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Abstract ' In this report, we present a novel similarity measure using Hilbert curve for point pattern matching. In

our method, the si'mila.rit.y measure is computed in one-dimensional (1-D) séquence in stead of in two-dimensional

(2-D) space by ﬁsing Hilbert curve. The experimental results show that our inea;iure is fast and robust to ﬁoise

than conventional similarity measures.
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1. Introduction

Any image registration problem can be dlassified into four
factors{1] including feature space, search space, search strat-
egy and similarity measure. Paints are the most desired fea-
tures. Knowing the coordinates of a number of carrespond-
ing paints in two images, a transformation can be determined
to resample on image ta the geometry of the other. Point
features are also knawn as interest points, point landmarks,
corner points and control paint. Doint pattern matching is a
primary and essential approach for establishing a correspon-
dence within two related patterns. The conventioal similarity
measures for point patter matching including normal Haus-
dorff distance(HD), partial Hausdorff distance(PHD) [2] and
modified Hausdorff distance(MHD) [3)]. '

In fact, conventional similarity measires such as HD and
PHD are very sensitive to outlier points or noise. A very

small mimber of outlier points or naise can lead to signifi-

cant_errors. MHD warks well on the matching' task,however,
as we will discuss in the experiment, it suffers from certain
naise. Tn addition, for hansdorff similarity measures, com-
puting in the 2-D space for each candidate costs too much
computational time, especially in dense feature points set
ar high noisy images. In order to solve these passible prob-
lems, a navel HSD is propased here to extend the measure for
matching images. HSD can be computed much faster than
Hausdorff distance measures. On the other hand, it is an
accurate measure overcoming the mismatch problem caused
by outlier points or noise.

The rest of paper is organized as follows: First we present
our HSD in detail in section 2. Then, in section 3, we analyze
the performance of HSD for object matching. Section 4 is
about the experimental results using HSD and comparisons
with Hausdorff distance measires. We conclude this paper
in the last section.
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2. Hilbert Scanning Distance

We now present HSD for grid points. For more details,
we recommend readers to refx Assume that we are given two
finite point sets A = [m._...aa:g]‘.and B = {b,...
that each paint @ € A and b € B has integér coordinates

in the 2-D space. We firstly use Hilbert scanning to convert

them to new sets S = {91,...,37)} and T = {t1,...t1) in the
1-D sequence, respectively. Then, the directed HSD from A
to B hnad(A, B) is compnted by

4
T2 ptaminl 4~ 1) U

=1

hnsa(A4,B) =

where || - || is the Euclidean norm distance in the 1-D space
and function p is defined as:

olx) ={ @ (zg7) @

T (2>7)

where p is called threshold elimination function and 7 is &

threshald predefined. We also can abtain the directed HSD
from B to A hnsa(B, A) similarly and HSD is defined by

Hhsa(A, B). = max(hnsa(4, B), hrsa(B,4)) . (@) .

This definition of HSD is similar to the definition of MHD.
Without the thireshold function, lt will he a special MHT) in
the 1-D space. ) ’
The detailed algorithm of HSD for comparing images is
given in here. If two binary images Aand B including feature
.pmnts have been given, we first construct a new image C by

mmblnmg them under a crrtam translahrm Note that there'

must be 3 fypex of feature’ pmnt in the combined i mage C:
feature point from A, feature point from B and averlapped
feature point from ‘hath A and B. In order to dist.ing'nisbv
the 3 types of point, we give values 1, 2 and 3 to them, re-
spectively. Then; the process of computing hmd(A ‘B) can
be summarized as the following steps:

Step1
bined image to a 1-D.sequence C’.

Using a prepared lackup table:to convert the com-

Step2 For any feature point c!.in C': if:(value of c!) =2,
1, find the near-
est feature point ¢} whose value is 2 or 3, and the distance
d, =|| ¢ = ||; else (value of ¢!) =3,di =0. -

Step3 Ifd; > 7, thendi = 7.

Step4 Repeat Step2 and Step3 until all the feature points
have been pracessed.

Step5 . Obtain hn,a(A, B) by calculating the mean value of
all d;,

St,ep6 Stop.

The process of computing hp.qa(B, A) is with the same ateps,

next feature point; else if (value of cf) =

excepting the value of feature point in A is 2 and in B is

b4} such. -
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(¢) comhined image C. (d) converted 1-D sequence ',
B 1 An example of puting Hilbert ing dist in im-

ages.

