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Abstract

Geometric hashing is a technique for the recognition of partially occluded objects
from noisy data using a voting process. We use this voting method to detect the motion
parameters in three-dimensional Euclidean space. We present two formal approaches for
motion detection, one model-based and the other non-model-based. The first approach
solves the motion equation directly. The second approach involves two steps as in classical
geometric hashing. The first step is a preprocessing stage for the generation of the object
model and the second step is the voting process to solve the motion equation.
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1. Introduction

Computational geometry focuses on the analy-
sis of complexities of algorithms which solve ge-
ometric problems such as construction of convex
hulls, generation of Voronoi diagrams and congru-
ence checking. Congruence checking provides fun-
damental techniques for pattern recognition of pla-
nar and spatial point sets. In congruence checking,
inputs are basically pairs of point sets in Euclidean
space and outputs are binary Boolean values. On the
other hand, in motion detection we estimate the mo-
tion parameters, rotation and tramnslation, in three-
dimensional Euclidean space using a series of images
of the same object. However, during object track-
ing, some parts of each object may be occluded, due
to for instance, the configuration of the cameras and
objects in the space. This means that we obtain a
partial point set from each image frame. Thus, the
classical technique of congruence checking developed
in computational geometry is not sufficient for motion
estimation. Here we present an extension of classical
congruence checking and two probabilistic algorithms
for motion detection.

The paper is organized as follows. In section 2, we
give a brief review of geometric hashing. In section
3, we describe the formal model developed for motion
detection under a Euclidean transformation (rotation
and translation). Section 4 describes the probabilis-
tic algorithms, section 5 shows some results obtained
using synthetic data, and finally conclusions are pre-
sented in section 6.

2. Geometric Hashing

Geometric hashing is a model-based approach for
object recognition which is based on the idea of stor-
ing transformation-invariant information of an ob-
ject in a hash table (Grimson and Hunttenlocher[1],
Wolfson[2]). Geometric hashing involves two stages.
The first is a preprocessing stage in which a model
representation is constructed by computing and stor-
ing transformation-invariant information of the ob-
ject in a hash table. The second stage is recognition
in which the same invariants are computed for the
objects in a scene and used as indexing keys to re-
trieve information from the hash table. If there are a
sufficient number of matching entries and invariants
of an object the algorithm concludes that the object
is similar to the model stored in the table.

Lamdan and Wolfson[3] described the recognition
of 2-D and 3-D models under similarity transforma-
tion (invariant under rotation, translation and scale),
by defining an orthogonal coordinate frame based on
an ordered pair of points from the set of image points
and representing all other points by their coordinates
in this frame. For the determination of translation
and rotation in 2-D a two-point basis is required.

Assuming range data, the 3-D rigid motion can be
determined by finding a correspondence between co-
ordinate frames, using a three-point basis. Lamdan
and Wolfson also defined the object recognition prob-
lem under affine transformation.

Lamdan, Schwartz and Wolfson[4] considered the
problem of object recognition under affine transfor-
mation. If there is an affine transformation between
a pair of point sets, there is an invertible matrix A
and a translation vector b for which the pair of sets
are related by y = Az + b, where « and y are corre-
sponding points. For the 2-D case, Ais a2 X 2 matrix
and b € R2. The problem is to recognize the objects
in the scene and to find the affine transformation for
each recognized object. Although the complexity of
the hashing method is exponential, it can be used to
recognize many partially occluded objects simultane-
ously. Also, the model can be described using many
kinds of features, including points, lines, and curves
(Tsai[5]).

3. Motion Dectection

Two methods have been used for 3-D motion detec-
tion. The first involves iterative solution of nonlinear
equations and the second solves the problem using
linear equations. Here, we present a linear approach
assuming that at least one quadruplet of point corre-
spondences is known (Longuet-Higgins[6]).

3.1 Point Correspondences

Let {z;}%_, and {g:}%, be a pair of point sets in
n-dimensional Euclidean space R™. The congruence
checking is described as follows: for a rotation matrix
R, translation vector @ and permutation o, if

y; = Rz, +a

then return true, otherwise return null.

In computer vision, we deal with objects in three-
dimensional Euclidean space R3. Let visible sets of
points be X and Y, where X C {m,-}:;l and Y C
{whios H{X} = {2}, and {Y} = {w}i, there
are no occluded parts. Otherwise, there are occluded

_parts in each frame. Usually, |Y'| # |X| holds, where

|| is the number of points.

