2007—CVIM—160
2007,79,/3

FEEEAN WML R (19)

IPSJ SIG Technical Report

Combining Local and Global Features for Face Recognition

Xilin Chen', Shiguang Shanl, Yu Su?, Wenchao Zhangz, Baochang Zhangz, Wen Gao'
'Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100080, China
2School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, China

Abstract: In the literature of psychophysics and neurophysiology, many studies have shown
that both global and local features are crucial for face recognition. In this paper, we
summarize our work on face recognition by combining both local and global discriminative
features. In our work, Fourier transform is exploited to extract global features from the
whole face image domain. For local feature, Gabor wavelets and its combination with Local
Binary Patterns (LBP) are explored, which are both conducted on some spatially partitioned
image patches. These features are then fed into different classifiers based on Fisher
Discriminant Analysis respectively, and these classifiers are combined together to make the
final decision. The proposed methods are evaluated by using Face Recognition Grand
Challenge (FRGC) experimental protocols and database, the largest data sets available.
Experimental results on FRGC version 2.0 dataset show that our methods have much higher
verification rates than the baseline of FRGC and the best known results under various

situations such as illumination changes, expression changes, and time elapses.

1. Introduction

Face recognition from still and video images has been
an active research area due to both its scientific
challenge and wide range of potential applications, such
as biometric identity authentication, human-computer
interaction, and video surveillance. Within the past two
decades, numerous face recognition algorithms have
been proposed which can be found in the literature
surveys [1]. Even though humans can detect and identify
faces in a scene with little effort, building an automated
system that accomplishes such objectives is very
challenging. The challenges mainly come from the large
variations in the visual stimulus due to illumination
facial
expressions, aging, and disguises such as facial hair,
glasses, or cosmetics.

While face representations based on global features
[Eigenface, Fisherface, Holistic Fourier] had been

conditions, viewing directions or poses,

popular for face recognition, more recently, there are
more and more attempts to develop face recognition
systems based on local descriptors. Local features are

believed very robust to the variations of facial
expression, illumination, occlusion and so on [2, 3, 4, 5,
6]. Some researchers have compared between global and
local features in face recognition, for instance, in [14],
B.Heisele et al. reported that component-based system
outperforms global system with respect to head pose
changes. Much recently, LBP [4] and its variant [6] have
also achieved very impressive results compared with
methods based on global features. Among many local
features, Gabor
recognized as one of the most successful local

especially, wavelets have been
descriptors for face representation due to their biological
relevance and computational properties. The 2D Gabor
wavelets [7, 8], whose kernels are similar to the 2D
receptive field profiles of the mammalian cortical simple
cells, exhibit desirable characteristics of spatial locality
and orientation selectivity, and are optimally localized
in the space and frequency domains. Typical methods
based on Gabor features include the Elastic Bunch
Graph Matching (EBGM) [3], Gabor Fisher Classifier
(GFC) [5] and Local Gabor Binary Pattern (LGBP) [6].
However, in the literature of psychophysics and
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neurophysiology, many studies such as in [9, 10, 11]
have shown that both global and local features are
crucial for face perception. Global features and local
features play different roles in the process of face
perception and recognition. Global features can describe
the characteristic of the whole face and they are often
used as coarse representation. Compared with global
features, local features reflect and capture more detailed
variations within some local areas in the face. Hence, it
is proper to use local features for finer representation.
Following the above studies, it is natural to expect
better performance by combining global and local
information. In some sense, the well-known Elastic
Graph Matching method for face recognition [3] had
pioneered such an idea, since global topological
information are modeled by the structural of the graph
and local features are encoded as the attribute of the
nodes. In [13], Fang et al. proposed to combine global
features by PCA and component-based local features
extracted by Haar wavelets. In [14], Kim et al. proposed
an effective face descriptor by decomposing a face
image into several components, extracting LDA features
from each component, and finally combining these
component LDA features together by using a global
LDA. In [17], Lee et al. also combined local structures
extracted by Local Feature Analysis (LFA) into
composite templates which show compromised aspects
between kernels of LFA and Eigenfaces. In [18], Kim et
al. proposed to combine both global and local features
which are obtained by applying Linear Discriminant
Analysis (LDA) to either the whole or part of a face
image. They experimentally showed that the combined
subspace gives smaller Bayesian error than the
subspaces of either the global or local features.
Following the same basic belief to combine global
and local features, we propose a novel hierarchical
ensemble classifier for face recognition by combining
global Fourier features and local Gabor features
Specifically, in our method, global features are extracted
from whole face images by 2D Discrete Fourier
Transform, which is a strong tool to analyze face images
in frequency domain {17, 18]. Then, real and imaginary
components of low frequency band are concatenated to
form a single feature set for further process as in [17].
For local feature extraction, Gabor Wavelet Transform