1. Finally, HSD ‘can be easily obtained as the larger one of
hhaa(A, B)_ and hpaa(B,A4).

Far example, in Figure 1(a) and in Figure 1(b), there are
twa images A and B. The coordinates of feature points are
{(0,1)(3,1), (2,2),(3,3), (3, 9)) and {(1,0),(2,0), (2,2)) in
A and: B, vespectively. We combined them into a hew im-
Then, by using Hilbert
scanning,” image C' is ¢onverted to a 1-D sequence C' as

age C as shown in Figure 1(c).

ahown in Figure 1(d). For all points whose valie are nof,
2, we compute all d; which are (2, 2 0 2, 23], and when

"7 =10, then all d; will be {2,2,0,2,10}. Finally, h;.,d(‘l B)

is (2+2+0+2+ 10)/5=3.2in tlus example.
8. Analysxs of HSD for Matchmg Images.

In this chapter we analyze the computational complexity
of HSD and the reason why HSD is accurate for matching
images in presence of noise. o C

3.1 Computational Complexity of HSD .

1t. is veported in[2] that the directed Hausdorfl distance
measves can be trivially computed.in complexity O(I1J) for
two point sets of size ] and J,, That is, for each point in
A, we compute the distance from it.to every point in B.
This is quite compntational e:xpensi.ve. Tt can_be improve
to O((7 + J7) log(7 4 .J)) by using some other strategies [5]
(In fact, this will, be a Frechet distance, however, can be,
viewed as a lightly modified version of Hausdorff distance)..
In order to efficiently compute the Hausdorfl distance, it is
useful to adapt thg_ distance transfarmation of binary image.
Distance transform converts a hinary image, consisting of
feature (value 1) and non-feature pixels (value 0), into an

image where all non-feature pixels have a value. correspond-

—334—



ing to the distance to nearest feature pixels. On the other
hand, HSD is computed in the 1-D space; we do’ not use’
a dlstam'e transform hare For Justlre, we do not nse any

dlstanre transformation i in either.

For. rompanng images using HSD in practm', We mmbmed
the two sets into ane new set(which means combxmng A new
image). As shown in Figure 1(c), there are 3 different types
of point in the new set: “1" denotes paints belongmg toA but
not belonging to B- “2" denotes: pnmts belongmg to'B but
not belrmgms to A; “3" demtes aoverlapped | pmnts bdongmg
to both 4 and B.. As a result, when oomputing hhaa(4, BY;:
for each pmnt from A,/if the pnmt isa “3" pmnt we. set.
the d:stanre dito O dlm'tly, if the paint is a “1" pomf, We

only need fo consider- tvm ne,arext paints which are- mt “1" ’

paints in fmnt and back of the current position in the 1-D
sequence. 1 we denote ¢ as the average number of searched
points to find the appropriate two paints in 1-D sequence
and suppose there are r percmtage “3” paints of I points,
the computational mmplexnty of HSD is O(6(1 = r)J)). No-
tice that § is often much smaller than I ; most of its value
is between 2 and 10 in practice. In addition, I and ‘,] are
always large' numbers exceeding 1000 in images, therefore
O(8(1 ~ r)J)) is much smaller than O(IJ) and -also simaller
than O((7 + J) ldg(l +.J)) even without using any strategy.
Mareover, when computing HD or PHD, we should to rank
all distances to select the appropriate vahe, however, there
is no need to rank all distances when cdmpuﬁng HSD as well
as MHD. Hence,‘m'lr HSD can be computed faster that the
traditional .distances,i especially in point matching problem
with a large number of points.
3.2 Accuracy of HSD

In aur methad, becanse we use threshold elimination. func-

tion p when computing HSD, extreme distance vahies cansed -

by 3 major negative. factors can be reduced. These thiee fac-
tors are:

¢  First, .outlier peints can affect final -distance result

gremt.ly,‘ since. they always -have large valies where we are’

computing the distance;

® Second, when we use Hilbert scanning, a part of the
distances between two paints in the 2-D image may change
greatly in the 1-D sequence. Tt is also shown in the exam-
ple that two points (the two 1 point in the center of the
Figure 1(a)) which are close in 2-D image, become far away
after Hilbert scanning in the 1-D sequence. The distance he-
tween them is only 1 in the 2-D image, however, it became
21 in the 1-D sequerice as shown in Figure 1(d);

¢ Finally, noises such as Multiplicative and Gaussian
naise can also affect the result of distance.

In order to solve the possible problem, threshald elimina-
tion fimction p is proposed here. Because the distance er-

2 A value surface of HSD near global minimium

rars caused. by the abave negative factors always tends to be
large values, these large values can be discarded by setting -
in threshold elimination function to be a‘smaller vahe. - For
instance, as described in the second item above, the distance
between two points which is 1 in the 2-D image, become 21

after Hilbert scanming. - If we set 7 = 10; the distance values
between two points can. be restricted in a small value range
less than 10. Consequently, the final result whichfis com-

puted as the mean of all distance valies shonld also be small

and can get rid of the ahave negative factors. Figure 2 shows

a directed HSD value sirface around the best matching posi-

tion in our experiment. We can find that the values become

larger and larger while the position being away from thé'best

matching position (global minimum) farther and farther. We

also ohserved in other cases, all of them have similar value

surfaces. Therefore it is an ~accurate matching measure in

prewnce nf naise, .

