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Real-Time Localisation and Mapping

with a Single Camera
Andrew J. Davison Nobuyuki Kita

Real-time motion estimation for a generally moving, agile single camera is a particularly challenging prob-
lem, but one whose solution will lead to interesting applications in robotics, multimedia and television.
We argue that mapping research in mobile robotics, despite rarely being camera-based, is more relevant
when tackling this problem than recent structure from motion work in computer vision which has focused
on off-line reconstruction of camera trajectories. We present a framework for EKF-based single-camera

localisation and initial experimental results, and discuss current and future research issues.

1 Introduction feature positions, combined with various techniques

for reducing computational complexity in large map-
Real-time Simultaneous Localisation and Map-

Building (“SLAM”) in mobile robotics has seen
great progress in recent years  to the point that

s, have shown great success in enabling robots to
estimate their locations accurately and robustly

over large movement areas [5, 7, 4]. However, it is
some researchers are now claiming it to be a large-

ly solved problem. Extended Kalman Filter (EKF)-

based algorithms, propagating first-order uncer-

important to remember the somewhat restricted
conditions under which these successful demon-
strations have generally been achieved: 1. 2D pla-

tainty in the coupled estimates of robot and map nar robot movement and/or mapping; 2. Known
, ; 2.

L Andrew Davison: Robotics Research Group, Depart- robot control inputs and accurately-modelled dy-
ment of Engineering Science, University of Oxford, OX1 . .
3PJ, UK. Email: ajd@robots.ox.ac.uk World wide we- namics; 3. Slow or smooth robot motion; 4. Spe-

b: http://www.robots.ox.ac.uk/"ajd/ Nobuyuki Ki-
ta: Intelligent Systems Institute, AIST, Tsukuba Cen-
tral II, 1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, tiple sensors of the same or different types; 6. Sim-
Japan. Email: n.kita@aist.go.jp World wide web:
http:www.is.aist.go.jp/nkita/

cialised, accurate, well-calibrated sensors; 5. Mul-

ple, easy to map environments with unambigu-

ous landmarks; 7. Large computational resources

g 1070


研究会Temp
コンピュータビジョンとイ メ ー ジ メ デ ィ ア

研究会Temp 
（２００３． １． １７）

研究会Temp 
136－15

研究会Temp 
－107－


1: The goal: 3D motion estimation for a gen-

erally-moving single camera.

available.

We argue that the gradual loosening of these
restrictions is able to add almost limitless extra
“difficulty” to the SLAM problem, and that new
research issues will continue to arise. A gradual
lifting of restrictions opens up a whole range of

new applications for SLAM algorithms.

1.1 Cameras and SLAM

In this paper we look specifically at a SLAM
problem which presents a particularly testing set
of circumstances: motion estimation for a single
camera, moving rapidly in 3D in normal human
environments, based on mapping of visual features,
potentially with minimal prior information about
motion dynamics. The value in working on this
problem is in the flexibility, ubiquity, compact-
ness and power of optical cameras compared with
other more esoteric sensors reflecting the fac-
t that humans are predominantly visual animals,
cameras exist in many domains.

Example applications are shown in Figure 2: in
the short term, camera-based SLAM will be most
useful in domains where the goal is to recover cam-
era position in real-time, via sparse feature map-
s, rather then aiming to build dense visual maps

as outputs themselves: the computation involoved

in building dense maps is simply too great. The
short term goal should be a rather general-purpose
real-time position sensor, which could be rapid-
ly and flexibly implemented with a minimun of
domain knowledge in robotics (motion estimation
for generally moving robots such as humanoids),
wearable robotics (motion estimation for devices
worn by humans to assist in tasks such as search
and rescue or industrial inspection), telepresence
(human head motion estimation by means of an
outward-looking head-mounted camera attached
to a head-mounted display), or television (used to
provide camera motion estimation for on-line aug-
mented reality). High performance, fully digital
cameras able to acquire images at 640 x 480 pixels
resolution and transfer them to any PC or laptop
at 30Hz (in this case over the IEEE1394 “firewire”
bus) are now available for just over US$100. Algo-
rithms which work with cameras like these could
really bring SLAM to the desktop.

1.2 Structure from Motion

Attempting SLAM using vision brings into sharp
focus the similarities between work on map-building
in mobile robotics and “structure from motion” re-
search in computer vision, where 3D models and
camera trajectories are recovered from image se-
quences. The key goals are clearly the same: si-
multaeous reconstruction from sensor measurements
both of the motion of the sensor body and its
movement. Nevertheless, structure from motion
research has taken a very different route from the
methods commonly used in SLAM for a single key
reason: the lack of hard real-time constrants in
many useful applications for vision technology.

