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Abstract In this paper, we aim to develop an algorithm for navigation of an autonomous mobile robot using a
visual potential. The visual potential is computed from an image sequence and optical flow observed through a
vision system mounted on the mobile robot. Our algorithm enables mobile robots to avoid obstacles without any
knowledge on a robot workspace. We demonstrate some experimental results using image sequence observed by
a moving camera in a simulated environment and a real environment. We also show that our algorithm is robust
against the fluctuation of a displacement and configuration of a mobile robot.
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ronmental map. For navigation, we are required to design
non-model-based or featureless control strategy. Therefore
we develop a method for consistent local potential field from
a small collection of observations. In the previous paper [8],

1. Introduction

In this paper, we develop a navigation algorithm for an
autonomous robot using potential field method. Path plan-
ning is a problem to derive optimal or sub-optimal path  We developed a featureless robot navigation method based on
from a start to a destination using the map of robot-work  ©Ptical flow computed from a pair of successive images. This
space which is called configuration space and landmarks [1] method also constructs local obstacle maps by detecting the
[2]. Navigation is a problem to derives optimal direction to ~ dominant plane in images.
move form a sequence of snap-shot of obstacle configuration In this paper, we introduce a visual potential field, which
in robot work space[3][4]. A potential field method com- IS computed from an potential field in an image and op-
putes a path from a start to a destination using gradient field ~ tical flow [9] [10][11][12] observed through a vision system
computed from potential field derived by the map of robot mounted on the mobile robot. Using the visual potential
workspace configuration [5] (6] [7]. For the path planning by field and optical flow, we define a control flow for robot nav-
potential method, a robot is required to store the map of igation to avoid collision with obstacles, as shown in Fig.2.
robot work space. In this scene potential field method for In section 2, we briefly overview our featureless method for
path planning is a model-based robot control. The poten- detection of the dominant plane using optical low. Section
tial field method determine the navigation path using the 3 is devote for the introduction of visual potential field and
repulsive force from obstacles in a map, the attractive force  definition of control force computed from the visual field. In
from the start and the repulsive force to the destination, section 4, we show some experimental results for the robot
as shown in Fig.1. However, this method is invalid for the  Davigation.
navigation when the robot does not have an environmental
map. Additionally, in the real environment, it is difficult
to determine the current position of the robot in an envi-
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Fig. 1 Configuration of the obstacle and start and destination
points. (a)The circle and the triangle and the rectangle
are the start, the destination, and the obstacle. (b)The
repulsive force from the obstacle. (c)The attractive force
from the start. (d)The repulsive force to the destination.

Image plane

Obstacle

Navigation path

Ground plane

Fig. 2 Configuration of robot workspace. Our method derives the
navigation path without collision with obstacles without
require the environmental map.

2. Dominant Plane Detection from Opti-
cal Flow

In this section, we briefly describe the algorithm for dom-
inant plane detection using optical flow observed through a
camera mounted on a mobile robot. The detail of our algo-
rithm is described in [8]. We define that the dominant is the
largest planar domain in a scene.

We set u(z, y, t) to be the optical flow computed from suc-
cessive images at time ¢t and t — 1. If a point (z,y) belongs
to the dominant plane of the image, the relationship

Au(z,y,t) +b=0, (1)

are approximately satisfied [13], where A and b are the 2 x 2
matrix and two-dimensional vector, respectively.
If the matrix A and the vector b are obtained

u(z,y,t) = —A"'b, (2)

represents the dominant plane motion in the successive im-
ages. We express the flow 4(z,y,t) as planar flow.

Since the planar flow @(z,y, t) is equal to the optical flow
u(x,y,t) on the dominant plane, we use the difference be-
tween these two flows. Setting € to be the tolerance of the

(c) (d)

Fig. 3 Example of the dominant plane. (a)lmage. (b)Detected
dominant plane d(z,y, t). The white areas are the domi-
nant planes, and the black areas are obstacles. (c)Optical
flow u(z,y,t). (d)Planar flow @(z,y,t).

difference between the optical flow vector and the planar flow
vector, if

f’u(z, Y t) —ﬁ(z,y,t)| <g, (3)

is satisfied, we accept the point (z,y) as the point in the
dominant plane. We set d(z.y,t) to be the dominant plane,
as

255 for Dominant Plane
dzyt) = { 0 for Obstacle Area )

For the computation of the matrix A and the vector b
from the optical flow which contain the dominant plane and
obstacles area, we use RANSAC method. Our algorithm is
summarized as follows:

(1)  Compute optical flow u(z,y,t) from two successive
images.

(2) Compute affine coefficients in Eq.(1) by random se-
lection of three points.

(3) Estimate planar flow 4(z,y,t) from affine coeffi-
cients.

(4) Matching the computed optical flow u(z,y,t) and
estimated planar flow 4(z,y,t) by using Eq.(3).

(5) Detect the dominant plane. If the dominant plane
occupies less than half of the image, then go to step(2).
Figure 3 shows the examples for the image, the detected
dominant plane, the optical flow and the planar flow

3. Determination of the robot motion us-
ing Visual Potential

In this section, we develop an algorithm for the determi-
nation of a robot motion in the direction form the dominant
plane image d(z,y,t) and the planar flow 4(z,y, t).

