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Abstract In variational methods, a problem in computer vision and image analysis is expressed the sum-
mation of the data-term and the prior-term. The data-term is usually constructed from observed data. The
prior-term defined by knowledges and assumptions on the problem acts as regulariser to the data-term of the
problem. A typical class of prior-terms defines smoothness of the solution. In this paper, we deal with energy
functional with the higher order derivatives for vector valued functions and show that it is possible to classify the
motions in an image using variational optical-flow computation. We classify the motions of points in an image
using the priors with various order differential- constraints. Using the first and second order derivatives, we
show that variational method with the first order constraints accurately extracts optical-flow vectors in texture
areas and that variational method with the second order derivatives derives the motion of segment-boundaries.
Therefore, the results shows that it is possible to classify the texture regions and segment-boundaries in an
image using the first and second derivatives as the constraints of optical-flow computation.

1 Introduction tions in an image using variational optical-flow compu-
tation. We classify the motions of points in an image
using the priors with various order differential- con-

Motion segmentation is a common problem in video- ;
straints.

image processing and robot vision. In both cases, de-

tection of moving objects and separation of them from
stational background is a central problem, since this
process derives a fundamental feature for motion un-
derstanding and separation. In motion tracking, sepa-
ration and tracking of multiple motion is an essential
problem. The other new area in motion analysis is
classification of the motions and separation of motions
based on classification.

In this paper, we deal with motion classification
problem and show that it is possible to classify the mo-

The classical constraints for optical-flow computa-
tion is the quad Eric form of the first order deriva-
tives [4, 5]. Recently, the second order vector-spline
constraint is introduced to cloud-motion analysis for
satellite images of typhoons. We have introduces a
general theory of constraints with the higher order
derivatives for optical flow computation. In this pa-
per, we the difference of the optical-flow vectors de-
pending on the orders the constraints in variational
method for the optical-flow computation. Using the
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first and second order derivatives, we show that varia-
tional method with the first order constraints accu-
rately extracts optical-flow vectors in texture areas
and that variational method with the second order
derivatives derives the motion of segment-boundaries.
Therefore, the results shows that it is possible to clas-
sify the texture regions and segment-boundaries in an
image using the first and second derivatives as the con-
straints of optical-flow computation.

Section 2 is a mathematical preliminary. In section
3, we summarise a general theory of the higher order
Horn-Schunck type constraints for optical flow. In sec-
tion 4, we show some numerical results. Section 4 is
devoted to discussion on mathematical properties of
the algorithm.

2 Matrisation of Tensor

For the higher order derivatives, we describe a recur-
sive construction rule. We set

H, =Vf, Hy=VV'f. ®
Same as the Whitney array, we have the relation
Oz, Hy,

By Hy,
Hip = : = VH, (@)
8,, H,

for k > 2. We call H, the k-th order Hessian. This
relation implies the next proposition.

proposition 1. The Hessian of the order k is con-
structed by the recursive form

V Hy, (3)
VHyu VT (4)

Hypyy =
Hyppn =

for k> 2.
From this proposition, we have the next assertion.

assertion 1. The size of Hp is n? x nP and
nPt! timesn® for k = 2p and k = 2p + 1, respectively.

We show examples. the third and fourth order Hes-
sians of the scaler function on a plane are

fzzz fzzy
fy:ta: fywy ’
fyyz fyyll
TTTT rxyr TTTY XYY
S 1 i f:
H4 — YT T fa:yyz fzyl‘y fa:yyy (6)
fy:c:l:w fyzyz fyzzy yryy
fyyza: fyyyz fy?ﬁ?y f?!yllly

Geometrical Property of the Higher Or-
der Hessian Matrix

Setting a coordinate transform to be
y=2(z), yi = ¥i(z1,29, -, Tn) (M

the Hessian matrices H and H with respect to the
arguments bmy and x, respectively, are combined by
the relation