is exploited. Firstly, a face image is spatially partitioned
into a number of patches of equal size. Then, Gabor
wavelets are used to extract local features within each
image patches, forming multiple sets of Gabor features
with each feature set corresponding to an image patch.
After the above processes, a face image can be
represented by one Global Fourier Feature Set (GFFS)
and multiple Local Gabor Feature Sets (LGFSes). These
feature sets contain different discrimninant information:
GFFS contains global discriminant information and each
LGFS contains different local discriminant information,
In order to make full use of all these diverse
discriminant information, we propose to train multiple
component classifiers by applying Fisher Discriminant
Analysis (FDA) on GFFS and each LGFS respectively,
and then combine them into one ensemble by weighted
sum rule.

2. Global features [22]

2D Discrete Fourier Transform (DFT) is very useful
in image processing because there are many things about
an image can be revealed by frequency space analysis
but are not obvious from the original intensities of the
pixels.

An image can be transformed by 2D DFT into

frequency domain as follow:
AM-1N-1

Fuv)= ﬁz > Gpexpl-jzr(is 2y ()

%=0 y=0

where f(x,y) represents an 2D image of size M by N
0<u<M-1 and O<v<N-1 oare
frequency variables. When the Fourier transform is

pixels,

applied to a real function, its output is complex, that is
F(u,v)=Ru,v)+ jl(u,v) 2)
where R(u,v) and I(u,v) are the real and imaginary
components of F(yv) respectively. Hence, after
Fourier transform, a face image is represented by the

real and imaginary components of all the frequencies.
Though all the frequencies contain information about
the input image, different bands of frequency play
different roles. We know that generally low frequencies
reflect the overall structural configuration of the input
image, while those higher frequencies correspond to
detailed local variations. This can be illustrated
intuitively by observing the effects of inverse transform
with part of the frequency band. Fig.1 gives some
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examples of inverse transform by using only the low
frequencies (30% of all the energy). From Fig. 1, one
can safely conclude that low frequencies indeed mainly
contain globally structural configuration of the facial
organs and the contour. And it is also apparent that these
low-frequency features are robust to detailed local
variations due to facial expressions.

Person 1

Person 2

Figure 1: Reconstruction of input face images by using
30% of low-frequency Fourier features.

Consequently, in our method, only the Fourier
features in low-frequency band are reserved as global
. features. Specifically, for a face image, we concatenate
its real and imaginary components in low-frequency
band into a single feature set, named Global Fourier
Feature Set (GFFS).As shown in Fig.2, for both real and
imaginary components, only those within low frequency
band as denoted by the white squares in the figure are
reserved.

Real Component

Real Component af

Low Frequency

Global Fourier
Featwe Set
(G)

Imaginary Component
of Low Frequency

Imaginary Component

of Low Frequency

Imaginary Component

Figure 2: Global Fourier features extraction.

