ﬂ%likklﬂﬁ 54 —4
(1987 -9 -18)

Prolog =335 17 > HIF =N IE S TEIT
g3~ 5 I B 5> SF

BHEA. TH &

(BK) B SLSfEA EBERR R

REGIZE o TERIAIER. L BERER (BEMOBBOREI ZOAFRI
LEPND) PREROSZEAPSENNE (ZOREGIHULESTH) 2OO+T
£HETT. —BICREHOE LML TN T3 ICIXKEORBELA 3 LEH B B
WOERRESE S ABMICERT S ICRRAERHORR. ENARTORROEALZY, &
EREMCT2DONIRFLEBLLETREZSZVWEEYS 5. ABRETRTT ST+
SEMAZ. TAHEBCHEIRTWENENIE S PREFNRMELAWTICEIDS
CEHTE B, LT, BEMCKEORNEFBHEICE B L. BFHRAEEZAL
FICHBT A LETRBLTHIOOTH %,

Sufficient Conditions for Validity of Recursion Formula in Prolog

Akito SAKURAI Hiroshi MOTODA
Advanced Research Laboratory, Hitachi Ltd.
1-280 Kokubunji, Tokyo 185, JAPAN

Abstract: A new approach for ;l)roving validity of recursive formuli written in definite clauses is developed
based on resolution and definite clauses as functions. The main problem, when automatically stoving it, is to
develop strategy for inductive proof, or how to find out an appropriate induction scheme and how to direct

deductions.
We propose a method to prove some properties on definite clauses without induction, which eventually satisfy

sufficient conditions for formuli to hold.
We first prove sufficient conditions stated in terminology of functions, and then convert them to the ones
stated in resolution equivalent to unfold transformation. We also prove a Prolog version of the fixed point

induction and extend it.

(1>

1. Introduction

It is not an easy task to prove a logical sentence, when it requires us to use mathematical induction or
structural induction. This is because the induction is different from other inference rules in that we have to
search around heuristically for an appropriate induction variable and hypothesis. The first succesfull trial
was done by R.S.Boyer and J.S.Moore [2] in their verification system for LISP functions. They combined
some induction heuristics and a set of simple rewrite rules of LISP, and proved a wide variety of theorems
about recursive LISP functions. Recently, Kanamori and Fujita [5] have built a verification system for Prolog.
Since Prolog has a better semantic foundation than LISP, it seems the former is advantageous to build such a
system. But the fact that Prolog is freer to construct structures, in contrast to LISP where only list structure
is available, makes it difficult to make up in advance some induction scheme to be used in seek of inductive
proof. It also forces us to search among many possible induction hypotheses, many of which lead us to
nothing. Kanamori and Fujita used a fixed point induction scheme proposed by K.L.Clark [3] combined with
Tamaki and Sato’s Prolog program tranformation [8] and their generalization method. But still we have to
adopt many heuristics to conduct inductive proofs.

The purpose of this paper is to present some useful theorems on sufficient conditions for validity of
definite clauses. The conditions, when applied to problems, do not require inductive proofs to be verified.
The theorems are based on functional property of definite clauses and are proved using model theoretic
semantics and fixed point semantics. We also formally prove and extend notion of the fixed point induction
scheme introduce by K.L.Clark [3]. ‘

Due to limitations of time and space, in this paper we present only restricted cases. After summarizing
grelimina,ry materials in section 2, we fpresent the theorems in section 3. In section 4, we show relations

etween resolution and composition of functions that are alias of definite functions. In section 5, we define
concept of predicate substitution which is used in section 6, where computational induction scheme is proved
and extended. These relations are fully utilized in section 7 where four examples are given to depict the
usefulness and easiness of application of the theorems.

2. Preliminaries

In this section we first give necessary definitions on terminology of logic programming, and then give notions
of logic programs as functions. Note that we use terminologies not in general but in quite restricted meaning,
General and thorough treatments will be found in Van Emden and Kowalski [4] and Apt and Van Emden [i]
for logic programming and J.-L.Lassez and M.J.Maher [7] for treatment of logic programs as functions.

