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Abstract In this paper, we propose a randomized algorithm to estimate the motion pa-
rameters of a planar shape without knowing a priori the point-to-point correspondences. By
randomly searching points on two shapes measured at different times, we determine the cen-
troids, after which the algorithm proceeds to determine the rotation by randomly searching
points on each shape that form congruent polygons.

Key words: rigid motion, randomized algorithm, point correspondences, planar shape, list
matching, congruence

* To whom all correspondence should be addressed.



1. Introduction

The approach of this work is to use features that are
invariant under Euclidean motion to detect the motion
parameters of a planar shape without knowing a priori
the point correspondences. To do this, we take two
planar shapes acquired at different times by a camera
moving in a static environment and then, using random
search (Kalvidinen, Oja, and Xu, (1992)) and shooting
circles (Agarwal and Sharir, (1993)), we compute the
rotation.

The present algorithm randomly searches points on
each shape to estimate the centroid of each shape. Af-
ter the centroids are estimated, the rotation is com-
puted using random selection of points in each image
frame subject to the constraint that the angles between
vectors constructed by three noncollinear points in the
shapes are invariant. After possible point correspon-
dences are identified, the algorithm proceeds to solve
the rigid motion equation and voting for each angle in
the parameter space. This process continues until a
limit of iteration cycles or a peak is detected in the pa-
rameter space.

The aim of this paper is to develop a2 non-model-
based algorithm to estimate the motion parameters in
the two-dimensional Euclidean space, which deals with
the problem of point correspondences, and takes ad-
vantage of the linear constraint and the higher speed of
the computation provided by the randomized approach.
The algorithm uses image boundary points that provide
sufficient conditions to estimate the motion parameters.
2. Rigid Object Motion
The term rigid body means an assembly of particles
with fixed interparticle distances. Thus, in kinematics
of solid objects, the motion of an object is rigid if and
only if the distance between any two points of the body
is invariant with time. Rigid motion (Guggenheimer,
(1977), Kanatani, (1993)) can be described as the sum
of rotation and translation about an axis that is fixed in
direction for short periods of time. Let R? be the two-
dimensional Euclidean plane, and denoting by z and y
the orthogonal coordinates on R?, we express a vector
on R? as

z = (z,y)7. (1)

We call a finite closed set V on R? a planar shape.
The rigid motion for a point # on a planar shape V is
defined by

z'= Re+a 2)
where a € R? is the translation vector, R is the rotation
matrix such that

RTR=1, |R|=1 (3)

and the two-dimensional rotation matrix is defined as
cosf  sinf

R_(—sine cosn9>' (4)

We define V’, which is the result of applying the rigid
transformation to V as
Vi={z'le'=Rex+a, zcV} (5)
We compute the motion parameters from two shapes
V and V' measured at times ¢; and 5, respectively, and
if we know three pairs of points which correspond we can
solve eq.(2) and determine the motion parameters from
measured images. Since the rigid motion constraint is
a linear equation, we can apply the randomized Hough
transform (Kilvidinen, Oja and Xu, (1992)). To de-
velop an algorithm which estimates motion parameters
without knowing a prior: point correspondences, first,
we need to examine some properties of rigid motion on
a plane.

Proposition 1 Setting g and g’ to be the centroids of
V and V', respectively, the relation
g=g+a

(6)
holds.

Here, we set g=(z,§)T and g'=(&', 7).

Proposition 2 For any triplet of vectorsx, y and z €
V' we note that
|e — y| and (z — z)T(y — z) are invariant under Eu-
clidean motion.

Theorem 1 Let V' be a planar shape; that is, V is a

finite closed set on R?. Denoting by 8V the boundary

of V, for a point g € V, we define a set
K(r)=8Vn{e|lz—gl=r,

r>0}. (7)

Let |K(r) | be the number of elements of K(r), then
|K(r) | is invariant under Euclidean motion.

(Proof.) For K(r) C V, and &, y and z € V and =,
Yy and z' € V', setting

g=g+a,
we obtain

K'(r)=0v'n{z'|[a'~g|=r, r>0}. (8)

This leads to the conclusion that |K'(r)] = |K(r)|.
(Q.E.D)

Theorem 1 implies that in a continuous space, we
can solve the point correspondences problem by us-
ing |[K(r)| and |K'(r)], since in most cases |K(r)| and
| K'(r)| are finite. Thus, we select a pair of sets of poly-
gon points from the intersection of the boundaries of
the planar shapes and circles of which centers are the
centroids g and g’, respectively, with radius .



