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Abstract
This paper presents a method for tracking human body motion based on a

stick figure model . The fitting of the model to image data is realized by seeking
the minimal energy stick figure in a potential field around the contour of the
moving person. This potential field bridges the gap between the high level model
and low level data. We use a dynamic programming algorithm to search for the
optimal stick figure guided by an adaptive predictor which provides a rough
estimate for each frame in the image sequence.

This method can provide parameters to meet the needs in high level tasks
such as recognition of human motion patterns, thus it has obvious advantages
over conventional bottom-up approaches. Experiment results for real world data '

show the robustness of the method.



1. Introduction

Analysis and understanding of human motion
by computer has been a challenging issue for
decades ([2] to [12]). Computer-based analysis
of human motion has found its applications in
sports, training of the disabled, and many other
fields. Human motion understanding also has
very special significance in the area of motion
pattern recognition, and is expected to provide
more friendly human-machine interface.

The first step of understanding human motion
is to track human body motion in dynamic
image sequences. This paper addresses this
issue. The very primitive method is to track the
human body motion manually, but it is very
cumbersome since we usually have to track the
motion in a long image sequence. Furthermore,
the motion pattern understanding would have
less meaning if it was based on manual tracking.
A more applicable method is to fix visible
marks, such as LEDs, on joint points and
tracking these marks by the template matching .
This method can be wused in prepared
experiments, but as for real world images, we
cannot readily fix this sort of marks. Thus, it is
obvious that an automatic method, with less
restriction to subjects and with less interaction
with operators, is desired. This kind of attempts
can be found in [21, [4], [7], (8], [9], [10].

In general, human motion tracking includes
two parts. One is the modeling of human body
and the other is the finding of the corres-
pondence between model and real data.
Considering the human body as an articulated
connection of rigid parts, it gives the idea to
model human bodies with stick figures. Many
researchers have used this model in their work
(51, [8], [11], [12].

In this paper, we present a novel method for
tracking human body motion based on a stick
figure model. The stick figure model can
efficiently represent the human body structure
because the human body is a locally deformable
object having strong constraints between its
parts. It can be regarded as a connection of
several rigid parts articulated at joint points.
The mathematical description of a stick figure is
very compact, requiring only a small number of

parameters. The gaps between real data and high
level models like the stick figure model are
bridged by the concept of the potential field A
potential field is generated based on the
silhouette of moving figure. After a potential
field is built, the correspondence can be
established by searching the potential field for
the stick figure with the minimal energy. In the
search process, we use the dynamic
programming algorithm to reduce computation,
and apply an adaptive predictor to guide the
search in the consecutive image sequence. The
experiments for real image sequences show that
our method works well. The flowchart of our
method is illustrated in Fig. 1.
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Fig. 1 Flowchart of Our Approach

2. Stick Figure Model

In our work, the scene of a person walking or
running on a treadmill placed on the horizontal
plane is videotaped with the camera axis parallel
to the horizontal plane and vertical to the
person's moving direction. By using a treadmill,



we can get long image sequences without
moving our camera. Under this condition, we
can model the human body structure by a 2D
stick figure model shown in Fig. 2.
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Fig. 2 2D Stick Figure Model
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The x axis of the coordinate system is on the
horizontal plane and parallel to the person's
moving. The y axis is vertical to the horizontal
plane. The stick figure model can be described
by a vector:

S=[x,vy,d, ht’ ha, hl’ hn’ oG, 0, e 0(9]
where its components are:
(x, y): position of the center of head
d: equal to 1 for forward moving
equal to -1 for backward moving
h,: length of the trunk stick

h,: length of the arm sticks
Here we assume that the forearms and the upper

arms have the same length.
h: length of the leg sticks

Also we assume that the thighs and the shanks
have the same length.
h : length of the neck stick

o angle between stick 0 and y axis

01, ..., 0g: angles between adjacent sticks

Our goal now can be expressed as finding the
optimal figure vector for each image frame in
the image sequence. We leave the description to
the following sections.

