount of camera rotation R alone. Let iy
i=1,..,N, be an invariant set of features. We say
that the set is reducible if it splits, after an appropri-
ate rearrangement, into two or more sets, each of
which is itself invariant. If no further reduction is
possible, we say that the set of features is irreducible.

If a quantity ¢ does not change its value by
transformation (2.2) under camera rotation R, it is
called a scalar. Obviously, a scalar is itself an invari-
ant and is irreducible. If a pair a, & of numbers is
transformed as z, y of eqns (2.2), we call it a point.
Note that any pair of numbers can be interpreted as
a position ‘“on the image plane”. However, it is
interpreted as indicating a position “in the scene” if
and only if it is transformed as a point. Evidently, a
point is an invariant set of features and is irreduci-
ble.

A line on the image plane is expressed in the
form

Az+By+C=0. (2.49)



Here, the ratio A:B:C alone has a geometrical mean-
ing; A, B, C and cA, ¢B, ¢C for a non-zero scalar ¢
define one and the same line. Hence, we also call the
line (2.4) “line A:B:C”. If transformation (2.2) is
applied, line (2.4) is mapped into :
Al'z'4B'y'+C'=0,
where ratio A":B".C' is given by
Theorem 2. A line A:B:C is transformed by cam-
era rotation R =(r;) into the line ‘
(ruA+ruB+ryC/f)(r1gA +rpB+reC/f)

:(f(f13A +7238 )+r330).

(2.5)

(2.6)

Proof. In view of eqns (2.1), eqn (2.4) is written as
Af(X/Z)+B(fY /Z)+C=0, or

[A B C/f] [)};’] =0.

From eqn (2.3), we find that A, B, C/f are
transformed as a vector, i.e.,

Al A
£ (4]
c'/f. C/[

from which eqn (2.6) is obtained.

If the ratio of three quantities A, B, C is
transformed by eqn (2.6) under camera rotation R,
we call it a line and write it as A:B:C. It is an
invariant set of features and is evidently irreducible.
As in the case of a point, any triplet of numbers can
be interpreted as a line ‘“‘on the image plane”, but it
is interpreted as a line “in the scene” if and only if it
is transformed as a line.

@2.7)

(2.8)

3. 3D VECTORS AND TENSORS

Consider three quantities a, b, ¢ ‘which are
transformed as a 8D vector, i.e.,

a’ a
o' | =RT |5,
¢! c

for camera rotation  R. This is, by definition, an
invariant set of features but is not irreducible
because the “length” Va®+b%4c?is a scalar. We can
easily check the following results:

(3.1)

Lemma 1. If a, b, ¢ are transformed as a 3D vec-
tor, then fa/c, fo/c are transformed as a point.

Lemma 2. If 4, b, ¢ are transformed as a 3D vee-
tor, then a:b:fc is transformed as a line.

Theorem 3. A 3D vector is an invariant feature set.
It can be irreducibly reduced into a point and a
scalar or into a line and a scalar.

Next, consider nine elements A;;, #7=1,23,
which are transformed by camera rotation B as a 3D
tensor, i.e., )

An' Ay Ay Ay Ap Ag
Ag' Agd Agd | =RT | Ay Ay Ay | R (3.2)
Az Ag Agf Az Az Ags

This is, by definition, an invariant set of features.
However, it is not irreducible. First, it can be
decomposed into a symmetric part and an antisym-
metric part (or skew part):

Ay Ay Ags
Ag Ay Ay
A Az Ag
Ay (AptAn)/2 (As+Ay)/2
=1 (An+A4,,)/2 Ag (A 5t+A3)/2
(Aa1+A13)/2 (Aggt+Ag)/2 Az
Y (Asr-An)/2 ~(Ay-Ay)/2
+ | H(A-An)/2 0 (Ag-Ag)/2 |, (3.3)
(A3-A13)/2 ~(Ag-Az)/2 Y

and each part is transformed as a 3D tensor like eqn
(3.2) separately. Moreover, it can be checked easily
that the three independent elements (A j3-A43,)/2,
(A31-A13)/2, (A15Ag)/2 of the antisymmetric part
are transformed as a-3D vector. Hence, the antisym-
metric part is irreducibly reduced into a point and a
scalar or into a line and a scalar.

