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Abstract

We present a method coupling multiple switching linear models. The coupled switching linear model is
an interactive process of two switching linear models. Coupling is given through causal influence
between their hidden discrete states. The parameters of this model are learned via EM algorithm.
Tracking is performed through the coupled-forward algorithm based on Kalman filtering and a collapsing
method. A model with maximum likelihood is selected out of a few learned models during tracking. We
demonstrate the application of the proposed model to tracking and recognizing two-hand gestures.



1. Introduction

Gesture recognition plays an important
role in a host of man-machine interaction
applications. A well-known method in
gesture recognition is HMM(Hidden
Markov Model), which is essentially a
quantization of time series (observation
sequence) into a small number of discrete
states with transition probabilities betw-
een states. In HMM-based gesture recog-
nition schemes, there are two bottle-
necks: First, it has a limitation to treat
with trajectory information in time, since
HMM are based on distributions of
statistically independent observations,

Many interesting man-machine
interfaces are composed of multiple
interacting processes. This is typically the
case for systems that have structure both
in time and space [Brand,1996]. The
second bottle- neck is that HMM is
ill-suited to this problem because it has a
single state variable (hidden discrete
states).

Switching linear dynamic model has
been developed in fields ranging from
econometrics to engineering. It combines
the discrete transition structure of HMM
with the stochastically linear dynamic
model of state-space model. Therefore, it
may be able to overcome the first bottle-
neck of HMM.

Our goal is to track and recognize two-
-hand gestures simultaneously. Assuming
the process of two-hand gestures is an
interacting process of one-hand gestures,
as noted, we cannot depend on HMM.
CHMM(coupled hidden Markov model)
[Brand] gives a method to capture these
interactions. However, since CHMM inh-
erits HMM it also meets a ceiling in case
considering trajectory information in time.

To overcome the two bottlenecks in
HMM-based gesture recognition, it is
worth to make an interacting process of
some switching linear models. We present
algorithms for coupling switchi- ng linear
dynamic models. Two switching linear
dynamic models are coupled through
causal influences between their hidden
discrete states. We introduce a collapsing
method approximately solving the state-
estimation problem to avoid the explosive
increase in computational cost[Harrison

and Stevens,1976] [Gordon  and
Smith,1988] [Kim,1994].

We use active contour model [Blake
and Isard,1998] for the representation of
motion and shape of hands and demon-
strate an application of the coupled swit-
ching dynamic model to tracking and
recognizing two-hand complex gestures.

The paper is organized as follows. In
the following section we address the
coupled switching linear model. In section
3, we explain an active contour model
shortly to be introduced to repre- sent
motion and shapes of hands. In section 4,
we describe the EM learning algorithm for
the coupled switching line- ar model. In
section 5 and 6, we demon- strate the
application of the coupled switching linear
model to tracking and recognizing
two-hand gestures. Finally, we conciude
with section 7.

2. Coupled Switching Linear Dynamics

Human describes any meaning by chan-
ging shapes of each hand besides moving
positions of two hands. To model these
two-hand gestures, we have to consider
shapes and motions of hands and interac-
tions between two hands. Assuming that a
two-hand gesture is an interacting process
of two hands whose shapes and motions
are described by the switching linear
dynamics, it deserves to couple switching
linear dynamic models to capture interac-
tions between two hands.

2.1 Model specification

Switching linear model can be seen as a
hybrid model of the linear state-space
model and HMM. It is described using the
following set of state-space equations:

X = Fm,xr—l +u, U~ N(O, Qm,)

v, ~ N(O,R,,) 2.1

l—jlm/,m,,I = p(mul l’nr)

nm‘ =.p('nl)
In the above equation, z, means an
observation at time ¢ and is statistically
independent from all other observation
vectors. X, is a hidden continuous state

variable. m, denotes hidden discrete
states obeying the first order Markov

I

z, = Hm‘x, +v
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process. 7, ,F, and H , which are typical
parameters of linear dynamic model,
denote the prior probability of a discrete
state, the continuous state tran- sition
matrix and the observation matrix,
respectively. The noise u, and v, are
independently distributed on each Gaus-
sian distribution. m¢subscripted parame-
ters of the above model are dependent on
discrete state variable’ m: And the
switching process is defined with the
discrete state transition matrix Il. This
model can be expressed graphically in the
form of Figure 2.1.

Coupled switching linear model is an
interactive process of two switching lin-
ear models. Coupling is given through
causal influence between their hidden
discrete states. The complex state space
representation is equivalently depicted by
dependency graph in Figure 2.2. To
accommodate another interacting process,
it seems good to consider a single lumped
system joined into multiple state varia-
bles. However there are a few ceilings: The
computational cost is prohibitive, a surfeit
of parameters leads to overfitting, and
there is often insufficient data for a large
number of states, usually resulting in
undersampling and numerical under- flow
errors [Brand,1996]. Consequently the

suggested coupling scheme, as shown in

Figure 2.2, offers conceptual advantages of
parsimony and clarity with computational
benefits in efficiency and accuracy. That is
revealed in the following sections.