Syntax. We distinguish the sets of variables, function symbols and predicate symbols. A constant is a 0-ary
function symbol. A term is a variable, a constant or ofy the form f&l, ...ytn) where f is an n-ary function
symbol and {3, ...,t, are terms. An atomic formula (or atom in short) is of the form P(ty,... ,tn) where P
is an n-ary predicate symbol and ¢,...,¢, are terms. An atom is ground if it has no occurrence of variable.
A definite clause is a clause of the form A« By,...,B, n>0 where A, By,..., B, are atomic
formulae and variables occurring in them are universally quantified. A is called the head and Bi,...,By is
called the body. A definite clause with only one atom in its body is said of singleton-body. A definite clause
is ground if it has no occurrence of variables. A program is a finite set of definite clauses. "A substitution o is
an operation defined on an atom which replaces simultaneously all occurrences of given varibles with given
terms. The result is called an instance and denoted by Ao for an atom A. A substitution is ground if the
result is ground. This naturally extends to a set of atoms, clauses and programs.
Model-Theoretic Semantics. The Herbrand base of a program P is the set of all ground atoms containing
no function or predicate symbols other than those occurring in P. An interpretation is a subset of the
Herbrand base. The truth value is defined with respect to a given interpretation I as follows.

- A ground atom A is truein [if A € I

- A ground clause A « Bj,..., By, is truein I iff A is true in I or at least one of the B;’s is not true in I.

- A clause A « By,...,B, is true in I'iff all of its ground instances are true in I.

- A program P is true in I iff all of its definite clauses are true in I.

A model for P is an interpretation in which P is true. P is satisfiable if P has 2 model. An atom or a definite
clause C is a logical consequence of a program P, iff P U {~C} is not satisfiable, that is, has no model. We

denote this by P |= C. A set of definite clauses Q is a logical consequence of a program P, iff PU{-Q} is not
satisfiable, that is, has no model, where {=Q} is an “or” connection of negation of clauses in Q. We denote
this similaryly by P = Q. It is Yroved that P |= Q iff all the definite clauses in Q is true in any model of P.
Mp is the least Herbrand model for P, that is, the intersection of all Herbrand models for P. Mp is proved
to be equal to {4; A is a ground atom and P |= A}. If P C Q for programs P and Q, then Mp C M.
Fixed Point Semantics. With a program P we associate a function Tp from interp’retations to interpre-
tations in the following way, .

AeTp(I) if A« By,...,Bp,(n>0)isaground instance of a clause in P and

By,...,B, el

It is proved that Tp is continuous in the lattice theoretic sense considering the power set of the Herbrand
base as a base set of the lattice with inclusion among subsets as its partial order. That is, Tp(U2o L) =
U;‘:O Tp(I;) for any increasing sequence {I;}i=o,.. of interprretations. It is also proved that an interpretation
I is a model for P iff Tp(I)C I.

(2>

Definite Clauses as Functions. A fact is a definite clause without body predicates. A rule is a definite
clause with at least one body predicate. With a set of rules R, we associate a function [R] from interpretations
to interpretations in the following way,

Ae[R)I) iff /é « By,... ,I}n(n > 0) is a ground instance of a clause in R and

1ye+esLn

Id is the identity function from interpretations to interpretations. [R1]+ [Rg] is defined as ([Rq]+[R2])(1) def

[R1)(D) U [R2)(I). [Ri]o[Rs)] is defined as ([R1] o 1:23)1€)) 4f (R)([R:)(I)). [R]" is defined inductively as
[RP %' Id and [R]**? def [RJo[R]". It is easily shown [R]"+[R]" = [R]". It is proved that [R] is monotonous,
that is, if I C J then [R)(I) C [R)(J). [R] is proved continuous as Tp is. With a set of rules R, we associate
another function [R] from interpretations to interpretations in the following way

Ae[RK) if 3In>0 A€[R]*())
Obviously [R] = 1 520([R]+ Id) = ’1_1’120 ([R] + Id)'. Note that in J.-L.Lassez and M.J.Maher [7], a program

P is a set of rules and their [P] is equivalent to our [P]. The following properties are proved.
- [R] is monotonous, that is, if I C J then [R}(]) € [RI(J).
. ER] is continuous and idempotent (i.e., [R] o [R] =i[R]]).
. Let R be a set of all the rulesina %ogram P and F be a set of all the facts in P. An interpretation I
is a model for P iff {R](I) C I and Mp C I.