3. Potential Field

It is not difficult to extract the silhouette and
skeleton of a human figure from the real scene
image, as shown in Fig. 3 (a). In our experiment,
we assume that the scene contains only a single
person and the static background image is
memorized in advance. Subtracting the
background image from each frame, and
binarizing it with an appropriate threshold, we
can get the binary silhouette of the person in
motion. The skeleton of the silhouette is
obtained by a classical method given in [1]. The
skeleton is represented by the white lines within
the silhouette in Fig. 3 (a).

(@) (®)
Fig.3 (a) Silhouette and skeleton of the figure
(b) Stick figure fitting to the skeleton

The correspondence between the stick figure
model and the silhouette can be established by
fitting the stick figure, such as that shown in
Fig. 3(b), to the skeleton. To formulate the
fitting, we define notations first.

K = {k }, k: a point on the skeleton

T={t]}, t:apoint on the stick model
where T can be computed from stick figure
model vector S.

d(x,y): Euclidean distance between

two points in the image plane.

we now define the energy function to evaluate
the fitting of T to K in the sense of the least
mean square as: '

E(,T) = ¥ min d*k,t)

teT keK

(3.1



To minimize the total energy, we have to make
use of some kind of search algorithm. Forevery
search, we have to compute the energy defined
in (3.1). The computation is immense because
the search space for finding the optimal solution
is very large. To reduce this computation, we
rewrite (3.1) to:

EK,T) = T P() (3.2)
teT
where
P(x) = min d*(k,x) 3.3)

keK

and x is an arbitrary point in the image. This
P(x) can be generated before the search
procedure and can be used in every search for
the same frame. In other words, we only need to
compute P(x) once for each frame and the
computation can be implemented in parallel.
We call P(x) defined in (3.3) the potential field.
In terms of the potential field, the original
correspondence problem can be redescribed as
finding a stick figure which has minimal energy
in the potential field.

However, only the skeleton information is
used if we compute the potential field using
(3.3). There would be no problem if the skeleton
points were really on the axes of the parts of the
human body. Unfortunately, the skeleton points
obtained from the silhouette are not always on
the axes because the human body in motion
occludes itself very frequently. When the self-
occlusion occurs, the skeleton obtained from the
silhouette deviates from the body axes, and two
or more axes may merge to one skeleton line.
Moreover, the skeleton may not be connected
or unneeded skeleton points may exist due to the
image noise or shadows despite we take several
measures to obtain more reliable skeletons.

To overcome the problems mentioned above,
we improve the definition of potential field (3.3)
to the form of (3.4):

P)= 11111? {1-exp(-d2(k,x)/202)} (3.4)

where

Ok = {nearest distance from k to contour}/3
and x is an arbitrary point in image plane. Fig.4
shows the comparison of the square type

function in (3.3) and the Gaussian type function
in (3.4).
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Fig.4. Comparison of the square type function
and the Gaussian type function

We see from Fig. 4 that the potential value of
each skeleton point is normalized to a range of
[0,1) in the Gaussian type function, and the
contribution of each skeleton point to the whole
potential field is limited to a local scope that can

be controlled by o). Here we let 6y be equal to

the third of the minimal distance, obtained in the
stage of computing skeletons, from skeleton
point k to the contour of the silhouette. The
valleys of the potential field defined by (3.4) are
very similar in shape with the original
silhouette. In definition (3.4), not only skeleton
information but also the information about the
silhouette width is contained. This gives us the
following merits:

(1) The search becomes insensitive to the
deviation of the skeleton from the axes of body
parts because the potential field there usually
appears like a wide valley. The deviation can be
remedied by searching global minimal energy
for the whole stick figure.

(2) Continuous potential valley may be obtained
even in the place where the skeleton is not
connected.

(3) The influence of noise skeleton points are
limited to small local scopes because these

points often have very small o} values.