In the coupled switching linear model,
since coupled transitions of discrete states
have Markov process, it follows that

p(mn \m A m_ n A n,)

= p(m,,n, |m_,n,_)

Assuming

p(m,,n, |m,_,n,_ Yo p(m, |m_) (2.9)
plm, | n_)pn, | n_)pn,|m,)

referred to in [Brand,1996], coupling

transition probability of discrete states can
be parameterized as

p(m,,n, l ’nt-l’nt—l) - . . (2.3)
kcn m,_ym, I—‘n,_|m, I oy, r‘m,_,h;

where k_is a normalizing constant, T is

the state transition matrix representing

causal influences between two switching
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linear system, and superscript * denotes
the lower switching linear system in
Figure 2.2.
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Figure 2.1 Switching linear model
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Figure 2.2 Coupled switching linear model

n,, y, and w, denote a discrete state variable,
a continuous ‘state . variable: and an
observation vector, respectively -

2.2 Coupled-forward Algorithm

Given known parameters of the coupled
switching linear model, {F, H,Q, R,7,I1,T'},
{ﬁ',ﬁ,é,fl,ﬁ,ﬁ,f‘ , we can perform track-
ing or filtering, which means estimations
of continuous states and coupled-jointed
probabilities of hidden discrete states. In
this section we describe a filtering method
called as the coupled-forward algorithm.
Following [Kim,1994], given the kno-
wn parameters of switching linear dyna-
mics, the predicted jointed-continuous
state variable and the corresponding
covariance are defined dependently on
m,and m,_:
x,(,f'_-’,’ = F /xr(i)nr-[ (2.4)
B = P F+0,

Jt ==

where x,(i)“,_, and P,(f];,_] are estimations at
timet —1based on information up to time



t—1, given m_ =i . Now the filtered
jointed-continuous state x:I:"’and its cova-
riance p¢/ are estimated by the conven-
tional Kalman updating algorithm. In
particular, we follow Kalman filtering
application of [Blake,Isard and Rubin,
1995] and ([Blake and Isard, 1998] to
active contour model.

From the above fact, as noted by
[Gordon and Smith,1988], switching line-
ar dynamic model requires computing a
Gaussian mixture with Mt components at
time t for M switching states. If coupled
with a Mswitching linear system, typi-
cally (MN) computations are required
(M'+N'in the case of the presented
coupled switching linear model ) which is
clearly intractable for moderate sequence
length. It is necessary to introduce some
approximations to solve the intractable
computation problem.

We collapse M?+ N? jointed conti-
nuous state variables into M+ N state
variables at each time, and can avoid
prohibitive increase of computational cost.
Building upon ideas introduced by
[Harrison and Stevens, 1976}, [Gordon and
Smith,1988] and [Kim,1994], we present
the following collapsing method:

Through the paper, expediently we
proceed by evolving equations only in
terms of the upper system in Figure 2.2.

M N m,_, =i,n_ =i, @n
2 Am, =jm =jjro, | ™
i i=l-\ =1 jj=1 =5 = '
x = : ! (2.5)

plm,=j10,)

N
i z:p(m,_l =i,n_ =il,m = j,n=jl0)
ii=1jj=\

i=1 ;
Gi.1) (1) _ DY) _ (0 ')
'(R]z +(xl|l x,,, )(Xﬂr xtll )

plm, = jl0)

P

i

where O, is a sequence (0,,0,,A ,0,) and
0,is an observation vector (z,,w,). In the
above collapsing, the coupled-jointed
probability of discrete states plays a role of
weighting factor of jointed- -continuous
state variables. To complete the collapsing,
we have only to calculate the weighting
factor. Now we present the
coupled-forward algorithm:

The filtered coupled-jointed distribu-

tion of discrete states is defined by

pim,_ ., ,m.,n | O) (2.6)

5

=kplo, |m, .1

=19 70-1

_ (my_y.my) (n_y )
=k p(z, |xfﬂ|l "o, [y,;::f ") p(m,_y, 1, ,m,,m,1O.)

m, ny, Q—l )p('ﬂr—l s, 1, I ()l—x )

where £ is a normalizing constant, 7
and w  are the observation sequences up
to time /-1 in the upper and lower
system, respectively in Figure 2.2. From
(2.3) the prediction step given sequence up
to time ¢ gives

p(m,, nr’ mul 4 nH»l , Ol): kpr[m,mHl rn,mml:ln,n,,,l:m,n,“
M,N
: 2 p(m,_,n_,m,n|0,) 2.7
A=t =1
where k_ is a normalizing constant. And
then the probability of predicted

coupled-discrete states is calculated by
marginalizing the predicted coupled-join-
ted distribution of discrete states