- Mp = [R}(MF).

3. The First Type Conditions
Throughout this section P denotes a grogra,m which consists of a set of rules R and a set of facts F, and R’
denotes a set of rules to be proved under the program P, with all the predicates defined in P. Q also denotes
a program.
Proposition 3.1. For any program P' = PJU P}, P|= P' iff P|= Pj and P = Pj.
Proposition 3.2. P = R iff [R']Mp C Mp.
Proposition 3.3. Mp C Mg if Mp C Mg and Q ER
Proposition 3.4. P |= R’ if rules in R' are of singleton-body and VaIm[R')[RI"(MF) C ([R}4+ Id)™(MF).
Proposition 3.5. P |= R if rules in R and R' are of singleton-body and
Va 3m [R')[R]*(MF) C ([R]+ Id)™([R'] + Id)(MF) , and [R'(MF) C [RN(MF).
Proposition 3.6. P |= R' if rules in R and R' are of singleton-body and there exists a positive integer N
et ¥ < N 3 Vp (IR R (M) C (IRI+ Idy™([R')+ I)|RIP(Mp) , and [R'[(M) C [EY(Mr)-
Theorem 3.7. P |= R' if rules in R and R' are of singleton-body and there exists a positive integer N st.
3Im Vp [R')[RIV[R]?(MF) C ([R] + Id)™([R] + Id)[R]*(MF) ,
Vi < N-13m [RYRT(Mr) C ((B] + 1&)"(R'] + Td)(Mr) , and [R')(Mr) C [RKMr).
Corollary 3.8. P |= R’ if rules in R and R’ are of singleton-body and
[R] and [R'] is commutable, and [R'}(MF) C [RY(MF).

4. Resolution and Rule Composition

In the argument of the sections 2 and 3, we defined a function com osition as a succesive application of
functions.” This is enough for theories, but not for applications. We define a rule composition and relate it
to function composition. In the following of this section, Ry and R; mean sets of rules.

Definition 4.1. Ry o Ry is defined as a set of rules obtained from all the rules in Ry resolving them at all
their body predicates by all the rules in R,. If an rule in Ry has a body predicate which has no resolvable
rule in Ry, then no rules in Ry o Ry are obtained Irom the rule.

Proposition 4.2. [R; o Ry] = [R1] o [Ra]

Definition 4.3. Id is also used to denote a set of rules of the form p(X1,...,Xn) < p(X1,... ,Xn) for all
the predicates p appearing in all the programs under consideration.

Definition 4.4. R™ for a set of rules R is inductively defined as R® df 14 and R % Ro R
Definition 4.5. “+” is used instead of “U” for a set of rules when in the context of functions, that is,
Ry+ Ry = Ry UR,. .

Definition 4.6. Two rules or two facts are equal to each other when they are literally the same or the,
become literally the same after the variables appearing in them are systematicall renamed, i.e., in each
rule or fact different ones remain different and the same ones remain the same. hese ones are said to be
“variant” to each other. ,

Definition 4.7. A rule or a fact C is a member of a set of rules, or a set of facts or a program R, iff there
exists a member R; in R and a substitution ¢ so that C is literally equal to R;o. A set of facts, a set of
rules or a program Ry is a subset of a set of facts, a set of rules or a program Rj iff any element of Ry is a
member.oiP Ry in the above stated meaning.

3>

Proposition 4.8. Ry o (R, + Id) is equal to a set of rules obtained from all the rules in Ry resolving them
at none, some or all of their body predicates by all the rules in R;.

