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In computer vision, one of the ultimate purposes is the acquisition of geometric concepts of a 3-
dimensional world from measured data. As an expression intermediate between measured data and
geometric concepts, we need a representation of objects in computers because in a computer we can
only manipulate finite-precision numbers. Objects represented in computers often have isolated points,
needles and thin walls because of the finite resolution. Such isolated points, needles and thin walls are
treated as irregular parts in the classical boundary detection. However, these irregular parts possess
local geometric properties of objects. Thus, we extract irregular parts of objects by using properties
of a complex which we defined in the previous paper.



1 Introduction

In computer vision, one of the ultimate purposes is
the acquisition of geometric concepts of a 3-dimensional
world from measured data. As an expression interme-
diate between measured raw data and geometric con-
cepts, we need a representation of objects in comput-
ers. Computers express and calculate data using finite-
precision arithmetic. Thus, we need a method to ex-
press geometric objects in a computer memory using
only finite-precision data. Data expressed using finite-
precision arithmetic are equivalent to data expressed
using only integers. This leads to the conclusion that
geometric data should be expressed mathematically as
lattice points in a 3-dimensional space. We call such ge-
ometric data obtained from an object in a 3-dimensional
world a discrete object because a space of lattice points
is a discrete space.

This paper is the third of a series on discrete geometry.
In the first paper[l], we presented the representation of a
discrete object and its boundary. In the second paper|[2],
we proposed an algorithm for the unique extraction of
boundaries of discrete objects from a given subset of a
discrete space. This algorithm automatically excludes
the irregular parts, such as isolated points, needles and
thin walls. In contrast, in this paper, we extract such
irregular parts by using properties of a complex because
irregular parts of a discrete object determine local geo-
metric and topological properties.

There are many methods of representing discrete ob-
jects [3, 4, 5, 6, 7, 8]. They focus only on the elimination
of irregular points. However, in this paper, we develop
a method to extract these irregular points. Irregular
points will classify the local geometric and topological
properties of objects because the irregularity of points
depends on the resolution of a system used to obtain
discrete data. Thus, if we change the resolution of the
system, some irregular points will change their proper-
ties. The extraction of n-dimensional irregular parts of
an object is a direct application of discrete combinatorial
geometry which we proposed in the previous papers.

In this paper, we use topological properties of a com-
plex. We define a discrete complex in section 2. In sec-
tion 3, we show that we can always construct a discrete
complex from a given subset of a discrete space. We also

" propose an algorithm for the construction of a discrete
complex from a set of lattice points. In section 4, we give
proofs of theorems and lemmas whose results we show in
section 3. In section 5, we extract n-dimensional parts
from a discrete complex.

2 Discrete Complex

We define a discrete space as Z3 where Z is the set of
all integers. Z3 is a subset of 3-dimensional Euclidean
space R3. In Z3, we define neighborhoods as follows.

Definition 1 (neighborhood) Let z = (4,5,k) be a
point in Z3. Two kinds of neighborhoods of « are defined
by

Ne(z) ={(pa,m) | (i-p?+ (G - g+ (k-r)* <1,
p,¢,7 € Z} (1)

and

Nao(z) ={(pq,7) | G-p)*+ (G- q)’ + (k—1)* <3,
pg,r€Z}. (2)

They are called 6-neighborhood and 26-neighborhood, re-
spectively.

In this section, we define a discrete complex in Z3,
which is called a d-complex[1]. According to discrete
combinatorial geometry, d-complexes are constructed
from d-simplexes[l]. d-simplexes are defined for two
kinds of neighborhoods, and their dimensions are from
zero to three. If the dimension of a d-simplex is r, we
call such a d-simplex an r-d-simplex. We illustrate r-d-
simplexes such that r = 0,...,3 for each neighborhood
in figure 1. In order to comstruct a d-complex from d-
simplexes, we need to embed d-simplexes in R3, and
we use the notation |a| as an embedded d-simplex cor-
responding to a d-simplex [a] [1]. Moreover, we also
need a function face([a}), which defines the set of all
d-simplexes included in a d-simplex [a] [1]. The exact
definitions of a d-simplex, an embedded d-simplex and
a function face are given in reference 1. Next, we define
a d-complex as follows.