3.1 Gradient Vector of Image Sequence

A robot moves on the dominant plane without collision
with obstacles. Therefore, we generate a repulsive force form
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Fig. 4 Example of the gradient vector field. (a)Image.
(b)Detected dominant plane d(z,y,t). (c)Gaussian op-
erator G = d(z,y,t). (d)Gradient vector field g(z,y,t).

the obstacles area in the image d(z, y, t) using a gradient vec-
tor field. We set g(x,y,t) to be the gradient vector field of
the dominant plane d(z, y, t),

2(G *d(z,y, t); )5)

9(x,y,t) = V(G * d(z,y,1)) = ( 2(G +d(z,y.t)

where G* is a gaussian operator to compute smoothly the
gradient vector field. The example for the gradient vector
field is shown in Fig.4.

3.2 Optical Flow as an Attractive Force

The gradient vector field g(z,y, t) is a repulsive force from
obstacles. Then, we use the planar flow @(z,y,t) as an at-
tractive force. Since the plan flow @(z,y,t) represents the
camera motion, the sum of the sign-inversed planar flow
—u(z,y,t) and the gradient vector field g(x,y,t) is the po-
tential field p(z,y,t). However, in the obstacles area in an
image, the planar flow @(z,y,t) is set to 0, since the planar
flow represents the dominant plane motion. Therefore, we
define potential field p(z,y,t) is

g(z,y,t) - u(z,y,t) where d(z,y,t) = 25(56)
9(z,y.t) where d(z,y,t)

p(z,y.t) = {

The example for the potential field p(z, y, t) is shown in Fig.5
computed from the examples in Fig.4.

3.3 Navigation from Potential Field

Using the potential field p(z,y,t), we determine the robot
motion. We define that the mean value of p(z,y,t) in the
image,

2. Pyt
2oyl

is the control force. We set a parameter theta(t) to be the
angle between the front of the mobile robot and the control
force p(z,y, t), as shown in Fig.6. We define that the robot
displacement T(t) and rotation R(t) at time t are

p(t) = ™

T(t) = Tmcosb(t). (8)

i

Fig. 5 Example for potential field p(z,y,t) computed from the
examples in Fig.4.

Front of mobile robot

p(t)
6(t)

Fig. 6 The angle between the front of the mobile robot and the
control force p(z,y,t) is a parameter theta(t).

R(t) = Rmsin6(t), 9

where T;, and R,, are the maximum displacement and the
rotation of the mobile robot between ¢ and ¢ + 1.

4. Experimental Results

In this section, we show some experimental results for au-
tonomous robot navigation.

4.1 Experiments using real image sequence

Figure 7 shows experimental results for estimation of vi-
sual potential and the control force. In Fig.7, starting from
the left, images show the configuration of the robot and ob-
stacles, the captured image, the detected dominant plane
d(z,y,t), the gradient vector field g(x,y,t), the potential
field p(z,y,t), and the estimated control force p(t). For
the computation of optical flow, we use the Lucas-Kanade
method with pyramids [14].

4.2 Experiments in synthetic environment

Mobile robots in a real environment have errors against
the fluctuation of a displacement and configuration of the
robots. Therefore, we create synthetic environmental maps
for the evaluation of the robustness of our method against
these errors. Figure 8(a) shows an environmental map. In
this map, The triangle is an initial position of the mobile
robot. And Fig.8(b) is the estimated navigation path using
our method.

We assume that the robot has the errors with 20% against
a robot displacement T'(t) and rotation R(t) in Eq.9, as
shown in Fig.9. Additionally, we added the error with 20%
against estimated dominant plane d(z,y,t), as shown in
Fig.10. The result of the experiment with these errors are
shown in Figll.

Figures 12 and 13 show the experimenat! results using an-
other environmental maps.
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Fig. 7 Experimental results for estimation of visual potential. Starting from the left,
images show the configuration of the robot and obstacles, the captured image, the
detected dominant plane d(z, y, t), the gradient vector field g(z,y, t), the potential
field p(x,y,t), and the estimated control force p(t).

5. Conclusion

we developed a navigation algorithm for an autonomous
robot using visual potential field. Our method enable a mo-
bile robot to avoid obstacles without require the environ-
mental map. Experimental results show that our algorithm
is robust against the fluctuation of a displacement and con-
figuration of a mobile robot.
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Fig. 10 The examples of the error against estimated dominant
plane d(x,y,t). (a)(c)Original images. (b)(d)Images that
error with 20% was added to (a) and (c), respectively.

(b)

Fig. 8 Environmental map. (a)The triangle in the map is an
initial position of the mobile robot. The black coloured
regions are obstacles. (b)Computed navigation path with-
out any errors.

Moving destination of robot

Robot displacement

Fig. 11 Computed navigation path with errors against a displace-
ment and dominant plane detection

Fig. 9 The mobile robot has an error against a displacement.
The error with 20% was added to a robot displacement
T(t) and rotation R(t).
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Fig. 12 (a)Computed navigation path without any errors.
(b)Computed navigation path with errors against a dis-

Fig. 13 (a)Computed navigation path without any errors.
placement and dominant plane detection.

(b)Computed navigation path with errors against a dis-
placement and dominant plane detection.