Structure from motion research in computer vi-
sion has reached the point where fully automated
reconstruction of the trajectory of a camera and
the locations of the arbitrary features it observes
is becoming routine [8]; however the successful ap-
proaches seen to date have almost exclusively re-

quired off-line, batch processing of the images ac-
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Wearable Robot

Telepresence Augmented Reality

2: Potential applications: motion estimation
for a humanoid robot (the Honda P3) or wearable
robot (developed by Walterio Mayol and David
Murray at the University of Oxford); head motion
estimation for telepresence (picture shows robot-
ic head slaving developed by Jason Heuring and
David Murray at the University of Oxford); cam-
era motion estimation for real-time augmented
reality (picture shows off-line implementation by
Kurt Cornelis and Marc Pollefeys at K.U. Leu-

ven).

quired, via computationally costly simultaneous
analysis of all the images obtained in a sequence
using non-linear minimisation techniques. These
off-line methods are readily applied to building
3D models from video sequences for use in video
games, or for recovering camera trajectories for
augmented reality effects in cinematic post-processing,
and commercial products have been recently been
released in these areas.

On the contrary, robotic applications have al-
ways required real-time performance, and there-
fore a sequential approach, where map-building
and localisation proceed in a step-by-step fashion
as movement occurs. Real-time applications re-

quire that with each new piece of data, its effect on

0 1090

estimates can be incorporated within the constan-
t time-step available until the next data arrives.
The kind of batch optimisation used in typical re-
construction algorithms is fundamentally unsuited
to the real-time domain, since this constant time-
step constraint is not obeyed. For this reason,
the algorithms developed for real-time SLAM in
robotics using predominantly sensors other than
vision will be more relevant to the problem of real-
time visual localisation and mapping, a point elab-

orated on in [3].

1.3 The Rest of this Paper

In this paper, in addition to general discussion
we will present the basic framework for a real-
time single-camera localisation system based on
the EKF.

The key points of the approach we propose are:

1. A general model for smooth motion

2. Sparse mapping of a useful selection of high-

quality features

3. Active measurement of features selected by

information content

2 Representing 3D Position

and Orientation

We define the following coordinate frames (see

Figure 3):

1. W, the world coordinate frame, defined such
that the y axis points directly up and the z

and z axes are horizotal.

2. R, the robot frame, fixed with respect to
camera. and aligned such that its y axis
points to the top of the camera, z to the
front and x to the left.

Position and orientation in 3D can be repre-
sented minimally with 6 parameters: 3 for position

and 3 for orientation. However, we take here the
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approach of using an extra parameter when rep-
resenting 3D orientation, and use a quaternion
which is a way to represent 3D orientation with 4
parameters. Quaternions have the advantages of
mathematical convenience and a lack of singular-
ities as a representation for 3D orientation.

The vector of 7 parameters chosen represent po-

sition and orientation is therefore:

I‘W *
Xp = ( qWR ) = qo (]‘)

qu
dy
qz

We refer to x,, as the position state of a robot
or body: a standard way to define 3D position
and orientation which is common for any type of
robot. We differentiate between x,, and x,,, the ac-
tual state of a robot, which may include parame-
ters additional to those representing pure position
— these extra parameters may represent parts of
a robot which move redundantly with respect to
overall position, or other aspects of interest: in
the motion model we shall present later, we store
estimates of the camera’s velocity and angular ve-
locity as well as of position.

The quaternion q"' % is uniquely associated with
the rotation matrix RV defining the transforma-
tion between frames R and W. If £V is zero and
RV is identity, frames W and R coincide (the
robot is at the origin of coordinates of the world

frame).

3 A Motion Model for a Gen-

erally Moving Camera

Constructing a motion model for an agile cam-
era which may for instance be attached to a per-
son’s head at first glance might seem to be fun-

damentally different to modelling the motion of a

y*(up)

A x®(left)
/

Camera Frame R

z® (forward)

World Frame W

3: Coordinate frames and vectors in camera
geometry: fixed world frame W and robot frame
R carried by the camera. The vectors involved in
measurement of a feature: robot position r, carte-
sian measurement hy and feature position y sat-

isfyy=r+hp.

wheeled robot moving on a plane: the key differ-
ence is that in the robot case we were in possession
of the control inputs driving the motion, such as
“move forward 1m with steering angle 5°” , wheras
we do not have such prior information about a
person’s movements; without imposing strong do-
main constraints, the best we can hope to do is
make a model along the lines of only permitting
motions with certain maximum accelerations and
therefore smoothness.

