AT 5 0 B

EIE BHE Mark D. Wheeler NI
BIRS HIFKY¥ Cyra Technologies, Inc. FRAKRE

Lo

FERX TIREREE®REY BV THEORERREF L 2 ERT 5 EBEHE T AT U X M SONTHET 5.
BRICHRABBBLIZT AT Y XATIE, AENRBEREL AV TEROERESSHEL, v—F L S Fa—
TATAT YR LERANTRERO A v 2FF AR ER L. 22T, TOBBICEIT 55 EMERES
BlizbnT, #EL ATV ERAOHRIMEZIEINDFEL PC 2 IR F 2 AV HFIHEFEELERTS. £F
HRIZ L) ERRBICEBES N 5T — Y BREIBL, BiEBAEREIRMCITR Y. ERHEOLHELED S
ZERTE, HEREE/NELTHIENTES. C v

WHIEEFIETIE, BTO CPU & A€ Y HAOSRECS N THENA 2507 A= Y XARERETS. 1.
BT — & DAYBELE. 2. #4y octree DUFIER, N HE VAT ADOMHIEIC LR >THEG L THANS S L
&Y, PCZ 7R EAVTHRAREF N AERBATREIZAR D,

Parallel Processing of Range Data Merging

Ryusuke Sagawa Ko Nishino Mark D. Wheeler Katsushi Ikeuchi
Univ. of Tokyo Univ. of Tokyo Cyra Technologies, Inc. Univ. of Tokyo

Abstract

In this paper, we describe a volumetric view-merging algorithm that generates a consensus surface of
an object from its range images. Our original method merges a set of range images into a volumetric
implicit-surface representation, which is converted to a surface mesh using a variant of the marching-cubes
algorithm. We propose a method which increases the computation and memory efficiency of computing
signed distances and the method of parallel computing using a PC cluster. Since our method permits a
reduction in the data allocated in memory, the closest point is searched efficiently; this allows us to increase
the number of the parallel traversals and to reduce the computation time.

We describe the following two algorithms which are complementary in terms of the efficiency of CPUs
and memory usage: 1. Distributed allocation of range data. 2. Parallel Traversal of partial octree. By
adjusting them according to the system specification, we can build the model efficiently by a PC cluster.

1 Introduction

We have been developing techniques to automatically
create virtual reality models through observation of
real objects; we refer to these techniques as modeling-
from-reality (MFR). In order to explore unforeseen
technical difficulties and to further extend our MFR
techniques by solving these difficulties, we have begun
a project to model Japanese cultural heritage objects
through these MFR techniques([1}.

Some of Japanese cultural heritage objects are
large, but their shapes may be intricate. Thus, the
models of these objects’ shapes must contain huge
amounts of data. In our previous experiments in
modeling small, indoor objects, we did not have to
consider the computation and memory requirements
to build these models. However, building a model of
a huge amount of data necessitates our taking these
requirements into account. In this paper, we describe
our proposed method for modeling the shape of huge,
possibly intricate objects.

After scanning the shape of an object by us-
ing a range sensor and then aligning all range im-
ages into the same coordinate system, our original
method[2] converts a set of range images into a vol-
umetric implicit-surface representation, It then ob-
tains a surface mesh using a variant of the marching-
cubes algorithm[3]. Unlike previous techniques[4,
5, 6] based on implicit-surface representations, our
method estimates the signed distance to the object
surface by finding a consensus of Jocally coherent ob-
servations of the surface.

The most costly part of the computation of our
method is finding the consensus surface to compute
the signed distance. To increase the computation
and memory efficiency, we propose a method which
reduces the amount of data to be searched, around
which point the signed distance is computed.

We utilize octrees to represent volumetric implicit
surfaces for effectively reducing the computation and
memory requirements of the volumetric representa-
tion without sacrificing the accuracy of the resulting
surface.

To further ease this size problem, we have devel-
oped parallel software that runs on a PC cluster to
handle the huge amount of data. The parallel soft-

inside
surface

— outside
surface

surface

Figure 1: Zero-crossing interpolation from the grid
sampling of an implicit surface

ware consists of the following two components: 1.
Distributed allocation of range data. 2. Parallel
Traversal of partial octree.

In the following sections, Section 2 describes our
original merging algorithm. Section 3 explains the
method to increase the computation and memory ef-
ficiency. In Section 4, the parallel merging algorithm
is shown. Finally, the merged result is shown in Sec-
tion 5.