Note that in general Ry o (R; + Id) # Ry 0 Ry + Ry, instead Ry o (Ry + Id) D Ry o Ry + R, holds.
Proposition 4.9. The following equalities hold.

(Rl +Id) oR; =RyoRy+ R,
(Rl + Id) O(Rg + Id) =Rio (R2 +Id) + (R2 + Id)
[By + Ro] = [Ra] + [Re]
(R = [k"]

Porposition 4.10. If Ry C R, then R (I) C Ry(I) for any interpretation I.

We define R o F for a set of rules R and a set of facts F in a similar way. Then we have similar
propositions as follows.
Definition 4.11. Ro F is defined as a set of facts obtained from all the rules in R resolving them at all

their body predicates by all the facts in F'. If any rule in R has a body predicate which has no resolvable
fact in F, tgen no facts in Ro F are obtained from the rule.

Proposition 4.12. [R(MF) = Mpor
Proposition 4.13. [R}(MF) C [R')(Mp+) if RoF C R o F'.

Proposition 4.14. [R'|(MF) C [RI(MF) if 3m R'o F C (R+ Id)™ o F.

Using the definitions and propositions in this section, the theorems and corollaries proved in section 3
are easily rewritten to the ones which are more easy to apply.
Proposition 4.15. P |= R' if rules in R and R' are of singleton-body and there exists a positive integer N
such that Vn < N3m R'oR"C(R+ Id)™o (R +1Id) ,and 3m R' o F C (R+ Id)™ o F. ,
Th;:o:l'lem 4.16. P |= R' if rules in R and R' are of singleton-body and there exists a positive integer N
such that

Im R'o RN C (R + Id)™ o (R' + Id) ,

Vn<N-13m R oR*"o F C (R+ Id)™ o (R' + Id)o F , and

dm R o FC(R+Id)™o F.
Corollary 4.17. P |= R’ if rules in R and R' are of singleton-body and

R and R' are commutable, i.e., RoR' = R'o R, and 3m R' o F C (R 4 Id)™ o F.

5. Predicate Substitution »

In this section, we introduce a notion of predicate substitution. This will be used in the next section to Jjustify
a method to be used in groving VX1, Xa p(X1, -, X0) = o(Xiy,-- -, Xi,)- The method is to replace all
the occurrences of a predicate p by a predicate ¢ in a definition program of p, and prove it.

Definition 5.1, 9 = {p(X,...,X,)/e(X;,,...,X;,)} is a predicate substitution (or)})»substitution in short)
of p by q if p and q are Prolog predicates with the same number of arguments, Xi,...,X,, are distinct variables
and (%1, ...,1,) is a permutaion of (1,...,n). When P is a program, a set of rules or a set of facts, P¥ means
the one obtained from P by replacing every occurence of p(Xy,...,Xy) in P by ¢(Xiy,.- .,X;nz, leaving
no occurence of p in PY. When P is a program, Mp¥ means the set of ground atoms obtained from M P,
the least model of P, by replacing every occurence of p(Xy,... »X») in Mp by ¢(Xi,,...,X:,), leaving no
occurence of p in Mp.

Definition 5.2. The inversion of 9 is defined as 971 = {q(X;,,...,X:,)/p(X1,...,Xn)} when 9 =
{p(X1,...,Xs)/9(Xi,,...,X;,)}. Obviously 9~1 is a predicate substitution of ¢ by p.

Proposition 5.3. The following properties hold for any predicate substitution 9.

For any ground atom a, a = a9~

For any atom A, A = A99~!

For any definite clause F, F = Fy99~!

For any program P, P = Py9-!

For any definite clause F' and ground substitution ¢, Fo¥ = Fdo

For any interpretation I, I = 991

For any ground atom a and interpretation I, ¢ € I iff a9 € I

For any interpretations I and J, if I C J then IY9 C J9
Proposition 5.4. ([R;)(I))9 = [R:9)(I9), where R; is a rule, I is an interpretation and ¥ is a predicate
substitution.