In the following, we assume |Y| = M and | X | = N.
Setting £ = min(M ,N ), we define the permutation of
kth order o). For z;€X and y;€Y if we know that

(1)

for at least four setsof ¢ and oy (%), we can solve equa-

tion (1) and determine the motion parameters. This

problem is called the correspondence problem.
Equation (1) means that Y is obtained from X by

a transformation
R ja
T= .

yi =Rz, it a

(2)



Thus, using the constraints RTR = I and |R| = 1,
one can solve equation (1)

yi = Tx; (3)
given a quadruplet of corresponding points.

Let z,Tjy TgyTrn and ¥;, Yjs Yk) Ym Dbe corTe-
sponding points such that

Vi Ui Yk Ym | _
1 1 1 1
R a ®;, T; Tk Tm
(0001)(1 1 1 1)'(4)
This leads to the solution
R a )\
0001/
-1
Yi Yi Yk Um T, T Tk Tm )
1 1 1 1 1 1 1 1 ’

3.2
ters

In the following we assume that the correspon-
dences are not determined. Here, we apply the basic
idea of the hashing method to motion detection. The
idea behind the hash table is that each k-tuple of
model points forms a basis for a coordinate system
that is invariant under possible model transforma-
tions (Grimson and Huttenlocher[1]). Thus, all model
points can be stored in a transformation-invariant
form by rewriting them in terms of this reference
frame. The rewritten model points are used as indices
in the hash table, where corresponding basis k-tuples
are stored. We derive a method for estimating the
correspondence of points using the idea of geometric
hashing. For a pair of quadruplets =;, ;, zx, €m and
Yis Ujs Uky Ym, setting

Determination of the Motion Parame-

Ty — T

Yi — Ym,

(6)

Toym

Yym
for v = 1,7, k, we define a set of orthonormal bases

— Tim
|®im]

Eim

(™

£_ _ Lim — (mg‘méim)eim
im

@im — (@ lim )im]

(8)

Eim X Tim

km = 7"
Ekm |®im X Tjm]

9)

and

- Yim
[yiml

MNim

(10)

 Yim = (YTl )i
1Yjm — (yfmn-'m)mml

Njm (11)
- Yim X Yjm
™7 |Yim X Yjm

(12)

Mk

where |.| is the length of a vector and zTy is the inner
product of x and y. If we set

T — T . — T
Qim = mkmEimy Qjm = kafrmx Qpm = mkmﬁkm

(13)

and

T
Bim = y)?m"]im: ﬁjm = yfmmm, Brm = Y Thim,

(14)

we have
Thm Xim€im + aijjm + dkm€im
Yem = :@imnim + ﬂj‘m"jm + .Bkmnkm- (15)

For a pair of triplets of real values (ctim,Qjm,Qkm )
and (Bim,Bjm,Brm) which are determined from the
quadruplets, the following theorem holds.

Theorem 1 If

then QAym = ﬂ7m v Y= 17]71‘:
Proof. Since

y: = Rz; +a
and
Yym = BEym,
we have
Tym = Rym. (16)
This leads to
Bym = YraThm
= ol RTRfym
= z;:me-ym

where v = 1,7, k.

(7)
(Q.E.D.)

4. Algorithms for Motion Detection

From theorem 1 we can conclude that if a part of Y
is the result of the application of a Euclidean motion
to a part of X, then aym = fBym and X is congruent
to Y. However, if aym = fym, we cannot conclude
that ¥; = Rz, + a, since the rigid motion is a suf-
ficient condition for aym = Bym of which correspon-
dences comprise a many-to-one mapping. However,
using the idea of voting, we can define an inverse
transformation from aym = fym to ¥ = Re; + a.

Qyrm,



In this section we describe two different algorithms
to solve the problem of determining motion parame-
ters in three-dimensional space using the idea of the
voting process of the geometric hashing method.
4.1 One-Step Algorithm

In this algorithm we have no a priori assumptions
about the object model, and the motion parameters
are determined directly using two corresponding sets
of image points. Thus, we call this algorithm a non-
model-based algorithm. Figure 1 shows the concept
involved in this algorithm. We describe this algo-
rithm as follows.
Algorithm 1

1. For all quadruplets {=,,z.,z;,®,} € X and
{¥.,¥2:¥3:04} € Y, where X and Y are the sets
of the object vertices:

2. ComPUte { Tym y(-yrma‘ym } and {y'ymx'rl‘ymsﬂ'ym }
where v = 1,23 and m = 4.

3. If .
Z(a*tm = Bym)? < € (18)
y=1
then set
R = [014724734] [514524£34]T- (19)
If
> llwi; — Rayll® < 62 (20)
i<j
then set
14
a= 7 Z(y,' - Rz;). (21)
=1