2 Data Merging

2.1 Volumetric Modeling and March- '
ing Cubes

Recently, the marching-cubes algorithm{3] has pro-
pelled volumetric modeling beyond the confines of
“blocky” occupancy grids. Instead of storing a binary
value in each voxel to indicate whether the voxel is
empty or full, the marching-cubes algorithm requires
that the data in the volume grid are samples of an
implicit surface. In each voxel, we store the signed
distance, f(z), from the center point of the voxel, z,
to the closest point on the object’s surface. The sign
indicates whether the point is outside, f(z) > 0, or
inside, f(x) < 0, the object’s surface, while f(x) = 0
indicates that x lies on the surface of the object(See
Figure 1).

The marching-cubes algorithm constructs a surface

Figure 2: Marching Cubes: An implicit surface is
approximated of by triangles. O: voxels of outside
surface. ®: voxels of inside surface.

mesh by “marching” around the cubes while follow-
ing the zero crossings of the implicit surface f(z) = 0.
The resulting surfaces are relatively smooth and their
accuracy can be greater than the resolution of the vol-
ume grid due to sub-voxel interpolation (See Figure
2).

Now we focus on a more easily solved problem:
How do we compute f(z)? The real problem under-
lying our simple question is that we do not have a
surface; instead, we have many surfaces. Some ele-
ments of those surfaces do not belong to the object
of interest but rather are artifacts of the image ac-
quisition process or background surfaces. In the next
subsection, we present an algorithm that answers the
question and does so reliably in spite of the presence
of noisy and extraneous surfaces in our data.

2.2 Consensus Surface Algorithm

In this section, we present our answer to the ques-
tion of how to compute the signed distance function
f(x) for arbitrary points = when given N triangu-
lated surface patches from various views of the object
surface. We call our algorithm the consensus-surface
algorithm.

We can break down the computation of f(z) into
two steps:

¢ Compute the magnitude: compute the distance,
|f()], to the nearest object surface from z

e Compute the sign: determine whether the point
is inside or outside of the object

Voxel
center point X

Voxel
center point x'

f(x")

closest surface
point to x

i i

Figure 3: Naive algorithm: An example of inferring
the incorrect sign of a voxel’s value, f(x), due to a
single noisy triangle.

The previous naive algorithm finds the nearest tri-
angle from all views and uses the distance to that
triangle as the magnitude |f(z)|. If the normal of
the closest surface point is directed toward z, then
= must be outside the object surface. In Figure 3,
the point chosen as the closest point from 2 does not
belong to the real surface. Thus, the algorithm in-
correctly thinks @ is inside the surface based on the
normal information from the closest point.

Our solution to these problems is to estimate the
surface locally by averaging the observations of the
same surface. The trick is to specify a method for
identifying and collecting all observations of the same
surface.

Nearby observations are compared using their loca-
tion and surface normal. If the location and normal
are within a predefined error tolerance (determined
empirically), we can consider them to be observations
of the same surface. Given a point on one of the ob-
served triangle surfaces, we can search that region of
3D space for other nearby observations from other
views which are potentially observations of the same
surface. These searches are efficiently implemented
using k-d trees[7].

The consensus-surface algorithm examines the
closest point in each image’s triangle set. If there are
sufficient surfaces of other triangle sets which are re-
garded as the same surfaces of the each closest point,
the closest point is a consensus surface. The algo-

Voxel
center point X

Voxel
center point X'

Figure 4: Consensus surface algorithm: The signed
distance is chosen from circled consensus suirfaces.

rithm which determines whether two surface obser-
vations are sufficiently close in terms of location and
normal direction is as follows:

SameSurface((pg, o), (Py, n1)) =

{ True (/| po —py IS da) A (no-m1 2> 005911)(1)
False otherwise
where §,4 is the maximum allowed distance and 8, is
the maximum allowed difference in normal directions.
For example, consensus surfaces are circled in Fig-
ure 4. The algorithm chooses the closest one of them
as the signed distance. In this case, it is correctly de-
termined that z is the outside surface and z’ is the
inside surface.

2.3 Adaptive Resolution by Octree
Representation

Volumetric modeling involves a tradeoff between ac-
curacy and efficiency. The octree representation[8]
balances these problems while keeping the algorithm
implementation simple. Instead of iterating over all
elements of the voxel grid, we can apply a recursive
algorithm on an octree that samples the volume more
finely only when near the surface of the object (See
Figure 5).