4., Experlmental-Results and Discussidns

In this chapter, we make three expeﬂments to venfy the
efficiency and robustness of our HSD. The first experiment
is abnul; the dlsrﬂmmatory of dxﬂermt distance measures.
The semnd one is about the matdung result and cost time
of qur HSD comparing with other measures when doing im-
age matching. The last one is about ap experiment to show
the rale of threshold elimination function in our HSD.

4.1 Dlscrimmatory of Distance Measures .
First, we apply the proposed HSD and Hausdorff distance
measures to real edge images of different vehicles. Figure 3.
shows four vehicles and their edge images. We only: retain -
the edge;s belonging to the vehicles of interest. We compute
the four distance ‘measpres HD, PHD(50%”‘ ranked vahie),
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(e) edge of (a).

(f) edge of (b).
X 3- Different vehicles and their edges.

MHD and HSD for pairs of vehicles and get the values which-

are shown in Table 1. A

We know that distance measures present the similarities
of two vehicles here. From the values of similarity in Table
5.1, we can see that HD is not reliable. For.instance, the HD
value is 33 between A and B, however anly 32 between 4 and
C. Note that the two vehicles A and B are most similar in
shapes than other pairs, whereas A is a little different from
C. That means the similarity measure value between A and
B should be smaller than it between A and C. Now, we also
evaluate the ratio of distance values for the best matching
and second best matching. .If the best distance value is vy,
and thg second best value is 13, then the ratio is computed
by .

. "
ratio = . (4)

This ratio can represent the discriminatary of a distance mea-
sure: the smaller this ratio is, the more discn'minaiory the
distance measure has [3]. Thia ratio is about-1-for HD, PHD
and MHD, however only about 0.43 for HSD. Hence, it is eas-
ily understood that HSD is more discriminatory’ than Haus-
dorff distance measures. '

4.2 Matching Images Using Different Distance

' Measures )

We .are now considering an experiment to find a vehicle
model from an image including many vehicles. When we are
considering the distance between a model and an image, the
image is often considerable larger than the model. In this
experiment, we choose the model which is smaller than the
image, that we can use the directed distance from model to
image instead of narmal definitions of all distance measures.
We recommend readers to [2] to read mare about the match-
ing portions of the madel and image for details. Our HSD is

(<) vehicle C,

.(g)bedge of ().

" () edgeof (a).°

#'1 The values of different distance measures for ima.ge pair:s.
" (a)HSD. (b)HD. (¢)PHD. (d)MHD. v
A|B| C|D ' "l AlB]|c|D

Al of13|30]4a1 + |A| of13]30] 41
R[13] o|as5]|32 RB[13] ofas]a2
C|30]35| of3r Cc{30[35] 037
D|41]32|a37| o D{41(32(37] @
(a) . __.(b) .
A[R[c[n] Talmr]c]n
Al of13[30]41 Al of13|30|a1
B!13]| 0]35]32 Bl13] o]35]32
Cla30|35]| o|ar clan{as| olar
D|41(32(37] o D|41]32]37| o
(c) : (d)
a similarity e designed for finding the spatial trans-

formation between two point sets, so it is no differences be-
tween different transformation forms (such as affine or only
translation) since we concentrate on nothing but the mea-
sure itself. In this paper, we only consider the translation in
the experiments for simplicity. Withant 16ss of generality, we
fix the image and allow anly madel to translate. Thus, the
transformation equation nsed in our experiment is simply as
follow: '

(2)-()+()

We let model translate in interval [0, 200] along x-coordinate
and ‘[0, 200] along y-coardinate. - We only consider the integer
in our case, because Hilbert scanning is grid scanning. We
don’t use any strategy for searching in this experiment. that
means we do a full search.

Mq(A4,B) ='nti;nh(A,Bew) (6)
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(a) real model of a single vehicle, (b) édge of (a).

(e) () with Gaussian noise.

(i) (c) with Multipli (j) edge of (i).

(m) randomly add 20% amount (n) randomly delete 50% amount

of total edge paints to (d). of tatal edge points from (d).

y - R4 Vehicles and their edges with different noise leyel.

where @ is the standard Minkowski sum notation (i.e.,
Xbw=zr+tw|neX). ' i

In this experiment, PHD1, PHD2 and PHD3 present the
PHD of 50%*", 75%*", 90% ranked distance of all dis-
tances, respectively. We compute the matching errars in this
experiment by the root-mean-square vahie (RMS) defined as

™

RMS = \/(wr — wey)? + (wy — wye)?

where (wx,, wy,) is the best matcﬂ.ing pasition.