We now consider the problem of finding the
optimal stick figure which minimizes the total



energy in the potential field. We find that the
dynamic programming algorithm fits our goal.
Details are given in the next section.

4. Dynamic Programming Algorithm
The dynamic programming algorithm proposed to
solve the minimal path problem has been found
to be a powerful tool to the problems in the field
of pattern recognition and computer vision. We
can change our problem to a minimal path
problem if we regard the joint points and terminal
points in our stick figure model as the nodes, and
let the energy of each stick in the potential field
be the arc length. Here we have one start node
(head node) and four end nodes (two wrist nodes,
two ankle nodes). We arrange our path structure
as that shown in Fig. 5.
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Fig. 5. Path Structure for Dynamic Programming

The five terminal nodes are node 0, node 4,
node 5, node 9 and node 10, as shown in Fig. 5.
They are nodes that has only one arc connected
to the other nodes. We select the head node, that
is, node O as start node, and the other terminal
nodes as end nodes just for our convenience. The
other choices will give the same solution.

Now we formulize the dynamic programming
algorithm applied to our problem. Let A(n) be
the search area for node n, and e(Pi’Pj) be the
energy of a stick from point P to point P, where
Pi is an arbitrary point in A(i) and P. is an

J
arbitrary point in A(j). We denote the minimal

energy ata point P; of A(i) to end nodes node s
..., node ty oas E(Piltl,...,tN), thus the minimal
total energy of the optimal stick figure can be
expressed as E(P0:4,5,9,10), which can be
determined by the following steps:

Step O:

E(P;ii) = 0, for each P;in A(i); iis 4,5,9,10.
Step 1:

Step 1.1: .
E(Psl10) = r}l;"n {C(Pg,Plo) + E(Plollo)}
10

E(Pel10) = nl;in {e(Pg,Ps) + E(P5!10) }
8
E(P719) = nI;in {e®7,Pg) + E(P9l9)}
9
E(Pgl9) = n};in {ePs,P7) + E(P719) }
7

E(P¢l9,10) = E(Pgl9) + E(P¢l10)
E(P19,10) = n}w)in {e(P1,Pe) + E(P419,10)}
6

Step 1.2:
E(P3l5) = mm {e(P3,Ps) + E(Psl5) }

E(Py5) = n};m {e(P1,P3) + E(P315))
3

Step 1.3:
E(P2I4) = mm {e(P2,Ps) + E(P414) }

EPq4) = nl;m {e(Pl,Pz) + E(P2I4)}
2

Steg 2:
(P114,5,9,10) = E(P119,10)+E(P;14)+E(P;!5)
E(Pgl4,5,9,10) =
rgin {e(Po,P1)+E(P114,5,9,10) }
1

Above procedure yields the minimal energy for
an arbitrary point Py in the start node area.

Backtracking the point which gives minimal
energy in every step, we can obtain the optimal
path that minimizes the total energy. It is very
simple to transform this node expression to the
vector expression S we defined in Section 2. This
is the optimal stick figure model vector we wish
to find.

To add the constraints embedded in the stick
figure model to the search procedure, we check if
there is any conflictions with the model for each

stick between two points P; and Pj when



computing c(Pi,PJ-). The check is to make sure if

both the stick length and the stick angle with
respect to its adjacent stick are within the
plausible ranges. If the stick passes the check,
e(Pi,Pj) equals to the sum of the potential values

of every point on the stick; otherwise, we assign
it to a very large value. This protects us from
choosing unreasonable stick positions in the
programming procedure.

The start node (the head node) position PO is

determined by the template matching technique.
Because the head is seldom occluded by the other
parts, the template matching can give a reliable
start node position.

We need an initial search area A(i) for each
node i to implement the algorithm. These areas
(including sizes and positions) are given by an
interactive manner for the first frame in the image
sequence. However, from the second frame, we
can use the stick figure vectors readily obtained
to predict the stick figure vector for the next
frame. Changing the estimated vector to the node
positions, we can seek the optimal stick figure for
the next frame from these predicted positions
using the same algorithm. In the following
Section, we discuss the prediction method.