Definition 2 (d-complex[1]) A finite set K whose el-
ements are d-simplezes in Z3 is called a d-complez, if
the following conditions are satisfied.

1. If[a) € K, face([a]) € K,

2. Iflay],[a2) € K and |a)| N ]ay] # 0, [a1] = [eg] ,
where [a] and |a| indicate a d-simplez and its embedded
d-stmplez, respectively. The dimension of K is equiva-
lent to the mazimum dimension of all d-simplezes which

belong to K.

Next, we introduce two properties of d-complexes.



Definition 8 (pure d-complex[1]) An r-dimensional
d-complez K is pure if every s-d-simplez [a] (s < 7) in
K satisfies the formula

la] € face([t]), ®)

where [b] is one of the r-d-simplezes in K.

Definition 4 (connected d-complex[1])
A d-complez K is connected if two arbitrary elements
[a] and [b] define a path

fai] = [a], [a2], ..., [an] = (8], (4)
where
fa:j e K (5)
dnd
{a}nlaiy] #0. (6)

We define the body of a d-complex as follows.

Definition 5 (body) If K is a d-complez, the body of
K is defined as

= [G]LEJK[GL (7

The body of a d-complex is a finite subset of Z3. While
a d-complex is a set of d-simplexes and has topological
structures, the body of a d-complex is a set of points
which are included in a d-complex and has no structure.

3 Triangulation of a Point Set

We assume that a finite subset of Z3 is given, and we
call such a given subset a point set. In this section, we
show that we can always construct a d-complex from
any point set. The construction of a d-complex from a
point set is equivalent to the determination of the set
of all d-simplexes which are embedded in a point set.
From the viewpoint of classical combinatorial geometry
in R3, the construction of a complex from a set of points
is called triangulation of the set. Therefore, we also call
our construction of a d-complex from a point set triangu-
lation of a point set. Thus, in this section, we give the
theorem of the existence of triangulation of any point
set. We simply show the results of theorems and lem-
mas in this section and give their proofs in the following
section. Furthermore, we propose an algorithm for the
construction of a d-complex from a point set.
First, we partition Z3 as v ‘

z3= u D(m)?

reZ3

(8)

where

D(z) = {(i+€l:j+£21k+63) l z = (’i,j,k),f; =0or 1}

(9)
Each D(z) has eight points. Denoting a point set by
V and denoting a function which obtains the number of
elements of a set A by E(A), the relation

0< E(VND(z)) <8 (10)

holds. For each D(x), there are from zero to eight points
which belong to V. Eight pointsin D(x) are categorized
in two classes. One class consists of points which belong
to V, and we call such points black points. The other
class consists of points which do not belong to V, and we
call such points white points. If a D(z) has zero black
points and eight white points, the arrangement of points
is unique. If a D(z) has one black point and seven white
points, arrangement patterns are eight because a black
point can be located on each point in D(z) and D(z)
has eight points. However, if we consider rotations with
respect to a central point of D(z), we can regard all
patterns of the arrangement as the same. If a D(x) has
two black points and six white points, there are three
possible arrangement patterns of points considering all
rotations with respect to a central point of D(z). In the
same way, we can count all patterns of the arrangement
of n black points and (8 — n) white points for 0 < n < 8.
Figure 2 shows all patterns of the arrangement of points
in D(z). There are twenty-three patterns in total.

Second, we consider triangulation of D(z)N'V. Since
the size of every d-simplex which we defined in the pre-
vious section is smaller than a region D(z), we obtain
the next lemma.

Lemma 1 Triangulation of D(x)NV is always possible.

If we use 6-neighborhood, we can derive the following
lemma referring to figure 3.

Lemma 2 If we use 6-neighborhood, the triangulation
pattern of D(z) NV is unique.

In contrast with the case of 6-neighborhood, if we use
26-neighborhood, we can determine a finite number of
patterns of the triangulation, not only one but some-
times more than one, corresponding to an arrangement
pattern of black and white points. Figure 4 illustrates
such a correspondence between triangulation patterns
and arrangement patterns of D(z) N V.