To interpolate the zero crossings properly, we will
need the implicit distance for the voxel containing the
surface (the zero crossing) and all voxels neighboring
this voxel; these voxels must all be represented at the

2D slice
of octree

Vi
V4

surface

Figure 5: The adaptive resolution is high around the
surface and low elsewhere

finest level of precision. This constraint means that,
if we have a surface at one corner of an octant, the
longest possible distance to the center of a neighbor-
ing octant is one and one-half diagonals of the voxel
cube, which is a distance of %5 cube units.

Given the current octant, we can compute the
signed distance. If the magnitude of the signed dis-
tance, |f(z)], is larger than 32& of the octant width,
then it is not possible for the surface to lie in the
current or neighboring octant. If the surface is not in
the current or neighboring octant, we do not care to
further subdivide the current octant.

3 Increase the computation
and memory efficiency

If the size of mesh data to be merged is huge, it is
difficult to allocate all of those to memory, Also, the
computation time of the signed distance cannot be
ignored. We propose the following method to increase
the computation and memory efficiency by reducing
the data allocated in the memory.

When the algorithm traverses a part of the octree,
the data searched for finding the closest surface is
only the local area around the voxel. The data of the
other area are never used for computing signed dis-
tances while traversing the sub-octree. Moreover, a
closest surface is effectively searched using a k-d tree.

Figure 6: Load only the mesh data within the dotted
rectangle into memory

However, it is inefficient when the k-d tree contains
unnecessary data.

As described in Section 2.3, a octant is subdivided
when its signed distance is less than 52—‘/5 cube units.

Thus, the data farther than %5 cube units is not
necessary for finding the closest point of the voxel.

To load the necessary data into memory, we must
read all of the data files. Since the overhead of read-
ing files for the every finest octant is too costly, we
read the data files for an ancestor octant. Where the
width of an ancestor octant is Wy and the width of
the finest octant is W, the area of the mesh data to
be loaded is inside the rectangle of a dotted line in
Figure 6.

4 Parallel Computing of Signed
Distances

In this section, we describe the algorithm for parallel
computing of signed distances. There are two moti-
vations for parallel computing signed distances. we
now propose the parallel computing method for each
motivation:

1. Handle range data of huge size: We distribute
the allocation of range data to multiple PCs.

2. Fast merging: We divide the octree to sub-

octrees and assign traversal of a sub-octree to

each CPU.

pC2 Voxel

center point x

Voxel
center point x’

Datalf | iData3

Data2

Figure 7: Parallel computation of signed-distances

4.1 Distributed Allocation of Range
Data

Calculating a signed distance from a point requires
consideration of all range data with respect to this
point. When the number of the measurement in-
creases, more data should be considered. It becomes
difficult to allocate all the range data in a single pro-
cessor.

We distribute that range data to multiple PCs and
compute signed distances in a parallel manner. For
example, in Figure 7, Data 1,2,3 are allocated to PC
1,2,3, respectively. Signed distances from the point,
x, to Data 1 are computed by PCl. In the same
manner, signed distances to Data 2 are computed by
PC2, and so on. Since finding the closest point of
a mesh data is independent of the others, we can
compute signed distances in a parallel manner.

However, the computation times are different
among CPUs; After finding the closest points of all
data, we have to choose the smallest magnitude of
the signed distances. To synchronize, the CPUs have
to wait until the remaining CPUs finish computing
the signed distances.

4.2 Parallel Traversal of an Octree

Dividing an octree into partial trees enables us to tra-
verse the partial trees. We assign the partial space of
an octree to each CPU and traverse partial trees in
a parallel manner (See Figure 8). Since the traver-

—77—

Figure 8: Assignment of partial space of the octree
to each CPU and parallel traversal of partial trees

sals of partial trees are independent of one another,
a traversal does not have to synchronize with others,
and the computation time can be reduced according
to the number of CPUs.

By the method described in Section 3, the area of

range data which each process owns is only inside
the voxel and its peripheral area. Thus, each process
owns only the range data of the local area which it
takes charge of in a traversal of a partial octree.

However, each machine must cache range data files
in memory to read them efficiently and repeatedly.
Since a PC cluster cannot share data as a shared-
memory machine can, range data files have to be
allocated redundantly; therefore, memory efficiency
grows worse as this parallel traversal method is used.

4.3 Combination of Parallel Methods

The above two methods are complementary in terms
of the efficiency of CPUs and memory usage. In prac-
tice, they should be adjusted according to the system
specification by combining those two methods with
an appropriate condition. Two methods can be com-
bined by allocating range data distributed in each
parallel traversal.