3. Local features
3.1. Gabor features

In recent years, face descriptors based on Gabor
wavelets have been recognized as one of the most
successful face representation methods. Gabor wavelets
are in many ways like Fourier transform but have a
limited spatial scope. 2D Gabor wavelets are defined as
follows [8]:

| kuv ||Z Ik, R lIIR 260 | ik, 2 -2 | (3
up(2)=—F—e ™7 _ g2 [ (3)
o

where ku,v =kvel¢“ ;o k, == gives the

v f v
frequency, 4, =49, €[0,7) gives the orientation.
From the definition, we can see that Gabor wavelet
consists of a planar sinusoid multiplied by a two
dimensional Gaussian. The sinusoid wave is activated
by frequency information in the image. The Gaussian
insures that the convolution is dominated by the region
of the image close to the center of the wavelet. That is,
when a signal is convolved with the Gabor wavelet, the
frequency information near the center of the Gaussian is
captured and frequency information far away from the
center of the Gaussian has a negligible effect. Therefore,
compared with Fourier transform which extracts the
frequency information in the whole face region, Gabor
wavelets only focus on some local areas of the face and
extract information with multi-frequency and
multi-orientation in these local areas.

Gabor wavelets can take a variety of different forms
such as different scales and orientations. Fig.3 shows 40
Gabor wavelets of 5 scales and 8 orientations. It is
obvious that Gabor wavelets with a certain orientation
respond to the edges and bars in this orientation, and
Gabor wavelets with a certain scale extract the
corresponding frequency information. Hence, Gabor
wavelets exhibit desirable characteristics of spatial
selectivity. Thus, Gabor
wavelets can extract more details in some important

locality and orientation

facial areas such as eyes, nose and mouth, which are
very useful for face reiresentation.

Figure 3: 2D Gabor wavelets of 5 scales and 8
orientations.

As multi-scale and multi-orientation Gabor wavelets
are used to convolve with face images in process of
feature extraction, the dimension of Gabor features is
very high. For example, if we use 40 Gabor wavelets
with 5 scales and 8 orientations, the dimension of Gabor
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features is 40 times of the original dimension of face
image. Moreover, these Gabor features cover all the
positions of face image. In order to reduce these high
dimensional Gabor features and restrict them to cover
only some local areas, we propose to spatially partition a
face image into a number of patches. From each image
patch, multi-scale and multi-orientation Gabor features
are concatenated into a Local Gabor Feature Set. As
shown in Fig4, we partition a face image into N
non-overlapping patches of equal size and N LGFSes are
obtained for further classification.

_..-ﬂ.nn .. [P 1Grs 1)

GWT
. —

Spatially
Partitioning

- El
Figure 4: The procedure of N LGFSes extraction. Please
note that, actually in our method, Gabor Wavelet
Transform (GWT) is firstly applied to the whole face,
and then the obtained Gabor features are spatially
partitioned to form N LGFSes.
3.2. Local Gaber Binary Patterns (LGBP) [6]
Considering the advantages of the Gabor filters in face
recognition, we exploit the multi-resolution and
multi-orientation Gabor filters to de-composite the input
face images for sequential feature extraction.

The Gabor representation of a face image is derived

by convolving the face image with the Gabor filters. Let
f (x, ¥) be the face image, its convolution with a Gabor
filter v, (2) is defined as follows

Gy, 1v)= [y}, (2) @
where * denotes the convolution operator. Five
scales ve {O,- . -,4} and eight orientations
#€{0,---,7} Gabor filters are used. Convolving the
image with each of the 40 Gabor filters can then
generate the Gabor features. Note that, because the
phase information of the transform is time-varying,
generally, only its magnitude is explored. Thus, for each
Gabor filter, one magnitude value will be computed at
each pixel position, which will totally result in 40 Gabor
Magnitude Pictures (GMPs).