Suppose A =(A;;) is already a symmetric 3D ten-
sor. Such a tensor can be viewed as three mutually
perpendicular unit vectors e;, e, ez indicating the
principal axes and the corresponding principal values

.0y, 09, 03 in the form k

A=0’16lelT+0'282€2T+0'363€3T. (3.4)

Here, this representation.does not change if ¢, (or e,
or e3) is replaced by —e, (or —e, or —e3). The three
principal values are scalars, each of whicl is an
invariant irreducible feature. On the other hand, if
we determine the orientations of two of them, say e,
and e, the orientation of the remaining one is
uniquely determined. (e; and -e; indicate the same
orientation.) As is shown in Theorem 3, the
orientations of e; and e, are represented by two
points on the image plane. (If we replace e, (or e,)
by -e; (or -ey), the corresponding points are
unchanged as desired.) However, since e; and e, are
perpendicular, one of the two points and the line con-
necting the two points are sufficient; if one point on
the image plane and a line passing through it are
given, the three orientations are determined. Thus,
we obtain

Theorem 4. A 3D tensor is invariantly reduced to
its symmetric part and its antisymmetric part. The
antisymmetric part- is irreducibly reduced into a
point and a scalar or a line and a scalar. The sym-
metric part is irreducibly reduced to three scalars, a
point and 2 line passing through it.

4. INFINITESIMAL GENERATORS

Let F(x,y) represent an observed image. This
may be the intensity of the gray-level or a vector-
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valued function corresponding to R, B and G. Here,
the value of F(z,y) is assumed to be “inherent to the
scene”’ and independent of the viewing orientation.
Chromaticity, for example, has this property. Furth-
ermore, F(z,y) is assumed to be “of finite support”,
i.e., F(zy) is zero at a sufficiently large distance from
the origin of the image plane.

A 3D rotation is specified by the rotation azis
(n1,m9,n3), which is taken to be a unit vector, and the
rotation angle Q (rad) screwwise around it. If the
rotation is infinitesimal, i.e., Q is infinitesimally
small, the rotation matrix takes the form
R=I+6R +0(Q), where [ is the unit matrix, 6R is the
matrix given by

R=1 03 0 -1, (4.1)
2, 0 0

and o(Q2) denotes higher order terms of Q2. (We let
the context indicate whether these terms are scalars,
vectors or tensors.) Here, we put Q,=Qn,, Qy=0n,
and Qy=0nz, and they are interpreted as
infinitesimal rotation angles around the X-, Y- and
Z-axes, respectively.

If the camera rotation is infinitesimal, transfor-

mation  (2.2) = becomes z'=z+ér+0(Q) and
y'=y+6y+o(Q), where
62—/t oy +H(-Qaz+ ),
f (4.2)

Sy= fQ;-Qsx +%(—ng +y)y.

As a result, ‘the image F(z,y) also undergoes an
infinitesimal change and becomes

| F(z—6z,y-8y)=F (2,y }+6F (2,y }+0(Q), (4.3)
and the first variation 6F (z,y) is given by
EF(z,y)-——-ai&c—-g—F—ﬁ
=—(ﬂ1D 1+QZDZ+Q3D3)F(z,y), (4.4)

where the infinitesimal generators are defined by

D=2 2y a 2+ v’

T a_y
_ay 9 4.5
D2_ (f+ f 3::: f ay: ( )
g0 .0
Da—ya zay.

It can be checked easily that these infinitesimal
generators satisfy the commutator relations

[D1,DgJ=Ds, [Dg,D3|=D), |D3,D1}=Dy, (4.8)

where the commutator is defined by [A,B|=AB-BA.
Hence, a set of functions can be found which induces
a representation of the 3D rotation group SO(3) [3,4].

