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Natural Image Matting with Semi-Supervised Object Extraction
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Abstract In natural image matting where an object is extracted from a photograph with natural background and
is composited with another image, a user is required to input strokes specifying both of foreground and background
regions for supporting the extraction of the target object. In order to reduce user’s inputs, we apply, in this paper,
a semi-supervised algorithm for extracting a fuzzy cluster from similarity data to this task, and present a method
for extracting an object from a natural image by propagating memberships from seeded pixels to the remaining
area according to the similarity between pixel colors transformed with the Fisher’s linear discriminant analysis. In
our method, rough and coarse strokes are sufficient for users to draw them only either in foreground regions or in
background areas. The color of the extracted object is estimated at each pixel based on the membership obtained
with this algorithm and the extracted object is composited with another image as a new background.

Key words natural image matting, semi-supervised object extraction, membership propagation, linear discrimi-
nant analysis

. ie. classes, is simply two, one is an object, i.e. foreground,
1. Introduction . . . .
and the other is background. The pixels in an input image

Natural image matting, instead of the blue screen mat-
ting, refers to a process of extracting an object from a nat-
ural image for compositing the extracted object with an-
other image [1]. We can view this task at the standpoint of
semi-supervised clustering which is one of transductive semi-

supervised classification problems. The number of clusters,

are classified into these two classes on the basis of their col-
ors. The clusters are generally fuzzy due to the partial trans-
parency of the objects, e.g. hairs, fogs, spider webs. Since
this problem is under-constrained, users are required to input
supporting information by drawing strokes specifying these

regions on the image by hand. Many matting methods [1]~



[3] require such user interaction in the form of trimap where
definitely foreground, definitely background and the remain-
ing unknown regions are painted in graded colors, e.g. white,
black and gray as is shown in Fig.1. This trimap is difficult
to draw manually in images including objects with many
holes or gaps such as spider webs. Advanced methods ac-
cepting fewer user inputs still require strokes in both of fore-
ground and background regions [4]~(6]. We present, in this
paper, a semi-supervised object extraction method in which
few and rough drawings of supporting strokes in only one
of two regions are sufficient for extracting such a complex
and fuzzy object. Our technique is derived from a graph
spectral method for unsupervised extraction of clusters from
similarity data [7}.

Clustering algorithius are classified into a partition type
and an extraction type. A representative method of par-
tition type is the normalized cut algorithm [8] which use a
continuous relaxation of [-1,1] integer programs. This algo-
rithin gives good results of hard clustering but cannot be
used for fuzzy clustering and cannot extract clusters buried
in unstructured noise data|9). On the other hand, the affin-
ity factorization method (9], which is the same as the graph
spectral methods [10}, [11]. is a continuous relaxation of |0,1]
integer programs and is an extraction type algorithin. This
method is robust to noise data and gives fuzzy clustering
naturally. This algorithin gives, however, only clusters of
spherical shapes. We have modified it for extracting fuzzy
clusters of arbitrary shapes {7] and then extended it to a semi-
supervised scheme [12]. We apply. in this paper, it to natural
image matting tasks.

Almost all algorithims of natural image matting are classi-
fied into a cluster partition type. The methods using random
walks [4] or graph cuts[13] deal with two classes symmetri-
cally similarly to the graph spectral semi-supervised clas-
sification algorithms |14}, [15], and hence inherently requires
user's input of seed points in both of foreground and back-
ground regions. An excellent method by Levin and Weiss [16]
also requires user inputs in both regions. The isoperimetric
algorithm [17] is exceptionally asyminetric and can accept
only one seed point but is different to our algorithm and
its gap surmounting property and robustness to noises are

unknown.

1 Example of trimap (left: input image, right: trimap).

We present, in this paper, a novel semi-supervised object
extraction method derived from an unsupervised algorithm
of extraction type for fuzzy clusters of arbitrary shapes.
We use spatially wide window for propagating memberships
and transform color coordinates with the linear discriminant
analysis for enhancing color discriminability of an object.
These devices enable our method to extract objects with
holes or gaps and reduce user inputs of supporting strokes.

In section 2, we review an unsupervised object extraction
method from which we derive a semi-supervised algorithm
in section 3. We next utilize the Fisher's linear discriminant
analysis for enhancing class separability in section 4 and de-
vise some nuinerical techniques for saving the computational
time in section 5. Finally in sectiou 6, we exemplify the novel
ability of our method for extracting an object holding inany
holes with user inputs of strokes in only one of foreground
and background areas.

The color version of this paper is http://www.design kyushu-
u.ac.jp/urahama/matting.pdf.