MN
p(mm,nml l O/) = ZI’("’n":s M5 Mgy | 01) (28)
=t =l

Since the coupled-forward algorithm is
iterative process as shown in (2.6) and
(2‘.7), it is necessary to define the predicted
distribution p(m,n,m,,n,|0) at initial
time in (2.6). It follows that
p(my,n,my,n, | O)=

plmy,n | O) plmy,ny | my,n,) (2.9

By Bayesian rule, the initial distribution
of discrete states, p(m,,n, |0,)gives

p(m,n | O) < p(O, | my,n) p(m,, n,)
= p(z, [ m)p(w | n)p(m)p(n)  (2.10)
Substituting (2.3) and (2.10) into (2.9)
gives
plmy,n,my,n, |O)) = kin-m, ﬁn, P (2 )13,,, ()
15 ST OO0 § U0 (.11

where k;, is a normalizing constant.

The above algorithm can be extended
up to more coupled models easily. However,
since the coupled-forward algorithm has
the complexity O(TC*A C,*) where T is
the length of an observation sequence and
C, is the number of states of each
switching linear model participating in the
nmcoupled switching linear model, the
computation cost increases sharply as the
number of coupling increases. In the case
of »n=2considered in this paper, we have
no problem in terms of computational cost
only if M and N have reasonable length.
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2.3 Coupled -backward Algorithm

While the coupled-forward algorithm is a
filtering process given sequence up to
current time, the coupled-backward algo-
rithm is a smoothing process given seq-
uence of full length. Like the conven-
tional Kalman  smoothing method,
jointed-continuous state variable and its
covariance based on full sequence can be
smoothed as follows:
Given m, =jand m,, =k,
g =+ POVl ~3{)

UK — pU) 4 PUK( pth) (k)Y BrUR
B® =B + BV (P — B )

(2.12)

where E(i.“ = B]‘I”’:III(P”‘”‘)_l

231
To calculate the smoothed continuous state
variable and its covariance, given that
m, = j, collapsing is performed similarly to
(2.5):

M.N
M Zp(m: =Jjsn, = jjsmy,, =k,n,, =kk|Op)
Jiml k=l
k=tb Gk

0 — ir
x) =

p(m, =j]|0;) (2.13)

MN
U Zp(m, = jn = jjm, =k, =kk| O;)
2 J=lkk=1 )
k=l (/.6) D) _ LURN D Ry

(Pq; +(xu;‘ =X Yo =% ))

pim =j10;)

() —
E|r =

Then we can estimate the smoothed state
by taking a weighted average over the
discrete states at time ¢ from

M
X =2 plm, = j| O)xy (2.14)
J=t

To complete (2.13) and (2.14), we turn to
derivation of the smoothed coupled-
-jointed distribution of discrete states,
which is given by
p("”’nl'nll+[ ’nl+| | 07') = p(””’n”nll-ﬂ’nl*" ‘ 0’)
P 6,10
pm,.n,|0)

From (2.15) the smoothed coupled
distribution of discrete states is given by

plm,n 1 0)= Y p(m,n,m 0, 10;) (2.16)

L B R

From (2.16) the smoothed distribution of
discrete states is obtained by

(2.15)

p(m,10.)=Y p(m,,n,|0,) Q.17

"

P,y 1 Op) sy @0d pOm,,n, 10) alrea-
dy has been computed from (2.155 in the
coupled-forward algorithm.

2.4 Likelihood of the Coupled switching
linear model

The coupled switching linear model can be
represented by the parameter set, A ,
which consists of {F,H,Q,R, ILT} and
{ﬁ,fl,é,ﬁ,ﬁ,ﬁ,f‘}. Likelihood ofA given an
observation sequence can be calculated by

L(A10)=pO, | M)=]] plo,10,,,4)  (2.18)
=1
Abbreviating A,

p(’nl—l sn:—l 7'"1 ’nl | 01—1)

o.)= 2.19
p(OI l H) "’.,2'":‘4( 'p(ol | ’"r—l’nr—l’mr’nuot—l)} )

oy

Substituting (2.6) and (2.19) into (2.18),
log-likelihood [ is obtained by

Z=Zlog( Z p(ml—lin/—l’”lv’nl lO,)) (2.20)
t=1

my ey, kl
iy

where both the denominator and the
numerator have been computed in the
coupled-forward algorithm.

