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Tracking multiple persons using distributed vision systems
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- Abstract: This paper shows the multiple targets watching method in wide-area spatial environment using
the Distributed Vision Systems (DVS). DVS is constructed with some “watching stations” that consist of a
camera and an image processor and a computer network connects them. This systems goal is to track
multiple persons in a wide-area that cannot be watched by one visual sensor. We introduce three algorithms
to realize this system, realtime human tracking method, the task decision algorithms of watching stations
and the object-matching method between stations. Finally, we describe experimental results that show the

validity of our approach.

1. Introduction

Wide-area surveillance systems are very necessary in security
applications, general human-computer-interaction,
teleconferencing applications and Intelligent Transport
Systems(ITS). However, precise information cannot often be
found from a single camera/sensor because of occlusions, image
resolution and noise. The solution for these problems is using
multiple camera/sensors that have different viewports. Maeda[1]
proposed the “image fusion systems” that employed muitiple
cameras and only one image processor. But it didn’t run in real-
time because the processor had to process real-time image
sequences gathered from multiple cameras. Recently,
Distributed Vision Systems (DVS) have been proposed [2][3]
for wide-area and real-time observation. These systems consist
of a camera and an image processor (called the “watching

station”), all connected through a computer network. Since the
images acquired from cameras are processed on local watching
stations, real-time and wide-area scene understanding can be
realized. Furthermore, if multiple stations watch one target in
the same-time, more precise and accurate result can be found
by coordinating measurement results.

Our system’s goal is tracking multiple persons walking in open
indoor environment and measuring their trajectories by using a
DVS. In this paper, three methods are described. The first is
real-time human tracking that runs on a watching station. This
method not only tracks people but also finds their positions in
world-coordinates. The second is the task decision algorithm
of each watching stations. To track people continuously between
multiple stations, watching stations have to decide their own
tasks, such as tracking, acquisition of a person or idling. Since
there is some variety in relations between the stations’ viewing



areas (overlapped, partly overlapped or completely separated),
the task decision algorithm depends on their geometrical
relations. The third algorithm is for matching multiple targets
between watching stations. It often occurs that multiple watching

stations track multiple targets. Without a method for object- )

matching, stations cannot integrate measurement results for the
same target that are obtained at different stations. We address
this issue by using an agent-based approach. Each agent is an
observation program (process) that can track only one person.
If multiple people walk in one watching station’s viewing area,
multiple “agents” work on the station and observe each person.
Grouping the result of these agents solves the problem
identification of person between stations.

2. The system’s architecture overview

Fig.1 shows the DVS architecture. The DVS consists of the
watching stations and the station parameter management agents
(SPMA) that are connected through a network. The network
connection structure is flat and not hierarchical like a client-
server model, so this system is robust to network or station
failure. Each watching stations has a fixed camera and ability
to run multiple visual processing programs, the seeing agents.
A seeing agent can acquire images from the camera and track a
person, detecting their position and communicate with local/
remote agents. Other kinds of agent also work for mediating
between the seeing agents. The SPMA gathers and distributes
all the watching stations’ system parameters (the calibration
parameter and camera position of the stations), but this agent is
not used for controlling the watching stations.

3. Tracking persons

In this section, the human tracking algorithms which run on
the seeing agents is explained. Although there are many studies
about tracking people[4][5], we designed an approach optimized
for use with a DVS. Our approach needed the following features:
Realtime performance, the ability to track multiple people, and
a measurement result given in world-coordinates. The last
requirement is for integrating results. If the result is given in
screen (image) coordinates, it is of no use when it sent to other
stations.

In general, finding the initial tracking position for tracking is
difficult. For this problem, our tracking method uses two tasks:
the acquisition task and the tracking task. The acquisition task
is used for the situation that the watching station can anticipate
the region where the person will appear. Our method is based
on comparing the current image to many simulated images. A
person is modeled by a simple 3D-ellipse and projected onto
the simulated images where the person’s movement is assumed.
The tracking task is used when a person has been found and
can be tracked over subsequent video frames.

3.1 The acquisition task

The initial position of the human body is necessary for the
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tracking process. In most cases, a station can use messages from
other watching stations to anticipate when and where a person
will appear in its field of view. The station does the acquisition
task by using many simulated images in its viewport. The station
assumes the person will appear at one of several positions in its
viewing region. If any of the simulated images match portions
of the actual video frame by more than a threshold factor, it is
used as an initial person position and the tracking task started.

3.2 Tracking task

The tracking task consists of four steps, as shown in Fig.2.
Step 1: A binalized image is generated by comparison the
acquired image to the background image.

Step 2:  To track human movement, many simulated images
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are created at positions where the person might move
to from the current position. A person is modeled as
a 3D-ellipse and it is projected onto simulated images
by using previously known camera parameters. We
assume that a person will not move more than 50mm
in two directions in world coordinates, so eight
simulated images are created plus an additional
- simulated image at the current position.