3. Randomized Algorithm

For image computation we require a digital image.
Hence, we proceed to detect the shape boundary by
using binary dilation (Serra, (1982)). Knowledge of the
boundary of the shape is sufficient to compute the mo-
tion parameters, so that we can apply the algorithm.
3.1 Estimation of Centroid

A region V can be decomposed into nonoverlapping
parts, that is,

V=VinV, ViCV, V,CV,
itV NintVy =0,

(9)

where tntV is the interior of the region. Denoting by g,
g1, and g, the centroids of V', V4, and V,, respectively,
we obtain the relation

_ Ve |

9= "0+ 592

ihalg (10)

where | V| is the area measure of the set V. Thus, the
centroid of a digital image can be written as

n n T
97 = (%Z% %Z%) )

=0 =0

(11)

where (z;,9:)7 is the centroid expressed in pixels. For
our randomized approach we rewrite these equations as

n 1
Gn41 = n_—l-lg" + m-‘b,

n

g,n+1 = n_+lg," + %{EI, (12)
forz € V and @' € V', where gq = 0, and g’y = 0.

Using a randomized approach we compute the cen-
troid using eq.(12) that will converge after a limit of
iteration cycles to the true value of the centroid of the
shape. Furthermore, by proposition 1 it is clear that
the translation of the shape is the translation of the
centroid. The algorithm proceeds to randomly select
points in # € dV and @’ € JV', where dV and 8V’
are the sets of boundary points, and compute the cen-
troid until eq.(12) converges because the centroid of the
boundary shape gives a good approximation of the cen-
troid of the planar shape as shown in section 4.
3.2 Rotation Estimation :
After the algorithm computes the centroids it then pro-
ceeds to estimate the rotation angle. To do this we
first define areas for search based on the centroids, and
randomly select a search radius that is uniformly dis-
tributed in rg < 7 < 7. Then we define the sets of
points X = {#;}7.; and X'={a/}" , where

z, € K(r)ndV, =le K'(r)nov’,

respectively. We determine a pair of congruent polygons
of which vertices are on the circles centered at the shape

centroids with radius r as is shown in figure 1. Using
the property that X and X' are polygons with vertices
lying on the circles, we develop an algorithm to estimate
the rotation angle.

Figure 1: Boundaries and polygons

Let a pair of sets be X = {&;}2, and X = {z/}%,,
where
z,==z—g, zi=z,—g. (13)
Then X and X are the polygon vertices on the circles
with radius r. If #; and 2], correspond, we have the
relation
z'ipk = RE;,

i=12,...n, (14)

by setting

= = 1 — 1, L
Titn = Liy T ign = T4, T = 1:2)“ 5T

(15)

Thus, assuming eq.(14), we develop an algorithm using
the angles between vertices by setting

8; = cos™! _ﬂ_’
l2:flliZisall

¢i = cos™t —z“,?a?'lﬂ (16)
' l=": Ml il

We define a pair of lists of angles
LX) = (61,02,---,02), LX) = ($1,62,- -, ¢n) -
(17)
If eq.(14) holds, for 1 < § < n we obtain the relation 8%
= ¢;+x- Thus, we define a criterion

DG)= 3. 10— bl (18)
k=1

Then a set of pairs {(&, #';+4)}y.; which minimize
D(j) is a candidate for correspondences. However,
eq.(18) is a sufficient condition for eq.(14). If eq.(14)
holds, in continuous space we have the relation 6 =



¢j4k for all 7 and k. Henceforth, we introduce a sec-
ond criterion to determine the correspondences between
elements of X and X'. By setting

=T 1
1_Ti Ttk

Yk(2) = cos™ |]5!i||H=;’g+k,|I’ k=12,..n (19)
and
Ry = (n(8),72(i), - m(2))
R, = (77:(1:)771(7:): "-:7n—1(i))
Ry = (e1(3),€2(2), ..., 6n(3)), (20)
where £4(2) = Yx(2) - Yr42(?) and
E() = i ex(1)?, (21)
k=1
if E(4) < ¢, for a small positive value ¢, we adopt
10 = 23w (2)

k=1

as an estimation of the rotation angle.
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Figure 2: Matching and voting

From figure 2 we see that if the algorithm finds a pair
of polygons which have matching &; and z'; and which
minimize D(7), then we can obtain v4(%). Furthermore,
if {yk(4)};=, minimizes eq.(21), we compute (i) using
eq.(22). Hence, we vote for each (i) incrementing by
1 in the accumulator space. This process is repeated
until a peak is detected in the accumulator space or a
limit of iteration cycles is reached, then we obtain the
rotation angle.