H=JTHJ, (8)

where J is the Jacobian matrix of the transform .
Specially, if the transformation is linear,

y = Az, 9

we have the relations
H;

Hy

diag(AT,ATYH; A
diag(A", AT)H,diag(A, A)

Furthermore, If ATA = I, the Hessian matrices H
and H satisfy the relation

trHH =trHH. (12)
Next, we investigate generalisations of these rela-
tions to the higher order Hessian tensor.
For the k-th order Hessian matrix, we have the next
proposition.

proposition 2. Ify = Ax, that is y; = Z;zl ai; T,
we have the relation

H, = L, HR, (13)
where

Loj—1 = Loy = d*(AT), Rax = Ry = d*(A), k> 1

(14)
for
d"UX) = diag(Xd*(X), X*HY), dY(X) =X, k> 1.
(15)
(Roof) From egs. (3) and (4), we have
Hyy = VHy = ATVH,, (16)
Hyyn = VHuVT =ATVH,VTA (17)

for k > 2, where hatV is the gradient with respect to
¥ = (y1,%2,,Yn) ", Since for k = 1,2V = ATV
and AT H A, respectively, we have eq. (13). (Q.E.D)

From this proposition, we have the next proposition
as well.

proposition 3. The Frobenius norm of the k-th order
Hessian matriz of a scaler function is rotation invari-
ant, that is,

trﬁkﬁk-r :tTHkH,;r (18)
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Therefore, we have the next proposition for the k-th
order Hessian matrix of the vector function.

proposition 4. The Frobenius norm of the k-th or-
der Hessian matriz of the vector function is rotation
invariant, that is,

trﬁkﬁkT = terH,;r (19)
For a unitary matrix W, setting
v(@) = W), (20)
we have the relation
DFv = diag(W, W ..., W)D*u. (21)
Since
DFfTD*f = trH H] (22)
and
diag(W,W,--- W)T = diag(W,W,---, W) :(1,)
23

we have the next proposition.

proposition 5. For the k-th order Hessian of vector
functions, the relation

trH (v)Hy(v) = trHp (u) Hy (u) (24)

is satisfied, where Hy(u) and Hy(v) are the k-th order
Hessian of u and v, respectively.

3 Optical Flow Computation

Optical flow of images defines the vector field. There-
fore, the vector-spline regularisation is used for the
stable optical-flow computation [14].

The optical-flow computation with the second order
constraint is

Jostw) = [ {IVFTuk AP
R
+atrVuVu" + gtrHH "} dz.(25)

The Euler-Lagrange equation of the variational prob-
lem is

B

ZA - Au+ l(VfTu + f)Vi=0, (26)
a o

and its embedding into evolution equation is

;—Tu = —gAZu + Au — é(VfTu + VI (27)

Furthermore, for trH, H,| , we have the relation

trHH" = |Vdivu|? + |Vrotu|? + b2 (u) + k2(u) (28)

for
2 _ f Uzy  Uay
h*(u) Azyv Agyu
Wy vy
+ Agw Ayv
ey Wy
* Aza: Az:c’w ‘ (29)
Uy Wy
v, W,
2 o _ w, U,
kK (u) = divs, s= — (30)
Uy Vg
Uy Uy
where
% I - o2 0
Awp =25+ 5 Bep=55— 553 31
# = g T Dr T gar ap BV

for a,8 € {zy,yz,zy}. These relations show that
trHHT, and |Vdivu|? and [Vrotu|? are dependent
terms. Therefore, considering the regularisation term
tr HH is equivalent to solve vector spline minimisa-
tion for optical flow computation.
Setting

Sy = D*fDFfT (32)

we define the k-th order Nagel-Enkelmann regulariser.

Definition 1. The k-th order Nagel-Enkelmann reg-
ulariser is

J.NEg = trD*uN.D*u”, (33)

where
1

=— - —1)A2D). (34
k tr5k+n/\2((tr5k)1 Sk + (n —1)A’1). (34)

For k = 1, eq. (33) becomes the Nagel-Enkelmann
regulariser.