2. Graph Spectral Method with Regular-
ized Normalization

Before presenting our matting method. we review an un-
supervised object extraction method by using the graph
spectral method with regularized normalization [7] from
which our semi-supervised algorithm is derived. Let the
color of pixel (4,j) be ci; = [Rij, Gij, B;y)T and the sim-
ilarity between pixels (i.7) and (i + k,j + 1) be s =
e~ W H=Bley ~cirr il where sk is the abbreviation of
8ijiitk.j+i- We use here the basic RGB color coordinate while
we will introduce its transformation by dimensionality reduc-
tion in section 4.

The graph spectral method with regularized normaliza-
tion [7) computes the proportion zy; of the membership of

pixel (i,j) in the cluster, i.e. object, by the forinulation:

mf.x Z Z TifSkITidk,j+i
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where ¥ . denotes the sum over all pixels and W is a spa-
tial window. We set here di; = “m{z(k,:)ews""‘} which
is a form improved from di; = Z( papew Sk +€ in the orig-
inal method |7} where the small regularization constant ¢ is
added in all pixels. Alternatively to this uniform regulariza-~
tion, € is added in eq.(1) only at pixels where 1/ E(k.l)ew Ski
is singular. This selective regularization is effective for ex-
tracting elongated clusters buried in noisy data. The nor-
malization, which denotes the multiplication of di; to z3;
in the constraint condition in eq.(1), enables this method
to extract arbitrarily-shaped clusters and the regularization,
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which means the thresholding of di; at €, makes the method
robust to noise data.

The solution of eq.(1) is the stationary point of its La-
grange function:

max m)]:n z Z TijSKITith.j+ —/\(Z dijzl-1)  (2)

1.5 (kJYEW ij
from which we know z = ;] is the principal eigenvector
of the normalized similarity matrix D~'S. The member-
ship of pixel (i.7) is given by the normalization of z;; as
ui; = T/ maxi 5{zi; } [7]. This solution = can be calculated
by using an iterative algorithm similar to the power method
for computing the principal eigenvector of a matrix.

The membership u;; obtained for the image of flowers in
Fig.2(a) is shown in Fig.2(b). The parameters are set as
a =0,8 = 0.1,¢e = 250 and the window W is the entire
image. Since the objects (flowers) are easy to extract in this
example, we can extract them with no user interaction, how-

ever all of three flowers, not an isolated one, are extracted.

3. Semi-Supervised Object Extraction

The above unsupervised method is hard to extract a spec-
ified object alone and also objects with complex textures
including multiple colors. User interaction is prerequisite for
specifying a target object and extracting it. We assume here
that a user draws some strokes for specifying either a por-
tion of regions included in a target object or those in the
remaining background area. If a user draws strokes in an
object, then z;; is the membership of pixel (¢, j) in the ob-
ject and we fix z;; = 1 at the pixels specified by a user in
an object. Couversely if a portion of background regions is
specified, we set z;; as a membership of pixel (%,7) in the
background, i.e. the foreground and the background are in-
terchanged. If a user specifies both regions, «;; represents
the normal membership in the foreground.

If z;; is given at some pixels (¢,7) € T in this way, z;; in
itself becomes the membership and the constraint condition
in eq.(1) becomes unnecessary and the Lagrange multiplier
X can be fixed to an arbitrary value. We fix here it to A =1,
then eq.(2) becomes

max Z Z TijSKITidk,jH — ka,-x?j (3)
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(a) input image (b) membership

B4 2 Example of unsupervised object extraction.

We call the region T, where zi; is given, the seed region. In
cluster partition types such as the graph cut [13], users are
required to input seed regions in both of foreground (z:; = 1)
and background (z:; = 0) areas. In our method formulated
by eq.(3) which is derived from eq.(1) of a cluster extraction
type, it is sufficient for users to input seed regions in only
one of foreground and background areas. This is a merit
of the method of cluster extraction types against the clus-
ter partition types. It is a matter of course that our method
accepts strokes in both regions which raise its extraction per-
formance.

The solution of eq.(3) is given by solving the following sys-

tem of linear equations:

zi = E SKIT itk g1 i

(kl)ew

(t)eT (4)

We solve it here with the Gauss-Seidel iterative scheme.
During the iteration, {x:;|(¢,5) € T} is fixed to the value
specified by a user. As the iteration progresses, xi; propa-
gales from pixels (i, 7) € T, where z;; is known, to pixels
(3,5) ¢ T where z;; is unknown. We set the square window
W = {k,1}|(—p £ k £ p,—p £ | £ p) sufficiently broad for
2 to propagate with surmounting gaps even if an object
holds holes or gaps. In previous methods, the propagation
is limited to only 4 or 8 neighborhoods, i.e. p =1, hence it
cannot jump over holes or gaps. Thus previous methods re-
quire many seed regions, contrastively a few and coarse seed
regions are sufficient in our method. Some previous meth-
ods [6], (16] employ a hierarchical approach with pyramidal
compression of images for remote propagation and accelera-
tion of computation, however the object boundary is blurred
in spatially compressed images and may cause errors in the
object extraction. Our method does not use the image pyra-
mid and deals with an input image in its intact size with
the original resolution. Alternatively we reduce the compu-
tational time with effective setting of initial values of z;; and

successive reduction of processed pixels.