Let the set of all n-dimensional d-simplexes which are
embedded in D(x) NV be S.(x). Then, we obtain the
set of all d-simplexes of D{(z) NV as

C(z) = So(z) U Si(z) U Sz(x) U Sa(=z). (11)



If we obtain m patterns of the triangulation of D(2)NV,
we set

Ci(=) = Si(=) U Si(=) U Si(=) U Si(=)  (12)
where 1 = 1,2,...,m. Here, since Sé(m) is equivalent to
D(z) NV, the relation

() = Si(=)

is established where 7 # j.

Third, we consider the combination of triangulation
of D(z)N'V with respect to all z in Z3. In other words,
if D(y) is a region adjacent to D(z), and a pattern of
the triangulation of D(x) N V is given, we must find a
pattern of the triangulation of D(y) NV so that there
is no contradiction between this pattern of the triangu-
lation of D(y) NV and the pattern of the triangulation
of D(z)NV.

If y is different from z, we can categorize the relations
of @ and y into four types as follows.

(13)

E(D(=)Nn D(y)) =0,1,2 or 4, (14)
since E(D(z)N D(y)) is never 3. If E(D(x)N D(y)) = 0,
D(=x) and D(y) have no common point and they are not
adjacent. If E(D(z) N D(y)) = 1, D(=) and D(y) have
a common point and they are adjacent with respect to
this single point. If E(D(z)N D(y)) = 2, D(z) and
D(y) have two common points and they are adjacent
with respect to these two points. These two points are
adjacent to each other. If E(D(z)ND(y)) = 4, D(z) and
D(y) have four common points and they are adjacent
with respect to these four points. These four points are
adjacent to each other, are located on the same plane
and form a square.

If D(z) and D(y) are adjacent, we can consider the
triangulation of D(z) N D(y)N V. The triangulation of
D(z) N D(y) NV is denoted by C(z,y). Then, if we
consider 6-neigborhood, the next lemma is derived.

Lemma 3 Assume that we use 6-neighborhood. Let a
region adjacent to D(z) be D(y) such that E(D(zx) N
D(y)) # 0, and the triangulation of D(z) N V and
D(y)N'V be C(z) and C(y), respectively. There is no
contradiction between C(z) and C(y).

. If we use 26-neighborhood, the lemma is more com-
plicated.

Lemma 4 Assume that we use 26-neighborhood. Let a
region adjacent to D(z) be D(y) such that E(D(z) N
D(y)) # 0. If the numbers of the triangulation patterns
of D(z)N'V and D(y)N'V are m(z) and m(y), respec-
tively, we can set the triangulation patterns of D(z)nV

and D(y)NV 1o be Ci(z) (i = 1,2,...,m(x)) and C¥(y)
(G =1,2,...,m(y)), respectively. Then, we can choose
C'(x) and C7(y) without contradiction between C'(w)
and C¥(y).

Then, we can derive the next theorem from previous
lemmas.

Theorem 1 Triangulation of a point set is always pos-
sible.

This theorem implies that the number of the triangu-
lation patterns of a point set is finite because a point set
is of finite size, while the number of the triangulation
patterns in R3 is infinite[9]. In particular, if we use 6-
neighborhood, the pattern of the triangulation of a point
set is unique. Then, an algorithm for the construction
of a d-complex from a point set is given as follows.

algorithm 1

1. Partition Z3 as
Z® = U _D(z).
zez’
2. Consider m(x) patterns of the triangulation of D(z)N
V and put C{®)(x) where i(z) = 1,2,...,m(z).
3. Choose C*®)(z) and combine Ci(T)(x) with respect
to each & in Z3. Then, we obtain a d-complex

C= U_C'®)(a).
zeZ3

The principle of algorithm 1 is that we embed as many
d-simplexes as possible in a point set. Then, the follow-
ing theorem is established.

Theorem 2 The body of a d-complez which is con-
structed from a point set V, denoted by B, satisfies

B=V. (15)

4 Proofs of Theorems

4.1 Proof of Lemma 1

The principle of the triangulation of D(z)NV is that we
embed as many d-simplexes as possible in D(z)NV. Ver-
tices of all d-simplexes must be black points, not white
points. If we use 6-neighborhood, we can determine a
pattern of the triangulation for each pattern of the ar-
rangement of black and white points. Figure 3 shows
the pattern of the triangulation corresponding to each
pattern of the arrangement of black and white points.