4. Experiments

The algorithm was tested using a binary image rotated
around the centroid and then translated. The image
size is 512 x 512 pixels.

4.1 Results

The centroid was detected with good accuracy; the error
in the majority of cases is + 1 pixel. For the computa-
tion it was necessary in this case to perform sufficient
iterations such that the law of large numbers ensures
good results as shown in table 1. The first column was
estimated using eq.(11) and the second column using
eq.(12). The translation is easily computed from this
table (see table 2).

Table 1: Centroid results

Figure Centroid | Estimation
x y x y
Figure 5 | 350 135 | 350 134
Figure 6 | 355 141 | 355 141
Figure 7 | 238 262 | 238 263
Figure 8 | 241 265 | 240 265

Table 2: Translation using the centroid

Figure Real | Estimation
X y|x y

Figure 5/6 | 6 7|5 7

Figure 7/8 |3 3|2 2

To compute the rotation, we generate circles C with
radius r of which center is g and circles ¢/ with the same
radius r of which center is g'. The common points of
8V and C and 8V’ and (' determine a pair of congru-
ent convex polygons. We generate these circles from an
appropiate interval r, < r < ry.

The interval for searching radius r affects the compu-
tation time, and the number of circles affects the results
of the estimated rotation angle. Thus, we must select
a good estimation of the interval for searching radius
r and we need a sufficient number of points for each
polygon. Table 3 shows the intervals, threshold, and
the number of iterations for shapes 1 and 2.

Table 4 shows two estimations for the rotation angle
of which error is + 1.0 degree. The performance of the
algorithm is shown in table 5 and it depends on the
number of polygon vertices and the shape.

Table 3: Thresholds

Shape | 7o | 7; | Threshold | Iterations
Shape 1 | 99 | 144 15 1500
Shape 2 | 92 | 137 15 2500




Table 4: Rotation Angle

Figure Rotation | Est. 1 | Est. 2
Figure 5/6 | '15.0° 14.85° { 13.63°
Figure 7/8 23.0° 23.22° | 23.97°

Table 5: Time consumption

Figure Time (s.)
Figure 5/6 | 20.8
Figure 7/8 | 45.0

4.2 Error Analysis

The majority of the error is due to the image digitaliza-
tion although roundoff error also contributes. Thus, we
analyse the error caused by digitalization. The digital-
ization affects location of the centroids, translation and
boundary detection.

Iflocation of the centroids and translation are correct
but there is inaccuracy in the boundary detection, then
as shown in figure 3, a pair of corresponding points (x,
z') changes to (z*, '*). By assuming |z - *| = §, |
- z'*| = §, and that the radii of the circles are r, we
obtain

)
tan |’ — w| = ot (23)
This leads to
A(d:é@, Aw = W' —w|. (24)
ror

Figure 3: Digitalization error

Additionally, if the boundaries are correct but there
are inaccuracies in the estimation of the location of the
centroids and translation, we obtain the point configu-
ration shown in figure 4. Let r and ' = r + € be the
radius of the circles whose centers are g and g*, and ¢ <
0. Then we have 7' = r. The difference of the rotation

angles which are estimated using g and g* is {6’ — 0}.
As in the case of Aw we obtain
_ 6180

L Ae=10 -4
T T

I (25)
Setting the total error of the estimation of the rotation
angle to be E, E is approximately expressed as

E ~ A6 + Aw = 2max(Af, Aw), (26)
since Af and Aw are approximately independent. Set-
ting § = 1 pixel and the average of r to be 100 pixels,
we obtain E = 2°. This corresponds to the error of our
experimental results.

Figure 4: Rotation error

By increasing the resolution of the digitalization, r
increases and § decreases for any figure. This indicates
that we can improve the accuracy of the estimation of
the rotation angle if we obtain a higher resolution of the
digital images.

5. Conclusions

We showed that we can estimate the motion parameters
using a randomized approach, without knowing a priort
the point correspondences. The remaining problems are
the accuracy that depends on the image digitalization
and the performance of the algorithm which can be im-
proved using a parallel algorithm.

The proposed algorithm is categorized into window
RHT (Kélvidinen, Hirvonen, Xu, and Oja, (1995)),
since we can consider circles shooting for polygon search
as a window procedure for sample points.
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Figure 5: Test shape 1

Figure 6: Rotated and translated shape 1

Figure 7: Test shape 2

Figure 8: Rotated and translated shape 2