3. Active Contour Model

We intend to track and recognize two-
-hand gestures and apply active contour
model to represent a variety of shapes of
hands. Active contour model using B-
-spline parameterization was well estab-
lished by [Blake and Isard,1998]. A curve
is parameterized into a control vector,
which is composed of B-spline control point
coordinates. Control vectors may be
described on an specific shape space,
however, typically, it takes high degrees of
freedom to represent complex shapes of
hands. Since it is undesirable for robust
contour tracking or fitting, we perform
principal component analysis to derive a
small shape space of contours, which is
constructed as follows:

Given a training set, {5,0,.A 0,}, of



control vectors representing outlines of
hands, it follows that

—— - M -
Q=WX+0, 0=30 (3.1
i=f

where columns of W are eigenvectors of
the covariance matrix of a given training
sequence, X with a reduced dimension is
called as a shape vector of shape space and
correspond to an approximated control
vector, . We use shape vectors as the
continuous state variables of the coupled
switching linear dynamics.

In applying active contour model to
linear dynamics, we need not estimate an
observation matrix, # in (2.1) and have
only to compute observation probability in
(2.6). It is assumed that sampled points on
the contour line of a predicted state vector
(shape vector), have normal distributions
along normal lines at each point on the
 contour line. Then the observation
probability is computed by normal
displacement between sample points and
observed edges on normal lines [Blake and
Isard, 1998].

4. Learning via EM

EM algorithm is a general iterative
technique for finding maximum likelihood
parameter estimates in problems where
some variables were unobserved
[Dempster,1977] [Neal and Hinton,1998].
It is natural to use EM algorithm for our
problem, in which unobserved variables
are continuous state variables and discrete
state variables. Assume that the proba-
bility density for observation sequence is
parameterized using A, p(O; | 1).

Then log-likelihood is

L(A10;) =log p(O, | 2) (4.1)
=log Y [p(M;.N,.X,.Y,,0, | )dX,dY,
MrNr X0 Y

where M, ,N,and X,,¥,are sequences of
discrete states and continuous states,
respectively. [Dempster, 1977} shows the
auxiliary log-likelihood is given by
f= pM, N, X, Y, |0, 1) (4.2)

M Nr x, 1, : lOg P(M; » Nr ’ XT, YT ’ 07‘ | l)dXTdYT
= El’(Mr-N7~X1-yr'or-1)[10g p(A47 il NT 3 XT y YT 3 01' I /‘L)]

where 1 is previously estimated parameter

set. EM algorithm starts with some initial
guess and proceed by repeatedly applying
the following two steps:

E step : Estimate hidden continuous states
and coupled-jointed probabilities of hidden
discrete states given observation sequence
of full length. These estimations are
performed through the filtering and smoo-
thing process described in section 2.2 and
2.3

M step Estimate A maximizing
E;llog p(M,,N,,X,.Y,,0,11)] , which is
approximately expressed by A and the
estimations from E step. Through M step
parameters are updated iteratively until
likelihood value converges.

5. Application to tracking two-hand
gestures
We applied the presented coupled

switching linear model to tracking two-
-hand gestures. An outline of hands is
expressed as a shape vector of the shape
space, which is constructed by PCA using
sequence of hand contours as training set.
We get the parameter set dominating a
two-hand gesture through EM algorithm.

Tracking is performed through the
coupled-forward algorithm. Figure 5.1
shows tracked hands corresponding to
each frame. We calculated the probability
of each discrete state with respect to frame
numbers, so transitions between discrete
states is described in Figure 5.2.

(a) (b)
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(e) ®
Figure 5.1 Tracked contours of two hands
(a)1st frame (b)11th frame (c)21th frame
(d)51t frame (e)61st frame ()91 frame

Frame

Figure 5.2 Transition of discrete states

6. Application to recognizing two-hand
gestures

Recognition of two-hand gestures means
the problem to determine which model
tracks a two-hand gesture well. There-
fore, the likelihood of a model presented in
section 2.4 can be a good tool to recognize
two-hand gestures. Given some models
learned beforehand by EM algorithm
(section 4), the likelihood of each model is
calculated at each time by (2.18) based on
the coupled-forward algorithm. Of course,
an observed sequence is recognized as the
model of the maximum likelihood. To
reduce a computation effort, we may
neglect models with the likelihood less
than any value by suspending the
computation of likelihood and the
coupled-forward algorithm.

7. Conclusion and future work

We have presented a coupled switching
linear model that is an interacting process
between two switching linear models and
also presented the coupled-forward and
coupled-backward algorithm in the coupl
ed switching linear model. Explosive
increase in computation cost, resulting

—_——

from (2.4), could be avoided through the
collapsing method [Kim,1994] [Hamilton,
1989].

The scheme was applied to tracking
and recognizing two-hand gestures. Track-
ing is performed through the coupled-
-forward algorithm whose parameters are
estimated by EM algorithm. Two-hand
gestures are recognized by comparison of
the likelihood values of learned models.
The likelihood can be computed easily
through the coupled-forward algorithm as
presented section 2.4.

We will show the results of recogni-
tion of two-hand gestures and try to track
occluded hands under complicated back-
grounds.
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