If we use 26-neighborhood, we can determine a pattern
of the triangulation for each pattern of the arrangement
of black and white points. However, for some patterns
of the arrangement of points, there are two or four pat-
terns of the triangulation. Figure 4 shows patterns of
the triangulation of D(z) N V. Therefore, with respect
to each pattern of the arrangement of points in D(z),
there is always at least one pattern of the triangulation.
Thaus, the triangulation of D(x) NV is always possible.

4.2 Proof of Lemma 2

If we use 6-neighborhood, we can determine a unique
pattern of the triangulation corresponding to a pattern
of the arrangement of points in D(x). Figure 3 illus-
trates the one-to-one correspondence between a pattern
of the triangulation and a pattern of the arrangement.

4.3 Proof of Lemma 3

According to lemma 2, C{x) and C(y) are uniquely de-
termined. We can also uniquely determine C(z,y), the
triangulation of D(=) N D(y) NV, depending on the
combinatorial patterns of black points in D(z) N D(y).
Figure 5 shows the one-to-one correspondence between
C(z,y) and an arrangement pattern of black points
D(z)ND(y) for E(D(z)ND(y)) = 1,2,4. Then, C(z,y)
satisfies the following two formulas.

C(=,y) C C(=) (16)

and
C(=,v) C C(y). (17

Therefore, there is no contradiction between C(z) and
C(y)-

4.4 Proof of Lemma 4

If E(D(z) N D(y)N V) # 4, we can uniquely determine
C(z,y). Figure 5 shows the one-to-one correspondence
between C(=,y) and a pattern of the arrangement of
black points in D(z)nND(y) for E(D(z)ND(y)) =1,2,4.
Therefore, we can choose any C*(z) and any C7(y) such
that there is no contradiction between G*(z) and C(y).

Now, assume that E(D(z)n D(y)NV) = 4. K
E(D(z)nV) =8and E(D(y)NV) =8, C(x) and C(y)
are uniquely determined from figure 4, and there is no
contradiction between C(z) and C(y). If E(D(z)NV) =
7 and C(y) is given, we can choose G*(z) without con-
tradiction between C*(z) and C(y). Because figure 4
shows all patterns of triangulation of D(x) N V, we can
choose a suitable one among all four patterns. Similar
reasoning holds in the case of E(D(z)N V) = 6,5 and

4. Therefore, we can choose C*(z) and CI(y) without
cotradiction between C'(x) and C7(y).

4.5 Proof of Theorem 1

If we use 6-neighborhood, we obtain C(x) with respect
to each = according to lemma 2. Furthermore, accord-
ing to lemma 3 we can combine C (&) and obtain a d-
complex

(18)

C= U _C(=).

zeZ3
If we use 26-neighborhood, we obtain Ci(z) ( i =
1,2,...,m(z) ) with respect to each = according to
lemma 1. Furthermore, according to lemma 4 we can
choose C*(Z)(z) and obtain a d-complex

= u_ Cc*®)(z)

19
ooy (19)

where 7 = 1,2,...,L

4.6 Proof of Theorem 2

If we use 6-neighborhood, we can uniquely obtain C(=)
with respect to each = in Z3. If B(z) is the body of
C(z), it is clear that

B(z) = D(z)Nn V. (20)
Therefore,
B = U_B(z)
zcZ3
= U DE=)NV
zez3
= V. (21)

If we use 26-neighborhood, we can obtain CH®)(z)
(i(=) = 1,2,...,m(z)) with respect to each = in z3. 1
BHZ)(z) is the body of C{®)(x), it is clear that

B{®)(z)= D(z)n V. (22)

Then, we can regard BY®)(z) as B(z). It is clear that

B(z) = D(z)nV. (23)

Therefore
B=V. (24)
5 Extraction of n-Dimensional

Parts

By algorithm 1, we can obtain a d-complex C from a
point set V. Assume that the dimension of C is three.