4. Color Coordinate Transformation by
Linear Discriminant Analysis

Color coordinates are crucial for natural image matting

3 Image of spider web



where objects are extracted according to the siinilarity be-
tween pixel colors. For instance, Fig.4(a) shows the best one
among the results obtained with the RGB color coordinate
for the image of spider web in Fig.3 where white line scribbles
are seed regions drawn only in the background area. Thus
the RGB color coordinate gives unsatisfactory extraction of
objects. We then exanine the CIELAB color coordinate pop-
ularly used in various image processing but we get also an
unsatisfactory result shown in Fig.4(b) at the best. Though
their extractability varies from image to image, both of RGB
and L*a*b* fail to extract objects in many images.

Grady (4] adopted the locality preserving projection (LPP)
for the color coordinate transformation in his random walk
extractor. The LPP is, however, an unsupervised algorithm
neglecting user input information. We exploit user inputs
and adopt the Fisher’s linear discriminant analysis (LDA)
for transforming the color coordinate. Since the matting is
a classification problem of two classes, we project the colors
into a 1-dimensional space.

We firstly enlarge the seed regions for iinproving the ac-
curacy of the LDA projection. This enlargement of seed
regions also serves for speeding up the iterative solution of
eq.(4). The seed regions are dilated successively along the
distance of pixels from the seed regions. We compute the 4-
neighborhood distance transform of the seed regions with a
fast 2-scan algorithm (we examined also the 8-neighborhood
distance transform whose result was almost the same as that
with the 4-neighborhood distance). We dilate the seed re-
gions in the order of pixels with small distance to larger one
from them if the color difference measured in the L; norm
of RGB between the current pixel and its neighbor pixel is
smaller than a small threshold. For instance, Fig.5(a) illus-
trates the dilated seed regions in Fig.3 with the threshold of
color difference being 10.

We next perform the LDA with the dilated seed regious as
one class and the remaining set of pixels as the other class.
We compute their average colors m,, ma. and covariance ma-
trices Ay, Az and their mean A = (n1A; + naAz)/n where

7y is the number of pixels in one class and n, is that in the

(a) RGB (b) L*a*b*
4 Memberships obtained with RGD (left) and with L*a*bL*
(right) for Fig.3.

other class, n = n1 + na is the size of the input image. The
projection vector is then given by ¢ = A~} (my — m2).

The color ¢;; of every pixel is then projected to scalar value

5 = ¢ ¢ij. By this projection, the input color image is re-

duced to a monochromatic image in which the gray scale of
each pixel is gi; = 255( fij — fmin )}/ (fmaz — fmin) Where frmaz
is the maximum value of fi; and frin is its minimun. The
monochromatic image of Fig.3 is shown in Fig.5(b).

If strokes are drawn in both of foreground and background
areas, we dilate both seed regions and execute the LDA with
those dilated region as two classes.

5. Membership Propagation

We apply the method in section 3 to the monochromatic
image obtained with the LDA. The similarity between pix-
els is now given by s;; = e~ HN-Bla;—sirr s We
solve eq.(4) with the Gauss-Seidel iteration during which z;
is fixed at the pixels in the dilated seed regions. The initial
value for the iteration is set t6 zi; = 1/(14e~7%~9). The
above dilation of seed regions and this initial value setting
reduce the convergence time of the iteration. In order to
further speed up the convergence, we quantize z; to 1 if it
becomes larger than 0.99 and similarly we set z;; = 0 if it
decreases below 0.01. The computation of z;; is skipped at

these pixels where x;; reaches 0 or 1.
6. Experiments of Object Extraction

Figure 6 is an example of objects including many holes,
i.e. green leaves are seen in many vacancies in petals of the
red flower of a spider lily. The white scribbles are seed re-

gions drawn in the background area, i.e. on the green leaves.

(b) monochoromatic image

5 Dilated seed regions in Fig.3 (left) and monochromatic im-
age obtained from it with LDA(right)

® 6 Image of spider lily



One example of result of our method is shown in Fig.7(a)
where parameters were set as a =0.01,8=0.1,7v=0.1,6 =
100,¢ = 1.p = 1 and the threshold for color distance in the
dilation is 10. In Fig.7(a), many green spots in the red Aower
are erroneously mixed in the extracted object (some spots are
classified correctly as background but this is solely owing to
our effective setting of initial values of ;). This erroneous
mixing of background spots into the object is due to the small
window size of p = 1, i.e. 8-neighbors, which is too narrow
for zi; to propagate from surrounding background to inner
spots by surmounting flower petals. Previous methods [4], [5]
propagate alpha mattes through only 4 or 8 neighborhood,
hence its propagation stops at these gaps. In order to get
satisfactory object extraction in such methods, either many
strokes must be drawn in every spot carefully or a hierar-
chical approach of pyramidal compression of the image size
should be exploited [6]. However the sub-sampling of pix-
els in the pyramid blurs the image and may cause errors in
object extraction. A result of our method with sufficiently
broad window of p = 20 is shown in Fig.7(b) where every
spot in petals is correctly classified to background.