4. Increment R and a by one.

5. If a threshold in the parameter space (R, a) is
reached, then stop, otherwise go to step 1.

4.2 Two-Step Algorithm

The second algorithm consists of two stages. The
first is a preprocessing stage in which the object mod-
els are constructed using the image points of the first
frame and stored them in a hash table. The second is
a recognition stage where, for the points of the second
image frame, the algorithm determines the model pa-
rameters in each iteration and verifies whether these
parameters match one of the models stored in the
hash table. If there is a match between an entry of
the hash table and the parameters of the second im-
age frame then the algorithm computes the motion
parameters. Hence this algorithm is a model-based
algorithm (see figure 2). We show the details as fol-
lows.

z frame 1 z| frame2

Y
N4

compute parameters

Figure 1: Algorithm 1

Algorithm 2

1.1 For all quadruplets { z,,z.,2z;,2, } € X, where
X is the set of vertices:

1.2 Compute { Toym,€ym,2ym } Wherey = 1,23, m
= 4 and make a table.

2.1 For a quadruplet { y,,¥2,¥3,¥4 } € Y, where Y’
is the set of vertices:
2.2 Compute { Yym,7ym,Bym } wherey =123 and
m = 4.
23 If
3
Z(avm — Pam)? < €
r=1
then
R = [m14m24m34) [€14€24€34]" .
If
Z llyij — Ray;||® < 62
i<g
then
14
a = i Z(y; — Rx;).
=1

2.4 Increment R and a by one.

3 If a threshold is reached in the parameter space
(R, a) then stop, otherwise go to step 2.1.



We can say that this algorithm knows a priori the
object representation, whereas in contrast, the first
algorithm computes the motion parameters directly,
using two images simultaneously.

frame 1 z

frame 2

hash table

|
If matching

Figure 2: Algorithm 2

5. Implementation and Results

In this section we describe some assumptions con-
cerning the objects and points and summarize the
results of the implementation of algorithm 1.
5.1 Implementation

Assuming that our object is a trihedral polyhedron
and knowing the locations of the vertices in each
image frame, the algorithm in figure computes mo-
tion parameters in a three-dimensional space. This is
the implementation of the first algorithm mentioned
above. Here we randomly select points in each frame
and compute the parameters and vote them until a
threshold is reached.The parameter space is a twelve-
dimensional space which corresponds to the elements
of the rotation matrix and the translation vector.

The rotation matrix used to generate the transfor-
mation is expressed as

sinysinf sintcosfd — cosp
R= cos9sinf cosiypcosf siney , (22)
cos @ —5in @ 0

and the translation vector is

i (23)

The rotation angles are 1, f, and ¢ about z, x and y
axes, respectively. We assume that 0 < 9 < 2 7 and
0<t<
5.2 Results

We present the results of computation of the mo-
tion parameters for three different synthetic objects
using algorithm 1. For each object we show tables
for translation estimation, and rotation estimation
for z and z axes. We assume that the rotation about
the y axis is —. Furthermore, we show the compu-
tation thresholds and coordinates of the polyhedron
vertices. The consumption time is 1.8 seconds in the
worst case, when the number of iteration cycles is
8500.
6. Conclusions

We have presented two probabilistic algorithms
for motion estimation using the ideas of congruence
checking and geometric hashing. The first algorithm
has the advantage of requiring less memory than the
second and the complexity of both algorithms in-
creases with the number of polyhedron vertices. We
obtained accurate estimates of motion parameters.
However in testing we noticed that neither the es-
timation of rotation angle using sin~* nor the esti-
mation of the translation along the z axis is stable.
This implies that the algorithm must execute more
iteration cycles, and sometimes be rerun.
Acknowledgement

The authors thank Professor. T. Wada of Okayama
University for helpful discussions on the difference be-
tween the two algorithms.

References

{1] Grimson, W. E. and Huttenlocher, D., On the
sensitivity of geometric hashing, in IEEE Proc.
Ird Int. Conf. on Computer Vision, pp. 334-338,
1990.

[2] Wolfson, H., Model-based object recognition

by geometric hashing, Lecture Notes in Com-

puter Science 427, Computer Vision-ECCV 90,

pp.526-536, Springer-Verlag, 1990.

[3] Lamdan, Y. and Wolfson, H., Geometric hash-

ing: a general and efficient model-based recog-

nition scheme, in IEEE Proc. Second Interna-
tional Conference of Computer Vistion (Tampa,

FL), 1988.



(4] Lamdan, Y., Schwartz, J. and Wolfson, H.,

" Affine invariant model-based object recognition,
IEEE Transactions on Robotics and Automa-
tion, 8, 5, pp. 578-589, 1990.

[5] Tsai, F., Geometric hashing with line features,
Pattern Recognition 27, 3, pp. 377-389, 1994.

[6] Longuet-Higgins, H.C., A computer algorithm
for reconstructing a scene from two projections,
Nature, 293, pp. 133-135, 1981.