Step 3: The correlation between each simulated image and
the current binalized image is evaluated.

Step 4:  The person’s position is updated to the position with
the highest similarity value. The next tracking
process is now begun with this new position.

This process is iterated three times for an acquired image. For
tracking multiple people, multiple ellipsoid models are projected
onto the simulated images. We are able to carry out this process
at 10-15 frames/sec, so the system can track people moving up
to 1.5 - 2.25 m/sec.

4. The task decision algorithm of watching stations

We use multiple Watching stations for tracking people
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Fig.5 The task decision algorithms and the task dicision
messages.

(a): A person moves into the Overlapped Area.

(b): Multiple stations are watching a person.

ACQUISITION_ON_BORDER
message

Fig.6 The task decision algorithms and the task decision
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continuously over a wide environment. Each station watches a
part of the whole environment, so the stations’ watching areas
can be overlapped or separated. We don’t use a single central-
control station that would make our approach susceptible to a
station or network falure. In our algorithm, each watching station
decides its own current task according to the messages (not the
“commands”) received from the neighboring stations. Fig.3
shows an overview of the task decision algorithm.

4.1 Making the environmental map

‘When a watching station starts, it makes an “the environmental
map” according to its own and the other stations’ camera
positions and calibration parameters. A world environmental
map is prepared for every watching station (fig.4a). In this map,
the position and attribute of the objects in the environment are
described. After the station starts up, it broadcasts a “startup
message” and receives all the other stations’ camera positions
and calibration parameters from the SPMA. Then the station
maps the other station’s watching areas and its own watching
area onto the world environmental map (fig.4b). Then the
environmental map is divided into three types of areas (fig.4c):
regions that only one station can watch (the watchable area),
regions that multiple stations can watch (the overlapped area)
and those that no station can watch (the unwatched area). Using



this final map, each station can determine other stations whose
watching regions are overlapping or neighboring, bordering their
own watching area and the neighboring unwatched areas
(fig.4d).

4.2 The task decision messages

After the environmental map is made, each station starts to
wait for the task decision messages. There are 3 kinds of the
messages, the =~ ACQUISITION message, the
ACQUISITION_ON_BORDER message and the
STOP_ACQUISITION message. If a station receives the
ACQUISITION message, it starts the acquisition task at the
position described in the acquisition message packet (fig.5(a)-
Station A). If a station receives the ACQUISITION
ON_BORDER message, it starts the acquisition task on the
border area which is described in the message packet (fig.6-
Station A,B). A stations stops the acquisition task when it
receives the STOP_ACQUISITION message.

Inversely, a station sends messages when it is tracking a person
or loses track of a person. If the station is tracking a person
whose position is in an overlapped area, it sends the
ACQUISITION message to those stations whose watching areas
are overlapping it’s own (fig.5(a)-Station B). If it fails to track
and no other stations are watching, the station judges that the
person has moved into an unwatched area. Then it determines
the area (the nearest from the position) and sends an
ACQUISITION_ON_BORDER message to the neighboring
stations (fig.6-Station C). If any stations then find a person
appearing from the unwatched area, it sends a
STOP_ACQUISITION message to the stations that are doing
the acquisition task.

If multiple stations track the same target, the stations exchange
measurement results (fig.5(b)). Then they can estimate 2 more
accurate position by using all the results. If one station fails to
track and others are successfully tracking, the station tries to
resume tracking at the position that is received from other
stations.

4.3 Detecting stations’ startup/failure

In our distributed system, it cannot be supposed that all the
stations will be working all time. So the systems have to detect
a station’s startup or failure. The startup detection is realized
by receiving the startup message. A failure can be detected when
exchanging the task decision messages. If a station receives a
task decision message, it replies with an acknowledgement. If
the sender does not receive this acknowledgement, it supposes
the receiver has failed it and broadcasts a failure announcement.
‘When stations receive a startup or failure announcement, they
reconstruct their environmental map. ’

4.4 The station parameter management agent (SPMA)

The SPMA is used for gathering and distributing all the station
parameters. Recetving a startup message, SPMA replies by

sending its network address to the sender, then the sender can
retrieve all the station parameters from the SPMA. The SPMA
also updates all the station parameters when it receives startup
and failure announcements.

4.5 The advantages

The features of this algorithm are:
1. No central control station is used,
2. The task allocation messages are transmitted between
geometrically loca] stations.
3. Station’s startup or failure is allowed while the systems is
running.
Due to these features, our algorithm is robust against station
or network failure. Furthermore using effective local
communications reduces the network bandwidth.