Our test sets are a vehicle madel of 128 x 128 pix-
els and a' 512 x 256 pixels image including some simi-
lar vehicles.
ure 4(a)-Figure 4(d) are the original images and binary
Then, we add some differ-
ent types of noise [6] such as Gaussian (Figure 4(e), 0 =

All images are shown in Fignre 4. Fig-

edge images without naise.

10,0 means the variance), Poisson(Figure 4(g)), Multi-

plicative(Figure 4(i), » 10.» means the variance) and
salt&pepper noise(Figure 4(k)) to Figure 4(c), respectively.
Gaussian (also called narmal) noise madels are nsed fre-
quently in image processing. Multiplicative noise is also
called speckle noise. Poisson and salt&pepper noise are
unipolar. Figure 4(f).Figure 4(h),Figure 4(j) and Figure 4(1)
are the edge images extracted from those noisy images us-
ing same parameters. Fignre 4(m) and Figure 4(n) are the

edge images by randomly adding and deleting edge points

(c) real.image of vehicles. (d) edge of (c).

(h) edge of (g).

(k) (c) with salt&pepper noise (1) edge of (k).

' 5
)

in Figure 4(d). = 10. The
best matching position i is (28 119) hm (we nbtmn the best
matrhmg position by nbserwng the translation i in‘Photoshop
in prarhce) Table 2 and Table 3 present the mafrhmg re-
sults and- RMS pomtmn €rrars.

On the other hand, HSD' can be computed faster than
Hausdorff distance measures. Figure

ln ﬂns expmmenf we set 7. -

5 shows the running
time in the experiment. Since MHD is the fastest one of all
Hansdarff distance measures, we choose the rmmning time of
it for comparing with the time of HSD. This time is a CPU
time of a normal PC with 3Ghz CPU and 1G memories 1s-
ing C++ langnage. The computational time using MHD
increases gradually when edge points increasing, Contrarily,
the computational time using HSD keeps in a low level even
edge points increasing. The average running time using HSD
is ahaut 1/49 of the time using Hansdorff distance measures
in the experiment.

5. Conclusions

A fast and accurate similarity measure for point pattern
matching algorithm using Hilbert Curve has been presented
in this paper. This similarity measure computes the dis-
tance ‘measure in the one-dimensional (1-D) sequence rather
than in the two-dimensional (2-D) space, hence, we only need
to consider front and back neighborhood instead of multj-
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$2 The position results of experiment

" Figure

Pasition result
] HD' PHD1 PHD2  |PHD3 : [MHD HSD
Cwen T Ba(d) | (27, 119), | (27.119) [ (28, 119) ((33;177) [ (28, 119) | (28, 119)
cT T LRy | @as, i) (28, 115) | (199, 113) | (27, 118) [(208, 112) | (28, 119) |
B 4(h) | (219, 118) | (28, 119) | (26, 115) | (28,119)’ (28,119) (28119).
Lo M B4G) | (203, 114) (206, 110) f (212 12) [ (27, 139) | (‘207»114) "(28,119) -
BT R PT()) (23,120) | (27,119) | (28, 117) | {(28, 119) _A(za, 119) (28,119) -
o © B 4(m) | (24,118) [(28,119) [(28,119) (27, 119)"| (28, 119) | {28,119)
Ce T Eam) | (B121) | (2819) | (2mine). ‘(é's,up) (28;118). | (28,129)
£ 3 The RMS results of experiment:
Figure Position.vesult, - .~ ' ..
o _ HD |PHD1 |PHD2 [PHD3 [MHD |HSD -
R o Ba@d) [10 [10 [oo |54 [od - [a0 -
o . E4(f) |208.0]40 [1711. |14 (1801, |00
e B4h) [191.0(00 [a47 oo |06 oo
B .4(j) |175.1|177.2 [184.1 [1.0 179.1.0 [ 0.0
®40) {112 (10 |20 |00 |oo. [od ,
E4(m)[41 |00 |00 {10 |oo:- [oo
BE4m) [3.6 |00 |14 ‘|20 ¢ |00 {00
‘and  Waseda University Grant for Special Research

Noise

g time parison.

Projects(2005R-366,2004A-325).
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neighborhoad in the 2-D space which great]y Té‘dllCPS the,

mmputatmnal complexity. By applying a threshold elimi-
nation function, large dlstance values caused by naise and
position errors are also removei The major mnmbmlon of
our work is that it convents the mnvenhonal sunllanty mea-
sure in the 2-D space to a new similarity measure in the 1-D
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The future studies will aim at extending the_applicatian
fields, not just in point pattern matching. More efficient
search strategy for HSD and mathematical prave for the
properties of HSD should also be considered.
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