A generalisation of the Nagel-Enkelmann method
for optical-flow computation is achieved by minimising
the criterion

To = [ (9w P

+ Z ,BkteruNkauT} dx  (35)
k=1
and the associated Euler-Lagrange equation is,
(Vitu+f)Vf
+) (-1)*BD* T Nk DPu =0 (36)
k=1
since
%teruNkD’“u = (-1)*D*T Ny D¥u (37

for symmetry matrices Ny k > 1.
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4 Classification of Points by

Motion

Let u{,4., e the optical flow vector computed using
a-th, 8-th, and ~-th constraints. For each point z, we
can have many optical-flow vectors u7,,, where v is a
string of positive integers, for exampie, 1, 2, 12, 123,
and so on. The vector uf,, is the deformation vector
of the deformable boundary. Therefore, if |uj| is suf-
ficiently small at point x, and ufl) > u*z) the motion
in the neighbourhood of this point @ is homogeneous.
This geometrical property of optical-flow computed by
the variational method implies that the operation

Dy = {z[ugy| > luf;l,i # 5} (38)
derives segments in R™ using the orders of constraints
for the computation of variational problems. Gener-
ally, it is possible to adopt many constraints for the
classification of moving points in a space with optical-
flow vectors. For example, two operations

{=1luiyl > luiiyl}, (39)
{z]ufrz) > |upyl}  (40)
classify a scene into a deforming part and a homoge-
neously moving part, since the regularisers trVuVu "
and trD?uD?u " minimise smoothness and elastic en-

ergy of the solution u, respectively. Furthermore, the
operation

Dhomogeneous =
Dgeform =

_ ufyy, if juj;| < 1ona, (1)
uz‘lz), otherwise,

allows us to express multi-modal motion simultane-
ously, using variational computation methods. These
properties imply that the orders of the constraints in
variational problems act as the scale of scale space
analysis.

5 Numerical Scheme and its

Stability

Setting D? and D* to be numerical operations stand
for V2 and V4, respectively, we have the next numer-
ical PDE of the fourth order

n+l _ ,n 1
u §D4un'a(VfTun+l+ft)vf

(42)
From this numerical PDE we have the iterative form

— D2un _
AT

un+1 —

-1
(1+22vsvsT)
a
x (I +arD? - ATED4) u”
@

AT AT LA
2L (T 2IVIVST) VS ()

Let
_ AT T
A = (1+ —ViVf ) (44)
B = (I +arD? — AT§D4) . (45)
I
p (BilA) <1, (46)

then the iterative form eq. (43) is stable and converges
to the solution of the original equation. From the re-
lations

p(B7'A) <p(B7')p(A) (47)

and p (B™) =1, if p(A) < 1, the relation of eq. (46)
is satisfied.

Setting U and A to be an orthogonal matrix and
diagonal matrix respectively, we have the relations

D*=UAU', D*=UAU". (48)
Substituting these relations to
P) <1 +arD? — AT§D4) <1 (49)
we have the relation
P) (U (I +atA — AT§A2) UT) <1 (50)
Then, finally we have the convergence condition
P (I+ATA—AT§A2) <1 (51)

Since the diagonal coefficients of A and A? exist in the
intervals [—4n/h2,0] and [0, 16n2/h?], where n is the
dimensional the problem, we have the relation

o (I+ aTA — ATBAz) < ‘1 — 4n£ - 16nzé£

a h2 a k|
(52)
From eq. (52), we have the next theorem.
Theorem 1. If the inequality
AT 2B A

is satisfied, the iterative form is stable and converges
to the solution of the original PDE.

This theorem derives the next corollaries.