Table 1: Translation estimation

Polyhedron 1 translation
x y P
Real 3 5 7

Estimation 1

295 5.30 5.30

Estimation 2

2.85 544 4.76

Estimation 3

2.89 5.34 5.24

Table 2: Rotation Angle X azis

Table 4: Thresholds for polyhedron 1

Polyhedron 1 | Iterations | threshold
Estimation 1 3297 10
Estimation 2 8329 10
Estimation 3 3588 10

Table 5: Vertices of polyhedron 1

frame 1 frame 2

Xy z X y z

0 0 0] 3.0000 5.0000 7.0000
4 0 01} 3.5309 6.0420 ° 10.8252
4 0 5-0.9240 8.3119 10.8252
2 0 71-29715 8.6989 8.9126
0 0O 5 |-1.4550 7.2699 7.0000
4 6 0} 6.1358 11.1544 9.0709
4 6 5| 1.6808 13.4244 9.0709
2 6 71]-0.3666 13.8113 7.1583
0 6 51 1.1498 12.3823 5.2457
0 6 0] 5.6049 10.1124 5.2457

Polyhedron 1\Theta 17.0° | cos™ | sin~!
Estimation 1 17.00° | 17.00°
Estimation 2 16.63° | 16.63°
Estimation 3 16.97° | 16.97°

Table 6: Translation estimation

Table 3: Rotation Angle Z azis .

Polyhedron 2 translation
X y P
Real 3 5 7

Estimation 1

2.66 6.06 5.29

Estimation 2

342 5.37 5.72

Estimation 3

3.66 5.28 4.79

Polyhedron 1\ Psi 27.0° | cos™! | sin~*
Estimation 1 27.00° | 27.48°
Estimation 2 27.00° | 29.17°
Estimation 3 27.00° | 23.81°

Table 7: Rotation Angle X azis

-1 e

Polyhedron 2\Theta 17.0° | cos sin
Estimation 1 16.90° | 16.90°
Estimation 2 17.00° | 17.00°
Estimation 3 17.00° | 17.00°
Table 8: Rotation Angle Z azis

Polyhedron 2\ Psi 27.0° | cos™1'| sin~!
Estimation 1 27.00° | 31.48°
Estimation 2 27.00° | 26.79°
Estimation 3 26.69° | 24.20°




Table 9: Thresholds polyhedron 2

Polyhedron 2 | Iterations | threshold
Estimation 1 5465 10
Estimation 2 5819 10
Estimation 3 4720 10

Table 10: Vertices of polyhedron 2

frame 1 frame 2

X y z x y z

0 0 0] 3.0000 5.0000 7.0000
4 0 04 3.5309 6.0420 10.8252
4 0 41}-0.0330 7.8579 10.8252
2 0 21| 1.4834 6.4289 8.9126
0 0 4|-0.5640 6.8159 7.0000
4 6 0] 6.1358 11.1544 9.0709
4 6 4| 25718 12.9704 9.0709
2 6 2| 4.0883 11.5414 7.1583
0 6 4. 2.0408 11.9284 5.2457
0 6 0| 5.6049 10.1124 5.2457

Table 11: Translation estimation

Polyhedron 3

translation

X y

z

Real

3 5

7

Estimation 1

3.12 5.18 4.89.

Estimation 2

3.12 5.2

1 5.65

Estimation 3

3.56 5.2

5 5.79

Table 12: Rotation Angle X azis

Polyhedron 3\Theta 30.0° | cos~! | sin~!
Estimation 1 30.00° | 30.00°
Estimation 2 30.00° | 30.00°
Estimation 3 30.00° | 30.00°

Table 13: Rotation Angle Z azis

Polyhedron 3\ Psi 45.0° | cos™! | sin~!
Estimation 1 45.00° | 47.33°
Estimation 2 45.00° | 47.33°
Estimation 3 45.00° | 45.80°

Table 14: Thresholds for polyhedron 3

Polyhedron 3 | Iterations | threshold
Estimation 1 736 10
Estimation 2 866 10
Estimation 3 1561 10

Table 15: Vertices of polyhedron 3
frame 1 frame 2

Xy z X v z

0 0 0/ 3.0000 5.0000 7.0000
3 0 0] 4.0606 6.0606 9.5980
3 0 319393 8.1819. 9.5980
0 0 3(0.878 7.1213 7.0000
3 2 0|5.2854 7.2854 8.5980
3 2 3 3.1640 9.4067 8.5980
0 2 321034 8.3460 6.0000
0 2 0] 4.2247 6.2247 6.0000




X 4 Figure 3: Polyhedron 1 (b)

(a) Figure 4: Polyhedron 2 (b}

Figure 5: Polyhedron 3