The magnitude values of the Gabor transform change
very slowly with displacement [3], so they can be
further encoded. In order to enhance the information in
the GMPs, we encode the magnitude values with LBP
operator. The original LBP operator [9] labels the pixels
of an image by thresholding the 3x 3 -neighborhood of

each pixel f, (p =0,1, ...,7) with the center value

f. and considering the result as a binary number [21]

L f,2/.
S(/p~f¢)={0, / <§ )

Then, by assigning a binomial factor 27 for each
S( o= fc) , the LBP pattern at the pixel is achieved as

18P =3 s(s, - £.p? ©
p=0

which characterizes the spatial structure of the local
image texture. The operator LGBP denotes the LBP
operates on GMP. We denote the transform result at
position (x, y) of (,u,v) -GMP as Glm(x, Y, Uy v) )
which composes the (,u, v) -LGBP Map.

Face recognition under varying imaging conditions
such as illumination and expression is a very difficult
problem. Usually, the variations will appear more on
some specific regions in face image. Therefore, we
exploit local feature histogram to summarize the region
property of the LGBP patterns by the following
procedure: Firstly, each LGBP Map is spatially divided
into multiple non-overlapping regions. Then, histogram
is extracted from each region. Finally, all the histograms
estimated from the regions of all the LGBP Maps are
concatenated into a single histogram sequence to
represent the given face image. The above process is
formulated as follows:

The histogram h of an image f (x, y) with gray
levels in the range [O, L- 1] could be defined as
h, =Y 1{f(xy)=i}i=0,1,....,L-1 U
xy
where iis the i-th gray level, h,is the number of

pixels in the image with gray level i and
1, Ais true
]{A}:{ _ ®
0, Ais false
Assume each LGBP Map is divided into m regions
Ry,R,,....R, . The histogram of r -th region of the
specific LGBP Map (from (,u, v) -GMP) is computed by
H/J,v,r = (hﬂ,i‘,l,O’h;A,v,r,l" ) ®
where

hy,v,r,) = ZI{Glgbp (‘x’ Y, M V) = i} (10)

(x,7)eR;
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Finally, all the histogram pieces computed from the
regions of all the 40 LGBP Maps are concatenated to a
histogram sequence, R , as the final face representation
R= (Ho,o,o 5T HO,O,m—l > Ho,l,o ""aHo,l,m-ls'“:H7,4,m~1) .

4. Combining global and local features

After feature extraction, we obtain N+1 feature sets
including one GFFS G and N LGFSes L; (i=1,....N).
Then, N+1 classifiers can be trained by applying FDA
on each feature set. As explained above, these feature
sets contain different discriminant information for face
recognition. Hence, classifiers trained on these feature
sets should have large error diversity. Considering that
the ensemble-based classifier is generally superior to the
single classifier when the predictions of the component
classifiers has enough error diversity, we combine
classifiers trained on each feature set into a hierarchical
ensemble to improve the system performance.

The hierarchical ensemble consists of two layers. In
the first layer, N local component classifiers C I, trained

on Lj (&=1,...,N) are combined to form a local ensemble
classifier C ', » which is formulated as follow:

N
¢, =Yw, C, an
i=1

where Wy is the weight of Cz, . In the second
layer, the local ensemble classifier C is combined with
the global classifier C,; trained on G to form the final
ensemble classifier Cp., as shown in Eq.12:
Cp =w,Cy+(1=w,)C, (12)
where W isthe weight of C.

In each step, sum rule, the most typical combination

rule, is exploited to combine classifiers. This

hierarchical combination process is shown in Fig.5.

Figure 5: Combination of global and local features.

5. Experiments

In order to make full use of both global and local
discriminant information and further improve the
performance, global classifier and local ensemble
classifiers are combined to form a unified ensemble
classifier, as formulated in Eq.5. In Eq.5, the weight for
global classifier W can actually balance the importance
of global and local information. This is evidently
noticed that the
performances of global classifier and local classifier are
quite different, as can be seen from Fig.9. And the

necessary because we have

performance of global classifier is relatively worse than
local ensemble classifier. So, it is natural to assign a
smaller weight for global classifier.