Corollary 1. If h = 1, the convergence condition is

1

0<ar < PNCY L
2n 4 8n22

(54)

If n=2, 8 =a, and h = 1, the convergence condi-
tion is
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Corollary 2. If n =2, § = «, and h = 1, the con-
vergence condition is

AT < L

- 36

Corollary 3. Ifn =3, 8 = «, and h = 1, the con-
vergence condition is

(55)

1
AT < —

< (56)

It is possible to define Nagel-Enkelmann term for
any dimensions as

1

_ _ _ 2
Nk = 7”'5‘6 T n)\Z ((trSk)I Sk + (n 1))\ I), (57)

where S = D*fD*fT,
For N, we have the relations

(n—1)A2

NEf kaf, (58)
Dk FJ2 12
N.DFfE = | |£kaT2(.T: n,\12) D*fL, (59)

Therefore, setting n(k) = n*, it is possible to derive
the eigenvalue decompositions of N as

Ni = Rdiag(d1,dy, - ,dai))RT (60
for R=(ry,r9- -+ ,rn(k))T, where
Do o
== =0, 61
Ty DR 7] re7T1 =0 (61)
for k > 2 and
&= (n—1)A%
T DR+
|D*f|% + (n — 1)A?
dy= - =my = 2 I T RZ IV gy
2 " DR e (62
Therefore, we have the relation
0<p(Ng) < 1 (63)

This relation means that a numerical scheme for
the higher order Horn-Schunck constraints satisfies
the convergence condition, the higher order Nagel-
Enkelmann constraints satisfies the convergence con-
dition.

6 Numerical Examples

Figure 1 shows the results of constraint-based classifi-
cation of motion for Marble Block sequence. In (b), (c)
and (d), the parameters are selected as & = 104,83 = 0,
a=10%8=5x10% and a = 1,8 = 10%, respectively.
If 8 = 0, that is, without thr second order constraint,

the algorithm extractes smooth motion all over the
scean. However, if the ratio g is large, the algorithm
extracts the motion on the segment-boundaries. This
property is based on the analytical properties of the
thin-plate spline constraint which allows us to detect
the bendings of the object surfaces. Therefore, if 3 is
small or zero the algorithm detects the motionof tex-
tured areas. And if 8 is large, the algorithm detects
the motion of segment-boundaries.

Figure 2 shows optical flow on R? computed using
the Horn-Schunck regulariser with the first-order con-
straint and the Horn-Schunck regulariser with the first
and second order regularisers. We detected the motion
of clouds in a typhoon sequence. (a) shows the first
frame in the sequence. Optical-flow fields in (b) and
(c) are computed from the first and the second frames.
(b) shows optical flow computed using the first-order
constraint for & = 1000. (c) shows optical flow com-
puted using the first- and second- order constraints for
a = f =1000. In the computed vector field in (b),
the motion of cloud at the front and the boundary of
the typhoon is detected. In these parts of a typhoon,
clouds move as the boundary of deformable objects.
Therefore, the second order constraints, which min-
imises elastic energy of the boundary in an images,
allows us to detect the motion of clouds in front of
typhoon in an image.

In Figure 3, (a) shows optical flow computed by the
Horn-Schunck. We set o = 5 x 10° and ﬁ = 0.166.
The factor % = 0.166 satisfies the convergence con-
dition of the iterative form. (b) is the result of optical
flow computed with the first and second Horn-Schunck
regularisers, setting @ = 10® and 8 = 5 x 10° = a/2.
The convergence condition is derived by the Lax equiv-
alence law. The parameter « is select so that the ab-
solute values of the first and second terms of the diffu-
sion equation for optical-flow computation are numer-
ically equivalent. From these results, we can see that
the flow-vector field extracted by the Horn-Schunck
regulariser are smooth in the neighbourhood of each
point. Furthermore, the result in (b) extracted the
deformable parts of the heart using the second order
constraint. This result suggests the decomposition of
the region on the surface of the heart to the deforming
regions and homogeneous moving regions.

7  Conclusions

We have introduced variational constraints with higher
order derivatives for vector-valued functions. Using
the higher order constraints, we have introduces the
constraint-based motion classification for optical-flow
vectors.