The spider web in Fig.3 is another example of complex ob-
jects on which drawing strokes is hard. Contrastively draw-
ing strokes in background areas is easy as is shown in Fig.3.
The membership obtained with our method is shown in Fig.8.

Our method can extract an object even if the object and
the background include similar colors as in Fig.9(a) where
black colors are included in the eyes and in the background.
Extracted memberships are shown in Fig.9(b).

In many images such as those shown in Fig.3, Fig.6 and
Fig.9(a), our method can extract objects with user drawing
of supporting strokes only either in foreground (object) or
in background area in contrast to many previous methods
which requires strokes in both regions (so, direct comparison
of our results with them is impossible with the same input
condition). It is however better for our method that strokes
are drawn in both of object and background regions for pre-
venting omission of details from extraction . For instance as

is shown in an image of peacock in Fig.10 where strokes are

(a)p=1

(Lyp=20
7 Obtained memberships with p = 1 (left) and with p = 20
(right) for Fig.6.

drawn only in the background area, the body and legs of the
peacock are missed to be extracted as in Fig.11(2). In such
cases, if strokes are added on them, then the whole figure
of peacock is extracted as in Fig.11(b). Since our algorithi
is iterative, the membership is easily and quickly updated
by restarting the iteration with appended seed regions. Our
iterative algorithm is suitable for such interactive processes
where a user repeats the cycle of verification and update
of extracted memberships. Note the difference between the
image in Fig.9(a) and that in Fig.10. Both images include
similar colors in the forground and in the background. In
Fig.9(a), they (black colors) are apart, while they (greenish
colors) are contiguous in Fig.10.

We implemented the program with the C language on a
computer with P4 2.79GHz CPU, 1GB RAM and the OS is
Windows XP. The computational time of our method is 57,
29, 27 and 32 seconds for Fig.7(b) (200 x 200, p = 20), Fig.8
(281 x 281, p = 5), Fig.9(b) (278 x 333, p = 5) and Fig.11(b)
(373 x 290, p = 3).

7. Object Composition with Another Im-
age

Composition of an extracted object with another image

needs the color of the object at each pixel. The color ¢;;

K 8 Obtained memberships for Fig.3.

(a) input image (b) memberships

9 Image of face with bright hairs

[ 10 [mage of peacock



(a) with strokes in Fig.10  (b) with additonal strokes

Bl 11 Obtained memberships with strokes in Fig.10 (left) and
with additional strokes (right) for Fig.10.

B 12 Composite images.

of the input image is composed with a foreground color ¢44;
and a background color ¢s; with the mixing proportion ;
as ¢ij = Tijefi; + (1 — Tij)epiy. In previous matting meth-
ods [1]~ [16], both of ¢r:; and eps; are estimated based on
this relation, however their simultaneous estimation is hard
and is also wasteful because only cyy; is needed for the im-
age composition. We estimate here them by the following

optimization formulation:

H}illz Z sutiskgrillesss — e gl (5)
7 55 (ehew

Where sy, is the similarity between pixels used in the above
algorithm for object extraction and =z;; is the membership
which is also already obtained with the above algorithim.

Eq.(5) is solved analytically as

epij = Z SMTiph ik i+t Y, SuTirkitl  (6)
(kD)EW (k.EW
from which we can get a new composite color &; = Tijcsi; +
(1 — xi5)bi; where by; is the color of pixel (1, j) of another
image used as a new background. Examples of composited
images with the objects in Fig.6, Fig.3, Fig.9(a) and Fig.10
are shown in Fig.12 where partially transparent objects such
as spider webs and hairs are well extracted and composited

with new backgrounds.

8. Conclusion

We have presented a method for natural image matting
based on the semi-supervised algorithm for extracting a fuzzy
cluster from similarity data. The novelty of our method lies
in 1) application of the algorithm of cluster extraction type,
2) wide window for propagating memberships surmounting
holes and gaps in an object, and 3) color coordinate transfor-
mation with the LDA. Main merit in our method is its abil-
ity of object extraction from a light user interaction drawing
rough and coarse strokes in only one of foreground and back-
ground areas. Its further speed-up and application to videos

are under study.
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