As is well known, a set of functions which
induces an irreducible representation is obtained as
eigenfunctions of the Casimir operator

H=(D%+D2+D?). . (4.7)
The eigenvalue is l(l+1) and the eigenspace is 2/+1
dimensional, where ! is an integer or half-integer

called the weight of the irreducible representation. In
other words, the differential equation

(D24+D 4D A F +i(I+1)F =0, (4.13)

has 2/+1 independent solutions, which become the
basis of the irreducible representation D, of weight . -

5. ADJOINT FEATURE TRANSFORMATION

Consider a feature obtamed by weighted averag-
ing or “filtering’':

J={m(z,y)F (2,y)dzdy. (5.1)

Here, m(z,y) is the filter weight function and integra-
tion is performed over the entire image plane.
(Recall our assumption of finite support of F(z,y).)

If the camera is rotated by R, the image
changes and consequently the value-of feature J
changes into J'. We define the adjoint transforma-
tion operator T} by

J’=f Tgm(z,y)F(z,y)dzdy. ’ (5.2)

Once how this adjoint transformation operator Tj
acts on functions is known, the transformation of
features is immediately computed for any given
image. This is done by just considering infinitesimal
transformations as follows.

If the image is infinitesimally changed as in eqn
(4.3), feature J also undergoes an infinitesimally
small change J — J+6J+0((2). Substitution of eqn
(4.4) and integration by parts yield

8J=[(uD{+Q3D;+QsD3)m(z,y)F (2,y)dzdy,

where Df, D; and Dj are the adjoint infinitesimal
generators defined by

(5.3)

xya

pi=3 el +—

1 f i ) )

. 3z O zy O

Di=22 (j+=- , 5.4

p= f Yo 3y (54)
3 __a

Di=vgrr5y

In eqn (5.3), no boundary terms appear due to our
assumption of finite support for F(zy). It can be
checked easily that these adjoint infinitesimal genera-
tors satisfy the commutator relations

Hence, we can find a set of functions which induces a
representation of the 3D rotation group SO(3). As
before, a basis of the irreducible representation of
weight [ is obtained as 2/+1 eigenfunctions of the
(adjoint) Casimir operator

H*=A(D{*+D;*+D3’), (5.6)

i.e., as 2/+1 independent solutions of the differential
equation

_4__




(D{24D3%+D3)m+1(1+1)m=0. (6.7)

We are not interested in representations of half
integer weights, because they change sign for 27 rota-
tion around an axis and necessarily involve complex
expressions. Skipping the details of calculation, we
show only the final results. First, we find that
1/V(2*+y*+f?® is the basis of a one-dimensional
representation (/=1). Hence,

_ F(z,y)dzdy
! f\/(z’+y’+f”)“

is an invariant (i.e., it is transformed as a scalar).

(5.8)

Similarly, computing the basis of a three-
dimensional representation (/=2), we also see that

J =! 2F (z,y)dzdy Jz'—'f yF (z,y)dzdy
1 (z2+y2+f2)2 ’ (z2+y2+f’)2 ’

—r [ F(zy)dzdy

J3 ff (:52+y2+f2)2 (5.9)

are transformed as a 3D vector. Hence, they are

irred'ucib]y reduced to a scalar 1/ (J,)’+(Jz)!+(.13)! and
a ppmt JI1/ T3y 175/ T3 (or a line Jy:Jy:f75).

Computing the basis of five-dimensional
representation (/==3), we also find that

2
Jy=[ ZEE)dsdy ;¢ ayF(ay)dedy

Ve
Joy= M Joo=— QQF(x,y!dzdg
ey g+ P
J31=ff—MM J32=ff_¥ﬂﬂm

— zF (z,y )dzdy _
Ji3 ff\/(,_2_‘_y2+_f2)5’ Jz_jf

yF(z,y)dzd
F(z,y)dzdy
are transformed as a 3D (symmetric) tensor. Hence,

they are irreducibly reduced to three scalars, a point
and a line passing through it.

Ja=/* (5.10)

8. INVARIANT SHAPE CHARACTERIZA-
TION

As an application of the results in the previous
sections, let us consider the characterization of a
shape on the image plane. Consider a region S on
the image plane. Its characteristic function

1 (z,y)eS
F(z,y)={0 otherwise

is taken as the image function F(z,y).