Taking FRGC Experiment 4 (ROC II) as example,
experiments are conducted to check the influence of the
weight for the global classifier on the performance of
the final classifier. We know that, at least for FRGC
Experiment 4, the best result appears when W;; is about
0.2. Though, this parameter is not necessary a
generalized good setting for any database, at least it
illustrates that the local features should be more
emphasized than the global features. More importantly,
another conclusion we can draw is that the combination
of global and local features can further improve the
recognition performance.

In Figure.6, we show three ROC performances of
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global classifier, local ensemble classifier and unified
ensemble classifiers on both Experiment 1 and 4.

We also compare our method with the FRGC baseline
algorithm (basically PCA) and the best known results
{17, 20} in Experiment 1 and 4, as shown in Fig.7 and
Table 1. In [17], Hwang etc. proposed a Fourier-based
face recognition system, in which Fourier features with
different frequency bands and face models are projected
into some linear discriminant subspaces by LDA and
they are merged. In [20], Liu presented a pattern
recognition framework which integrates Gabor image
representation, multi-class Kernel Fisher Analysis (KFA)
using fractional power polynomial models for improving
FRGC performance. So far, the results in [17] and [20]
are the reported best results on FRGC dataset.

aRrRoCH
| ROCH
O RocH

Verification Rate

GC LEC HEC

(a) Results on FRGC Exp.1

o RoCI
mROCH
o ROCIl

Verification Rate

GC LEC HEC

(b) Results on FRGC Exp.4
Figure 6: Three ROC performances of global classifier
(GC), local ensemble classifier (LEC), and unified
hierarchical ensemble classifiers (HEC) on Experiment
1 (a) and 4 (b).
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Figure 7: ROC performances comparison between our
method and Liu’s method in [20] on Experiment 4.

From Table 1, one can see that the proposed method
has further improved the verification rates on FRGC
especially on Exp.4. Take ROC III as example, on Exp.4,
a verification rate of 86% is achieved, 10 percents
higher than the known best results. We also notice that,
the pure local ensemble classifier itself also outperform
the known best results on both experiments. These
comparisons show that the proposed method achieves
state-of-the-art results on FRGC Exp.l1 and Expd4,
especially attribute to the combination of global and
local features expressed by Fourier and Gabor filters
respectively.

Table 1: Performances comparison on Experiment 1 and
4 of FRGC data set (ROC III).

Methods Exp.1 Exp.4

FRGC Baseline [19] 66% 12%
Method in [17] 91% 74%
Method in [20] 92% 76%

GC 81% 51%

Our Methods [22] | LEC 97% 80%
HEC 98% 86%

6. Conclusions and future work

We human beings recognize faces relying on both
global face features and local details of the facial organs.
A hierarchical ensemble of global and local classifiers is
proposed to simulate the observations in bionic sense by
exploiting both global features and local features. In the
proposed method, global features are extracted from
whole face images by Fourier transform, and local
features are extracted from some spatially partitioned
image patches by Gabor wavelet transform. By applying
FDA on Fourier features and Gabor feature patches,
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multiple classifiers are obtained and then combined into
a hierarchical ensemble classifier by sum rule. We
validate our method on FRGC version 2.0 dataset
designed for face verification. Experimental results
show that the ensemble classifier greatly outperforms its
component classifiers which have large error diversity.
By the proposed method, we have achieved verification
rates of 98% in Experiment 1 and 86% in Experiment 4
respectively. Compared with the baseline and known
best results,
significant improvement especially on Experiment 4.

the proposed method demonstrates

The success of the proposed method comes from
several aspects. First of all, we should mention the
ensemble process in the method, since ensemble
learning has been well recognized as an important
method with excellent generalizability. In our method,
ensemble lies in two stages: the combination of local
classifiers, and the combination of the global and local
Both improve

the performance of the component

classifiers. ensemble  procedures
impressively
classifiers. Another critical success point is of course the
usage of both global and local features expressed by
Fourier and Gabor respectively. Especially, the local
features themselves based on Gabor filtering can achieve
excellent performance better than the known best

results.
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