The maximum number of traversals is determined
by the system memory size. Thus, the combination
strategy maximizes the number of traversals to deal
with the memory. If the system has more CPUs than
the parallel traversals, each traversal uses multiple
CPUs by the method of distributed allocation.

5 Merged Result

We have implemented these algorithms, and con-
structed one integrated digital Great Buddha. For
this project, we have built a PC cluster that consists
of eight PCs of dual PentiumIIT 800MHz processors
with 1GB memory for each PC. The machines are
connected by 100BASE-TX Ethernet. Figure 9 shows
the obtained geometric model of the Great Buddha;
the model contains 3 million points and 5.5 million
triangles.

We tested the merging program by changing pa-
rameters of the number of traversals and machines of
each traversal. Merged data consists of 12 files; of
those files, the average contains about 300 thousand
points and 600 thousand triangles. The total size
is about 150M bytes. The result is shown in Table
1. The computation time is almost inversely propor-
tional to the number of parallel traversals; and the
required memory of each machine is inversely propor-
tional to the number of machines in each traversals.

According to the combination strategy, the signed
distances are computed by 16 parallel traversals that
are allocated to each PC to minimize the computa-
tion time. If each PC has only 256 MB memory, the
signed distances are should be computed by 8 paral-
lel traversals that are allocated and distributed to 2
PCs.

Without reducing the data allocated in the mem-
ory, the maximum number of the traversals is four
because of the system memory size. It takes 59 hours
to build the model where it is computed by 4 traver-
sals that are allocated and distributed to 4 PCs. It
has been proven that the method of reducing the data
allocated in the memory increases the computation
and memory efficiency.

6 Conclusion

In this paper, we proposed a method which increases
the computation and memory efficiency of comput-
ing signed distances, along with a method for par-
allel computing using a PC cluster. First, since we
reduce the data allocated in the memory, the closest
point is searched efficiently. Thus, we can increase

Figure 9: Merging result of Kamakura Great Buddha

Table 1: Results of different parameters of the number of traversals and machines of each traversal.

Number of traversals | Number of machines in | Average required mem- | Computation Time
each traversal ory of each machine
1 1 200MB 468 min.
8 1 200MB 58 min.
1 8 20MB 256 min.
8 2 200MB 44 min.
16 1 250MB 23 min.

the number of the parallel traversals and reduce the
computation time.

In addition, we described two algorithms which are
complementary in terms of the efficiency of CPUs and
memory usage. By adjusting them according to the
system specifications, we can build the model effi-
ciently by using a PC cluster.

Now we can build models of huge size. In the fu-
ture, we plan to scan more Japanese cultural her-
itage objects and build fine models with photometric
attributes.

References
[1] Daisuke Miyazaki, Takeshi Ooishi, Taku
Nishikawa, Ryusuke Sagawa, Ko Nishino,

Takashi Tomomatsu, Yutaka Takase, and Kat-
sushi TIkeuchi. The great buddha project:
Modelling cultural heritage through observation.
In Proceedings of 6th International Conference
on Virtual Systems and MultiMedia, pp. 138-145,
Gifu, 2000.

[2] M.D. Wheeler, Y. Sato, and K. Tkeuchi. Consen-
sus surfaces for modeling 3d objects from multiple
range images. In Proc. International Conference
on Computer Vision, January 1998.

[3] W. Lorensen and H. Cline. Marching cubes:
a high resolution 3d surface construction algo-
rithm. In Proc. SIGGRAPH’87, pp. 163-170.
ACM, 1987. ‘

[4] H. Hoppe, T. DeRose, T. Duchamp, J.A. McDon-
ald, and W. Stuetzle. Surface reconstruction from

unorganized points. In Proc. SIGGRAPH’92, pp.
71-78. ACM, 1992.

Brian Curless and Marc Levoy. A volumetric
method for building complex models from range
images. In Proc. SIGGRAPH’96, pp. 303-312.
ACM, 1996.

A. Hilton, A.J. Stoddart, J. Illingworth, and
T. Windeatt. Reliable surface reconstruction from
multiple range images. In Proceedings of Euro-
pean Conference on Computer Vision, pp. 117-
126, Springer-Verlag, 1996.

Jerome H. Friedman, Jon Bentley, and Raphael
Finkel.. An algorithm for finding best matches
in logarithmic expected time. ACM Transactions
on Mathematical Software, Vol. 3, No. 3, pp. 209-
226, 1977.

D. J. R. Meagher. The octree encoding method for
efficient solid modeling. PhD thesis, Rensselaer
Polytechnic Institute, 1980.