(6.1)

The simplest characteristic of the region S may
be its area

5= [ dzdy(=[F(z,y)dzdy). (8.2)

However, this area is not invariant with respect to
camera rotation. The area of eqn (6.2) changes if the

camera is rotated. Hence, eqn (6.2) cannot be con-
sidered a characteristic inherent to the sceme. In
short, egn (6.2) is not a scalar. On the other hand, if
eqn (6.2) is replaced by
dzdy
C=f} ———, .
R v ©3)
this is a scalar as was shown in the previous section.
If S is a small region located around the image ori-
gin, i.e., z~0 and y==0 in §, then C is approximately
equal to its area. We call C the invariant area of
region S. It is interpreted as the area the region
would have if the region were moved to the center of
the image plane by changing the camera orientation.

Another simple but important characteristic is
the center of gravity of the region S:

7= [ adudy/ [ dxdy, =] ydady/ | dzdy.

Again these quantities do not have invariant mean-
ings. Namely, if region § is moved to another region
by camera rotation and (2,7 is its center of gravity,
then (7,7) is not necessarily mapped onto (z',7") by
the same camera rotation. In short, the set of
features Z, ¥ s not a point. On the other hand, we

know from the previous section that

(6.4)

_ zdzd; _ dzd
al_fjs (32+y2+f2)2, ay ffs (z2+y2+j2)27
_ dzd
aa—fzfs (z2+y2+f2)2 ] (6.5)

are transformed as a 3D vector. Hence, fa;/a3, fag/a;
are transformed as a point. If the region S is a small
region located around the image origin and z=~0,
y~0 in S, then (fa,/a3fas/a;) is approximately the
center of gravity of the region. We call
(fay/agz,fas/az) the invariant center of gravity of
region S. It is interpreted as the point which would
be mapped into the center of gravity if the region
were moved to the center of the image plane by
changing the camera orientation.

Another useful characteristic is the moment ten-
sor (My), 4j=1,2, defined by

Myy= [ (z-F)dzdy, Mp=[ (y-7) dady.

M12=fg(”"7)(y-7)d1’dy =M21, (6.6)

Its principal values indicate the amount of elongation
of the region S along the corresponding principal
axes. However, as described above, this tensor does
not have invariant meanings. Namely, the principal
values of (My) are not scalars, and its principal azes
are not lines.

On the other hand, we know, from the previous
section, that By, 4j=1,2,3, defined by

2dzd zydzd
By=[ —=228Y __ B=—[ YW ___
By— zydzd Bu— f 2dzdy

Y ey e e
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Bo— zdzdy . By ydzdy :
R oo, S o
_ zdzd; _ ydzdy
R vy, Rl
B[, =2 _ (6.7)

are transformed as a 3D (symmetric) tensor. Since
this tensor is positive definite as long as region S is
not empty, it has three positive principal values oy,
0y, 03. Let o3 be the maximum principal value. Let
e, ey ez be the corresponding unit eigenvectors
(determined up to sign). Let (gy,95) be the point
representing vector ez. Let !; be the line passing
through point (g,,9,) and the point representing vec-
tor e; (or the line representing vector e,). Similarly,
let I, be the line passing through point (g,9,) and the
point representing vector e, (or the line representing
vector e;).. By our method of construction, scalars
oy, 0y point (g;,95) and lines /;, I, are all invariant
quantities. It can be checked that point (g4,9,) is the
center of inertia, /; and [, are the principal axes, and
oy, 0, are the corresponding principal values if S is a
sufficiently small region around the origin. Hence,
scalars o, and o, are the principal values the region
would have if it were moved to the center of the
image plane by camera rotation. Similarly, point
(91,92) and lines !, and !, would be mapped into the
center of inertia and principal axes by the same cam-
era rotation. We call point (g,,9,) the tnvariant
center of inertia, lines I, I, the invariant principal
azes, and oy, oy the corresponding invariant principal
values.

7. CAMERA ROTATION RECONSTRUCTION

In the preceding section, we defined a scalar C
by eqn (6.3), a 3D vector a=(a;) by eqns (6.5) and a
3D tensor B=(B;) by eqns (6.7). We decomposed
them into scalars, points and lines. Now, we try to
exhaust all invariants, i.e., expressions that do not
change values under camera rotation.