In the case of our agile camera, the type of
model we will use initially is a “constant veloci-
ty, constant angular velocity model”. This means
not that we assume that the camera moves at a
constant velocity over all time, but that our statis-
tical model of its motion in a time step is that on
average we expect its velocity and angular velocity
to remain the same, while undetermined accelera-
tions occur with a Gaussian profile.

The fact that we directly model the velocity
of the camera in this way means that we must

augment the robot position state vector x;, with
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velocity terms to form the robot state vector:

ni
WR
a
X, = . 2
c= Lo @
wW
Here v" is the linear velocity and w" the an-

gular velocity. Angular velocity is a vector whose
orientation denotes the axis of rotation and whose
magnitude the rate of rotation in radians per sec-
ond. The total dimension of the robot state vector
is therefore 13.

We assume that in each time step, an unknown

impulse of acceleration and angular acceleration

VW
o(z)

is applied to the robot. Depending on the circum-
stances, VY and Q" may be coupled together.
Currently, however, we assume that the covariance
matrix of the noise vector n is diagonal, represent-
ing uncorrelated noise in all linear and rotational

components. The state update produced is:

w
Ipew

WR

qnew

wnew

' 4+ (v VW) At
_ | d"Fx (@ + QM)A 4
B vW 4 vW -(4)

Here the notation q((w" + QW)At) denotes
the quaternion trivially defined by the angle-axis
rotation vector (w" + QW)At.

In the EKF, the new state estimate f,(x,,u)
must be accompanied by the increase in state un-
certainty (process noise covariance) Q,, for the robot
after this motion. We find Q, via the Jacobian cal-

culation:
of,  of,

sza_n na_n-, (5)

where P,, is the covariance of noise vector n. This
Jacobian calculation is complicated but tractable;
we do not present the results here.

The rate of growth of uncertainty in this motion
model is determined by the size of P,,. With small
P,, we expect a very smooth motion with small
accelerations, and would be well placed to track
motions of this type, but would not be able to cope
with sudden rapid movements. High P,, means
that the uncertainty in the system would increase
significantly at each time step, and while this gives
the ability to cope with rapid accelerations the
very large uncertainty means that a lot of good
measurements must be made at each time step to

constrain estimates.

4 Incorporating Visual Fea-

ture Measurements

The features used as landmarks in a visual S-
LAM system are image interest regions detected
with a saliency operator [9] and matched using im-
age correlation (see Figure 4, or [1] for much more
detail). We use image patches which are larger
(around 15 x 15 pixels) than those typically used
in structure from motion, since the features must
be highly distinguishable to act as stable long-
term landmarks rather than behave as transient
tracking points.

Considering the vector sum of Figure 3, the po-
sition of a point feature relative to the robot is

given by:

hif =r™(y" —r™) . (6)

Here h¥! is the cartesian vector from the sensor
centre to the feature. A given sensor will not di-
rectly measure the cartesian vector, but some vec-

tor h of parameters which is a function of hf:

h =h(hf) (7)

In the particular case of making measurements

with a single camera, the measurements achieved
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4: Typical features used in a visual mapping

system: an image interest operator locates patch-
es with high intensity gradients in both the z
and y directions. These typically correspond to
the corners of scene objects and are well localised
in space, though reflections or depth discontinu-
ities can also throw up unsuitable candidates: in
SLAM, these can rejected over time since they
do not behave as stationary landmarks when ob-

served from new viewpoints.

from the observation of a feature are its horizontal

and vertical image positions (u, v):

hyt
h:<u>: uO_fku@ . (8)
v

vo — [ky Z—Za

Parameters k, and k, are the pixel element den-
sities (in pixels per metre) in the v and v directions
respectively. The noise covariance R of this mea-
surement is taken to be diagonal with magnitude
determined by image resolution.