The constraints based on the second derivatives for
the terrain function z = f(z,y) in three-dimensional
Euclidean space is used in the elastic theory [7]. The
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constraints with the higher order derivatives in varia-
tional problems leads to the conclusion that the second
order vector-spline constraint for optical-flow compu-
tation is mathematically replaceable to a quadric form
of the second order derivatives of the solution. This
replacing of constraint derives a fourth order diffusion-
reaction equation for optical-flow computation. This
fourth order diffusion-reaction equation is numerically
solved using the same scheme with computation of the
usual diffusion equation. Furthermore, we have intro-
duced the Nagel-Enklmann type constraints for the
higher order derivatives using the higher order deriva-
tives of the image.
The higher order data consistencies are

d ok
— =0, k>1 4
DM =0, k> (64)
Equation (64) is rewritten as
D*WTf+DFf =0 (65)

in the matrix form. For instance, if we set £k = 0 and
k =1, we have the illumination consistency

VfTu +ft=0 (66)
and the gradient consistency
VYV fu+Vf; =0. 67)

Therefore, setting the higher order data consisten-
cies and the higher order smoothness constraints as

Ep =) _ M\(D'V fu+ Dif)?

=0

(68)

and

Es =Y a;D'u’ N;Diu
=1

(69)

for appropriate non-negative constants A = {\;}2,
and A = {0;}32,, we define a general optimisation
problem for optical-flow computation as

(70)

J(u) = /n (Ep + Es) dzx.

The solution of the problem is the solution of the PDE

> (-1Y*'a; DT N;Diu
j=1

+_NDVT DV fu+ D) =0, (71)

i=0

where [DP DT | f is a nP xn? matrisation of the Hessian
matrix Hy,, of f.

For the optimisation problem of eq. (70), we define
the problem.

U(q,n) = argument min J(u;a C A,A CA).  (72)
We call the solution of this problem the (c, ) opti-
cal flow. The optical-flow vectors which we have dealt
with in this paper are (0, 1) and (0, 12) optical flow vec-
tors. For the detection of the motion boundaries, the
gradient consistency drives acceptable results. There-
fore, we will deal with (01,1) and (01,12) optical flow
vectors.

The optical-flow field is a sequence of vector-valued
function. For segmentation, smoothing, in-printing,
and denoising of the vector-valued functions, it is pos-
sible to use variational method. A variational criterion
for the vector-valued function is expressed as

Jinoise(®) = /Rn {f —ul? + atrVuVu' } de. (73)
A generalisation is
Joonoise(t) = /Rn {If —uf?
+ i %I:teruDkuT} de.  (74)
k=1

The Euler-Lagrange equation of this minimisation
problem is

& (-1
k=1
we have the formal equation
f =exp(—7A)u. (76)
Therefore, we have the solution
u = exp(7A) f. (77)
This relation implies that u is the solution of
ou
5 = Au, u(-,0)=f. (78)
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Figure 1: Results of Flow Vector Classification. (a) is
an original image. (b) a =10*,8 =0, (¢c) & = 10*,8 =
5x 103, (d) @ = 1,8 = 10%. If 8 = 0, that is, without
thr second order constraint, the algorithm extractes
smooth motion all over the scean. However, if the
ratio g is large, the algorithm extracts the motion on

the segment-boundaries.
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Figure 2: Optical Flow of Clouds in a Typhoon Se-
quence. (a) shows the first frame in the sequence.
Optical-flow fields in (b) and (c) are computed from
the first and the second frames. (b) shows optical flow
computed using the first-order constraint for a = 1000.
(c) shows optical low computed using the first- and
second- order constraints for @ = 8 = 1000.

a888L883

(b)

Figure 3: Optical Flow in R3. From top to bottom,
optical flow computed by the Horn-Schunck constraint
(a). We set a = 5 x 10°, 2% = 0.166, and X = 1. (b)
is the result of optical flow computed with the first and
second Horn-Schunck regularisers, setting a = 10® and
B=5x10°=q/2.
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