Evidently, the scalars we have already found are
invariants: C, |pf| or equivalently a”a, and the three
principal values oy, o, and o3 or equivalently any
three independent algebraic expressions formed from
them such as o,+05+03, 0,°+05>+05° and o, +0,° 403,
which are equal to TrB, TrB? and TrB3, respectively.

There are other invariants describing the rela-
tionship between 3D vector a and 3D tensor B. A
3D vector is geometrically thought of as a directed
axis to which its length is attached and a 3D sym-
metric tensor as  three mutually perpendicular
(undirected) axes to which their respective principal
values are attached. From this picture, it is easily
understood that the remaining invariants are those
specifying the orientation of the vector relative to the
three mutually perpendicular axes and that two
invariants exist. We can use, say, a7 Be and aT B%a

{5-9]. Of course, the choice is not umique as stated
above, and other choices are also possible However,
there exist only seven invariants that are algebrai-
cally independent. o

We say that two regions S and S’ on the image
plane are equivalent if one region can be transformed
into the other by camera rotation. If the two regions
are equivalent, the above invariants must have ident-
ical values. If they have different values, the two
regions cannot be equivalent. If the two regions are
known to be equivalent, the amount of camera rota-
tion which would take one region into the other can
be reconstructed as follows.

Suppose we observe a and B for region S and a'
and B' for region S'. Assume that B (hence B’ as
well) has three distinct eigenvalues and a5£0. Let e,
ey, e3 be the associated eigenvectors of B. Since the
eigenvectors are determined up to sign and magni-

tude, choose one set such that e, e,, €3 are mutually
perpendicular unit vectors forming a right-hand sys-
tem in that order. Construct a matrix B, having e,,
eq, €3 as its columns in that order. Let ey, ), e3’ be
the corresponding  unit eigenvectors of B’ forming a
right-hand system. Since the signs of the eigenvec-
tors are arbitrary, there are eight possibilities. For
each case, construct the corresponding matrix R,.
Then, the rotation matrix which transforms B’ to B
is given by

R=R,R,T. (7.1)

(Matrix B is first transformed by R,;(=R,”) into a
diagonal matrix, which in turn is transformed to B’
by R,.) Finally, choose one among those eight possi-
ble R’s that transforms a to a’.

If B (hence B' as well) has only two distinct
eigenvalues (a single root and a pair of multiple
roots), let e; be the eigenvector associated with the
single root. Suppose a is neither parallel nor perpen-
dicular to e;. Since the sign of e, is arbitrary, choose
it so that & and e; make an acute angle. Then, we
can construct three mutually orthogonal vectors
forming a right-hand system e;, e,—e;Xajf;Xd|}
es=¢e;Xey. We can form R, and R, as described
above, and the desired rotation is given by eqn (7.1).
If a is perpendicular to e,, there exist two solutions.
If a is parallel to e,, or if B (hence B’ as well) has
one eigenvalue (i.e., B(=B') is a multiple of I), R is
any rotation that maps a onto a’ and we can add
any rotation around a’. The case where a=a'=0 is
treated similarly. In sum, '
Theorem 5. C, a”ae, TrB, TrB% TrB® aTBa,
aTB%a exhaust all the invariants constructed from
C, a and B. If two regions are equivalent, the
amount of camera rotation which takes one region
into the other can be reconstructed from a and B.

8. APPLICATIONS AND EXAMPLES
Consider the problem of shape recognition. Sup-
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pose we have a reference image obtained from a cer-
tain camera orientation. If a test image is obtained
from a different camera orientation, the two images
cannot be compared directly due to projective distor-
tion. However, the invariants provide an easy test
for their equivalence; if the invariants of Theorem 5
have different values, the two regions cannot be
equivalent and the test shape is rejected. ‘