A clear characteristic of this measurement mod-
el is that it is not invertible: that is to say that
while it tells us the value of an image measure-
ment given the position of the camera and a fea-
ture, it cannot be inverted to give the position
of a feature given image measurement and camer-
a position. This is obvious once we consider the

projective character of visual measurement: the

depth of scene features is lost. This means that
initialising features in single camera SLAM will
be a difficult task: initial 3D positions for features
cannot be estimated from one measurement alone.
From just one view, all that can be initialised into
the map is a ray in space on which it is known that
the feature must lie. At least one other view of the
feature from a different camera position must then
be obtained so that the features’s 3D position can
be estimated. This is a task which is not current-
ly solved in our implementation, though we will

present work in progress soon.

5 An Experiment in Real-Time

Single Camera Localisation

Since one of the outstanding problems of single-
camera SLAM is feature initialisation, as a first
step an experiment was carried out in which fea-
ture positions were measured by hand and ini-
tialised into a map as known features (see Fig-
ure 5: the features were corners of some of the
squares on a calibration grid and a piece of paper
on the floor). A total of 12 features were mapped.

Starting from rest in a known position, a hand-
held camera was waved in front of the scene during
6 seconds and images were captured at 30 frames
per second. Measurement updates were based on
measurement of just one feature per frame.

An active measurement strategy was used, sim-
ilar to that used in our previous work using mov-
able cameras [1, 4, 2]. An information criteri-
on made choices about which feature to measure
at each time step with the essential result that
the measurement was chosen whose result was
least predictable. The effect of this is to keep es-
timates consistently good by continuously locking
down the largest uncertainty available in the sys-
tem. In practice, the criterion recommends very
rapid switching of attention between different fea-
tures.

Camera motion estimation proceeded accurate-
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5: Experiment in real-time camera localisation
using a known map of features. Images were re-
ceived and processed at 30 frames per second on
a standard 400MHz laptop PC. Only one feature
measurement was made in each frame, the feature
to be measured chosen based on visibility and in-
formation content criteria. Ellipses in the images
show 30 search regions: these were the only image

regions needing to be processed in each frame.

ly for around 6 seconds, when a lack of visible fea-
tures led to a rapid growth in uncertainty, large
feature search regions and eventually a mismatch
(failure of data association: the search window
was so big that more than one part of the grid with
similar appearance was included) which caused ac-
curate estimation to fail. Although we do not have
ground-truth data for the motion, the fact that ac-
curate tracking of all the features was maintained
during the 6 seconds of successful estimation: this
is a very promising result indeed, based as it was
on measurement of just a single feature at each
time step, and a real validation of the active mea-
surement strategy, a sharp contrast with structure
from motion systems where dozens or hundreds of
different features are measured in each frame: the
message is clearly that the information gained by
such dense measurement is highly redundant and
it is far better to concentrate on a few, high qual-

ity features if camera localisation is the goal.

6 Conclusions

We have introduced the issues involved in tack-
ling SLAM with a single camera and presented a
preliminary implementation to perform map-based
localisation in real-time with the very promising
result that we can get good results with just one
feature measurement per frame. A full implemen-
tation of the demonstration described in this pa-
per is available open-source and ready-to-run for
Linux as part of the “Scene” C++4 software li-
brary [3] for sequential localisation and map-building
at:

http:/ /www.robots.ox.ac.uk/ ajd/Scene/
The research issues which we will focus on in

the near future are as follows:

1. Feature initialisation from multiple views:
features must be viewed from two signifi-
cantly different viewpoints before their 3D
positions can be initialised, and care must

be taken that they are inserted into the map
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with the correct uncertainty.

. Multiple hypotheses and non-Gaussian prob-
ability distributions: while the EKF has of-
ten been shown to perform well in SLAM,
there will be many cases with the sparse
measurements of single camera SLAM where
it is desirable to propagate multiple hypothe-
ses over time for later resolution. Since gen-
eralised schemes for representing non-Gaussian
probability densities suffer from scaling prob-
lems, explicit schemes for multiple Gaussian

hypotheses may suffice.

. Pure information theoretic searching: we are
convinced of the benefits of active search
based on information content, but there is
much to be done to apply information the-
ory rigorously in this domain. For instance,
when measurements of several features are
being made in each frame, what does a suc-
cessful measurement of one tell us about where
to look for the others? And what if there is
a chance that that measurement was the re-

sult of incorrect data association?

. Local sensors such as accelerometers and gy-
ros may be permissible in some applications
and are expected to a have large positive ef-
fect, dramatically reducing visual search re-

gions.

. Map scaling: in this as in all SLAM prob-
lems, the problem of computational cost in
large maps arises, and methods such as the
postponement of map updates [1, 6] will be

implemented.
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