5. The expansion for tracking multiple persons

In section 4, our wide-area tracking method is described. We
now describe an expansion of this method for tracking multiple
people. Nishio[6] presented a system for tracking multiple cars
passing trough a intersection using multiple image-processing
stations. In this system, an observation program(agent) works
on one of the station. Each agent corresponds a car one-to-one
and achieves observation by sending commands to many image-
processing stations. This system works well in simple noise-
free environment. Because an agent has an target’s observation
result that is acquired from one image-processing station’s
observation result . So if the result includes error, agent’s
observation is affected by it. We are addressing for much
complicated indoor environment: the watching areas are
overlapping or separated, occlusion, noises and etc. Furthermore,
we don’t use central-control station for the purpose of the
system’s robustness.

Ukita[2] proposed a multiple target tracking system where
watching stations have a pan-tilt-zoom camera, so each station
can observe a much wider area than ours. Their system’s goal is
to observe a specific target precisely by using zoom function.
Thus, it may occur to exist unwatched targets in the watching
area.

Our system’s goal is to track all people in the watching area.
We achieve this by expanding wide-area watching method
described in section 4. In the following sections, two methods
are shown: a new software architecture for tracking multiple
people on a single stations and the object-matching method used
between stations.

5.1 The expansion of systems software architecture:
The agent approach

We employ new software architecture for multiple target
tracking. In this architecture multiple observation programs (the
seeing agent) works in parallel on each station (fig.1). Although
a seeing agent can track only oné person, multiple target tracking
is possible if multiple agents are used. So we can easily expand
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our system to track multiple targets and ideally our system can
track a larger number of people than the number of watching
stations.

5.2 Matching persons between stations

To achieve robust tracking of multiple targets, a new object-
matching algorithm between stations is necessary. This is
because object mismatching often occurs if multiple targets
come close on the acquired images (fig.13(b)). This mismatching
produces error in object position estimation, and problem in
resuming of a station’s tracking. We address this issue by
grouping seeing agents with similar measurement results into
an agent group (“the agency”). This idea is illustrated in figure
7. An agency has an ID unique to the systems. There is a one-
to-one correspondence between agency groups and individual
tracked people, so the tracked people have the same ID. When
mismatching occurs, the agency is broken up and a new agent
group is generated.

The accuracy of our grouping algorithm result is found from
a certainty factor that every secing agent maintains. The
architecture of the seeing agent is shown in fig. 8. An agent
acquires the target’s position and its color while executing the
tracking task. If an-agent joins an existing agency, it compares
its own measurement result with other agent’s in the same
agency. If their difference is smaller than a threshold, the
certainty factor increases. On the other hand, if their difference

is larger than the threshold, the certainty factor decreases. The
certainty factor is kept by every agent and indicates the certainty
that the agent’s target is the person with a given ID.
Consequently, if the target might be mismatched, this value is
small. The certainty factor is also affected by image processing
events and the difference between the current color and past
measurement results stored in the local agent. If the certainty
factor is less than a threshold, the agent breaks with the agency
and continues to observe the target independently.

An independently-working agent follows the instructions of
“the mediator”. The mediator always watches the agent’s
observation result and determines which agency the agent should
join.

5.2.1 Update the certainty factor
The certainty factor c(t) is updated by following:

¢, =c,_,+k -eval _event
+k, -eval _comparison
+k, -eval _ knowledge
ki, k,, ky s const.(> 0)

Each evaluation value is set to -1, 0 or 1 according to following
rules. )

eval_event: If any events occur while processing images (such
as two persons coming close and their image regions
overlapping), this value is set to -1. Otherwise, this value is
set to 0. k

eval_comparison: The difference between the agent’s own
measurement results (position and color) and other agent’s
measurement results is calculated, provided that the certainty
factor of the other agent is more than the agent’s own certainty
factor. If the difference is larger than a threshold this value is
set to -1, less than threshold this value is set to 1, otherwise
this value is set to 0.

eval_knowledge: If the agent’s own certainty factor is less
than a threshold, the difference between the current color and
the target’s colors found in the past is calculated. If the result
is smaller than the threshold this value is set to +1, otherwise
to 0. If the agent’s own certainty factor is more than the
threshold, the current result is stored in the agent’s memory.

5.2.2 Send to other stations

If an agent is in an agency, it sends its own certainty factor
and current measurement result to all the other agents that are
in the same agency. This is done by using the ACQUISITION
message (described in section 4). If multiple agents watch a
person, they exchange their measurement results with the
ACQUISITION message. We expand this protocol to contain
sender’s Agent ID, Agency ID and the certainty factor. Each
agents has a unique agent ID, so if an agent receives a
ACQUISITION message packet, it can identify the sender agent
and its joining agency. Due to this exchanging process, the
certainty factors of all agents can be updated.