Since C is a set of d-simplexes, we divide C into sets of
n-d-simplexes as

C=58,US;USUS;3 (25)

where S, is the set of all n-d-simplexes in C. If C is not
pure, C has some parts with dimension less than three.
If P, denotes n-dimensional parts of C, we divide C in
another way as

C=PUP,UPUP;. (26)

P, is a set of isolated points. P is a set of 1-d-simplexes
and their faces which form needlelike regions. P; is a set
of 2-d-simplexes and their faces which form thin wall-like
regions. P; is a set of 3-d-simplexes and their faces which
form objectlike regions. The exact formulas generating
P, are as follows:

Py= S50 U face(la)) (21)
Py= 53U ([.,]Lé's; face([a})) (28)
where
Sy= 52\ U, Sace(al, 29
P =S1U (Mgs{ face([a])) (30)
where
St = $i\ . face(a) (o)
and
Py =S5\ [u]Lésx Sface([a]). (32)

The following theorem is derived.

Theorem 3 P,, the set of n-dimensional parts of a d-
complez, is pure.

(proof) P, is clearly an n-dimensional d-complex be-
cause the maximum dimension of all d-simplexes in P,
is'n. Furthermore, every d-simplex whose dimension is
less than n in P, is included in at least one n-d-simplex
in P,. Therefore, P, is pure. (Q.E.D)

Thus, the extraction of n-dimensional parts from
a d-complex is equivalent to the extraction of an n-
dimensional pure d-complex from a d-complex.

If we consider 6-neighborhood, we obtain a unique d-
complex C. Thus, P, is also unique, corresponding to a
point set. If we consider 26-neighborhood, we choose a
d-complex C among a finite number of C7. Therefore,
if we choose C7 as a d-complex, an n-dimensional pure
d-complex in C7 is denoted by PJ. FJ is sometimes
different from P¥ where j # k. However, we obtain the
next theorem.

Theorem 4 Assume that we use 26-neighborhood and
we obtain two different d-complezes from a point set. If
the two d-complezes are C’ and C*, we obtain PJ and
P, respectively. Bi and B, the bodies of PI and P,

respectively, satisfy the formula

Bl = B:.

(33)

(proof) We can obtain S7 through the formula
§i= u_ S§iT)g 34
LU, S8%) (34)

where S',’;(x)(z) is the set of all n-d-simplexes in
CH®)(z). If a # b, S3(x) is not equal to St(z). How-
ever, figure 4 shows that

Bi(z) = By(z) (35)

where B3(z) and Bi(z) are the bodies of S2(z) and
Sf,_(a:), respectively. Let the body of S,J.(;)(z) be

B,"(z)(z), then, since

Bi= U Bi¥a) (36)
and :
By = ols BX®)(a), (37)
Bi = Bk, (38)
‘ (Q.ED)

Furthermore, if we use connectivity of a d-complex,
we can separate P, into n-dimensional connected pure
d-complexes.

6 Conclusions

In this paper, we showed that we can always construct
a discrete complex from a given subset of a discrete
space. From the viewpoint of classical combinatorial
topology, the construction of a discrete complex means
the existence of triangulation of a given subset. The
number of the triangulation patterns of a subset is fi-
nite in a discrete space. If we use 6-neighborhood, the
pattern of the triangulation is unique and we uniquely
construct a discrete complex. Furthermore, we also pro-
posed an algorithm for the construction of a discrete
complex. Finally, using these discrete complexes, we ex-
tracted n-dimensional parts where n = 0,1, 2,3, respec-
tively. We also showed that a set of points included in
n-dimensional parts is uniquely determined from a given
subset. n-dimensional parts of an object are generally
regarded as irregular parts. These irregular parts are



caused by the finite resolution of measured data. There-
fore, if there are parts whose dimension is less than three,
we set higher resolution locally in these parts. Then,
we can change all n-dimensional irregular parts to 3-
dimensional parts by using multiresolution. Moreover,
we can regard n-dimensional parts of an object as the
local geometric and topological properties of an object.
Therefore, we can investigate the geometric and topolog-
ical structure of measured data using discrete complexes.
For example, if we attempt to find some parts whose
shapes are needlelike, we should extract 1-dimensional
parts from an object.
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ment of black points is not one-to-one. The patterns
of the triangulation in a hatched area correspond to a
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