5. Adaptive Predictor Algorithm

There are many methods, for instance, Kalman
filter method, to predict future values using the
present values and the past values of a stochastic
process. Most of these methods, the second-order
moments of all processes are required. However,
we have no knowledge of prior statics of our
processes, and we do not like to be involved with
the complex estimation problem. Thus, we only
choose a very simple adaptive ARMA filter as
our predictor.

In the stick figure vector S, only stick angle
parameters are predicted, because the stick length
parameters change very less and the head point is
tracked by the template matching. Further, we
assume these angles are independent of each

other. Let ofn] be an arbitrary angle component
in time sequence S[n], the problem under
consideration is phrased as to predict a[n+1] in
terms of the sum

~ N-
oz[n+1]=§‘,1 ag[n]a[n-k] ;.1
k=0

where coefficients ak[n] are time-dependent and

they are so chosen as to reduce somehow the
instantaneous eIror R

g[n+1] = a[n+1] - a[n+1] (5.2)
To determine ay[n], we evaluate ay[n] recursively

according to the Widrow algorithm [13]

ax[n] = a[n-1] + pefnjafn-k]  (5.3)

In the above, M is a positive constant and €[n] and
aln] are quantized versions of €] and o[n]
respectively. The adaptation constant | is

dictated by two conflicting requirements: If p is
small, the adaptation is slow and might not follow
rapid changes; if p is large, then the error might
increase.

In our experiments, we use the present value
and only one past value to predict the next value,
thatis, N in (5.1) equals to 2. The initial values of
ak[n] are set to

apl01=2 and a;{0] =-1

The prediction have two main merits. The first
is that the computation is decreased because we
can search less areas around the predicated
positions. The second, and more important, is it
permits us to overcome the self-occlusion
problem. During the period when the two legs
overlap each other, it is difficult to recognize the
left leg from the right one without the history
information. The predicted positions follow the
changes based on the history information. A real
example is given in the next section.

6. Experiments and Results

In our experiments, the image sequences are
recorded at video speed, that is, 30 frames / sec.
We preserve only the odd line data to remove the
motion blur due to interlace scanning. The image
size is 256*240.

Fig.6 to Fig.8 show an example. Fig.6 is the
background image, The first column of Fig.7 are
images of a walking man, arbitrarily selected
from a 30 frame long image sequence. The
second column of Fig.7 are the silhouette images
obtained by subtracting the background. To



remove the isolated points outside the silhouette
and fill the holes within it, we erode the images
once, then dilate them twice and then erode them
one more time. The third column of Fig.7 are
improved silhouette images. The skeletons are
calculated by Montanari algorithm and non-
significant skeleton points are suppressed by
assigning the threshold K to a value about 0.5.
Obtained skeletons are shown in the fourth
column of Fig.7. Their potential fields calculated
by (3.4) are shown in the fifth column of Fig.7.

The first image of Fig. 8 shows the stick figure
fitted manually to the potential field, the others
are tracked automatically. It can be seen that our
method tracks the two legs successfully even
during the period when two legs overlap each
other. However, the tracking of arms is omitted at
present because they are occluded by the truck
silhouette most of the time.

7. Conclusions and discussions

In this paper, we presented a new method for
tracking human motion based on a stick figure
model. The key idea we proposed is the using of
a potential field to bridge over the gap between
the model and real data. Our final objective is to
recognize the human motion patterns. Experi-
mental results have shown that the method can
work stably under different conditions, and is
able to provide us with model parameters to
achieve the final goal. Our future work will focus
on the human motion recognition problems.
Meanwhile, we will continue to improve the
present method, in such areas as the rough
estimation of the stick figure position for the first
frame and the extension of the method to 3D
models.
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Fig. 6. Background
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Fig. 7. Original images and intermediate results (see text
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Fig. 8. Stick figures fitted to the potential fields