5.2.3 The mediator

Each station has a mediator that makes agents join an existing
agency or groups agents into a new agency. If there are any
local agents that are working independently, the mediator
compares between the agent’s measurement result (position and
color) and the all other agents’ and agencies’ measurement
results that are on remote stations. The mediator has some
“certainty factor lists” and the comparison results are
accumulated in one of the them. This comparison rule is same
as the eval_comparison. If any certainty factor in the list grows
higher than the threshold, the mediator instructs the agent to
join an existing or new agency. Each local seeing agents is only
on one certainty factor list, so if multiple local agents are
watching independently, the mediator uses different certainty
factor lists.

6. Experiment

We tested our system in three ways. The first experiment was.

in a wide-area environment that included unwatched areas. One
station watches a hallway while the other two watch the inside
of an adjacent room with their watching regions overlapped.
Fig.9 shows the experiment environment and trajectories that
the two target persons walked.

The environmental map that stations generated is shown in
fig.10. We can confirm they detected the unwatched areas and
acquisition areas. Initially, station 3 and 4 do the acquisition
task at the border of their watching areas. When persons 1 and
2 go into the watching areas of station 3 and 4, the stations find
and track them. At first, person 1 goes into the unwatched area
between the hallway and the room. Station 1 does the acquisition
border task according the task decision message from station 4.
In the same way, station 1 also finds the person 2. When the
person 1 is in the overlapped area of station 1 and 2, station 2
does the acquisition task at the position sent from station 1, and
they both track the person at the same time. The final detected
trajectories are shown in fig.11. Stations sometimes lose people
in the unwatched area, but they can resume tracking by using
task allocation messages and acquisition tasks.

Experiment 2 was for testing our object-matching algorithm.
Fig.12 shows the camera arrangement of this experiment. Three
cameras were watching the room while two persons entered
through the door and walked around. Fig.13 shows the tracking
result from station 2. As shown in fig.13(b), the human image
regions overlap many times. This event causes the object-
mismatching between the stations. Initially, two seeing agents
are generated on each station: Agent-A (in Station 1,2,3) is
tracking person 1, while Agent-B (in Station 1,2,3) is tracking
person 2. However at the point 5 (in fig.12), the two people
come close and object-mismatching between the stations occurs.
Fig.14 indicates this event: the detected trajectories from stations
2 and 3 are completely different at the point 5. Using this figure,
we can confirm the mismatching has occured on station 3. The
transition of the certainty factors (CF) and the agent grouping
results are shown in fig.15,16. We notice that all the agent’s CF
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decrease at the point 5. This is affected by the overlaps the
human’s image region, and we also find that both agent’s CF at
station 3 continue to decrease after this event, while those at
station 2 increase. This phenomenon indicates that the agents
at station 3 are tracking different people before and after the
people have passed point 5 (Their targets have been swapped).
Then, their certainty factor has decreased because their targets’
colors and positions are completely different from agents that
join the same agency.

Atpoint 6, agents at station 3 had broken away from the agency,
then the mediator made them join the correct agency. Finally,
the correct matching (Stationl-AgentA,Station2-AgentA,
Station3-Agent B), (Statin1-AgentB,Station2-AgentB, Station3-
AgentA) has been achieved. In above two experiments, the
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stations consist of a PC (Pentium HI-500MHz, Linux) with a
CCD camera attached. They can acquire a 240x 180 pixel video
image and are connected to a 100Mbps network.

The last experiment is the computer simulation to evaluate
our object-matching algorithm. In this experiment, 6 people are
supposed to walk around where 6 stations are watching (Fig.
17). Two algorithms are tested, proposed algorithm and the
conventional information-centerized algorithm. In the latter one,
all information acquired by the stations (position and color, each
one includes noise) is brought together in one place and
integrated, then the integrated results are distributed for each
stations again. The experiment results are shown in fig.18. We
can notice that the trajectories of the person 2 and 4 are not
obtained correctly in the information-centerized algorithm. This
is because whether the systems has only a presumed result or
many ones. In our algorithm, each agent have their measurement
results independently, therefore a system has many presumed
results for each tracking targets. We think this ‘diversity’
contributed to the tracking robustness.

ibiTracking rasult when human image regions are overlapped,

Fig. 13 Tracking results on Station 2 in experiment 2.

7. Conclusion

We have described a distfibuted vision system that can watch
multiple people over a wide-area environment. Three methods
are used for this system; real-time tracking working on watching
stations, a task decision algorithm used by multiple stations
and an object-matching method used between stations. For the
tracking algorithm, we developed a real-time 3D-model based
tracking method. For the task decision algorithm, tasks are
chosen according to the stations’ geometric relationship and
messages passed between the stations. For the object-matching
method, we use a new software architecture in which many
software agents works in parallel on each watching station.
Grouping these agents solves the object matching between
stations. Three experiments show that this system works well
for tracking multiple people in the wide-area, and its robustness
by the comparison of conventional algorithm and proposed one.
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