If C, a and B alone are sufficient to characterize
the set of test shapes in question completely, the
equivalence is already determined at this stage. Oth-
erwise, we can move the test shape into the position
of the reference shape in such a way that both have
the same @& and B. Then, the rest of the shape

characteristics are compared to test for the
equivalence. The necessary camera rotation is
reconstructed as mentioned .above, and the

corresponding image transformation is performed
either by actually moving the camera or by numeri-
cally computing the camera rotation transformation
by eqn (7.1)

We say that a region on the image plane is in
the standard position, if the invariant center of iner-
tia (g;,92) coincides with the origin of the image
plane and the invariant principal axes coincide with
the z- and y-axes. Any region on the image plane
can be moved into the standard position by camera
rotation R such that (i) B is diagonalized in the form

o, 0 0
0 o 01},
0 0 o3

RTBR= (8.1)

where o3 is the largest principal value, and (ii) if

T “
p— !
RYa= az'

a3

then ay/>0.

Evidently, shape recognition becomes easier if
the test shapes are always moved into the standard
position (either by actually rotating the camera or by
computation). However, this technique is not res-
tricted to shape recognition. If a camera is tracking
a moving object while the camera position is fixed, or
if a camera attached to a robot or an autonomous
vehicle is aiming at a fixed object in the stationary
scene, the technique described above can be used so
that the object in question is always seen in the stan-
dard position.

On the other hand, testing the equivalence is
also viewed as detecting aclive motion. When an
object image moves on the image plane, we call the
motion passive if that motion is induced by camera
rotation alone and active otherwise. When the cam-
era orientation is changed, object images move on
the image plane, but those objects may also have
moved in the scene independently of the camera.
According to the procedure described above, we can
detect active motion even if the angle and orientation

of camera rotation are not knmown. If the
corresponding two object images are not equivalent,
the object must have moved actively. If they are
equivalent, the object has not moved in the scene,
although motion is observed on the image plane.

Another possible application is camera orienta-
tion registration. Even if the camera is rotated by an
unknown angle around an unknown axis, the camera
orientation can be determined as long as one particu-
lar region corresponding to a stationary object is
identified on the image plane before and after the
camera rotation. An important fact is, as was men-
tioned above, that knowledge of point-to-point
correspondence is not required. Thus, the principle
we have described has a wide range of applications to
many problems.

Example Consider the three regions Sy, Sy, S, on
the image plane (Fig. 2(a)). We use a scaling such
that the focal length f is unity. Computing the
integrations of eqns (6.5) and (6.7), we find their
invariant centers of gravity (Fig. 2(b)) and principal
axes (Fig. 2(c)) as follows:

So 5y Sy
(-0.08,-0.20) (0.46,0.08) (~0.47,0.35)
y=-2.812-043 y=1.672-0.70 y=-0.082z+0.31
y=0.382-0.17 y=—-0.482+0.30 y=-16.522-7.42

The invariants of (8.12) become as follows:
So Sy Sy
C  0.1440 0.1440 0.1121
aTa 0.0202 00202 0.0123
Tr(B) 0.1440 0.1440 0.1121
Tr(B? 0.0197 0.0197 0.0121
Tr(B®) 0.0028 0.0028 0.0013
aTBa 0.0028 0.0028 0.0014
aTB% 0.0004 0.0004 0.0001

From this result, we can conclude that regions S, and
S, can be equivalent but region S, is not equivalent
to either. (Here, the data are exact up to rounding.
If the data are affected by a large amount of error, a
statistical method such as hypothesis testing becomes
necessary.) If three regions S, $,, S, are known to
be images of the same object, we can conclude that
an active motion took place between S, (or S;) and
S5 while no such motion took place between S, and
S;. By the procedure described in Section 3.8, the
camera rotation which maps region S; onto region 5,
is reconstructed to be

0.573 0.567 0.591

-0.761 0.631 0.136
-0.296 —0.530 0.795

R—=

This is the rotation around the axis of orientation
(~0.384,0.512,-0.768) by angle 60° screwwise.

.
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Fig. 2 (a) Three regions S, S;, S, to be tested for
equivalence. (b) Computed invariant centers of gravity
Gy, Gy, G4 of regions Sg, Sq, S5 (c) Computed invariant

principal axes of regions Sy, Sy, Ss.
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