Proposition 5.5. Mp¥ = Mpy.

In the above discussion we only considered a predicate substitution with same number of variables.
But in some cases we need consider other cases, that is, substitution of predicates with different number
of variables. In the follwing, we introduce notions of redundant and incomplete predicate substitution. To
distinguish the predicate substitution defined already from the one defined here, we call the former a complete
predicate substitution, if necessary.

[Rl o (Rz + Id)] = [RI] o [Rz + Id]
[(R]_ + Id) o RQ] = [Rl + Id] o [.Rz]
[(R: + Id) o (Ry + Id)] = [Ry + Id] o [Ry + Id]

{4

Definition 5.6. 9 = {p(X1;...,Xn)/e(Xiy,--- ,Xi.)} is a redundant predicate substitution (or
redundant p-substitution in short) of p by ¢ if p and q are Prolog predicates, n < m, Xiyyoo oy Xi,, are
distinct variables and (i1,...,im) is a permutaion of (1,...,m). Variables Xn41,-.. X in ¥ are called
redundant variables. When P is a set of facts, a set of rules ar a program, P9 means the one obtained from
P by replacing every occurence of p(Xa,. .. ,j(,,) in P by ¢(Xiy,.-.,Xi,,), leaving no occurence of p in PY,
and introducing new variables within a definite clause for redundant vaniables in each occurence of p. When
P is a program, Mp? means the set of round atoms obtained from Mp, the least model of P, by replacin
every occurence oiPp(Xl, veeyXn) in Afp by ¢(Xiy, - . -5 Xi,,), instanciating the redundant variables by all-
possible ground substitution, leaving no occurence of pin Mp.

Definition 5.7. 9 = {p(X1,---, Xn)/0(Xirs---+Xin)} Is an incomplete predicate substitution (or an
incomplete p-substitution in short) of p by q if p and g are Prolog predicates, n > m, Xi,... ,Xn are
distinct variables and (41, .. . ,im) is a permutaion of a subsequence of (1,...,n). When P is a program, a set
of rules or a set of facts, P9 means the one obtained from P by replacing every occurence of p(Xa,... » Xn)
in P by ¢(Xi,,-..,Xi,), leaving no occurence of p in P9. When P is a program, Mp?Y means the set of
ground atoms obtained from Mp, the least model of P, by replacing every occurence of p(X1, ... ,Xn) in Mp
by ¢(Xi, ..., Xi,,), leaving no occurence of p in Mp. ‘ :

Definition 5.8. The inversion of 9 is defined as 971 = {g(Xi,,.. X)X, Xe)} when 9 =
{p(X1,-. - » Xn)e(Xiys5 - - - ,Xi,)}. Obviously 91 is an incomplete predicate substitution of ¢ by p when
9 is a redundant predicate substitution, and 9! is a redundant predicate substitution of ¢ by p when ¥ is
an incomplete predicate substitution. '

The Proposition 5.3, Proposition 5.4 and Proposition 5.5 still hold for redundant substitutions, but not
for incomplete substitutions. ,

6. The Second Type Conditions

The sufficient conditions presented in the section 3 and 4 (and their extended versions where longer bodies
are allowed) are easily verified in many applications. But there are simple cases where these methods do not
work. For example, a case to prove ¢(X,Y) « »(X,Y) where in p only the first argument is the recursion
variable (that is, the first argument of the predicate in the body of the difinition clause is a substructure of
the first argument in its head) whereas in ¢ only the second argument is the recusion variable, is the one.

In this section, we consider another type of sufficient conditions specific for the validity of
VX1yeeos Xn P(Xayeny Xn) = €(Xiys- -5 Xi) Klote that we could consider this formula as a definite clauses
with ¢(X1,...,X,) as its head and p(Xi,...,Xn) as its body, and proceed to prove that sufficint conditions
stated in previouly mentioned theorems and corollaries are satisfied. But as we said before this would not
work for some cases.

The basic idea to handle this is similar to that of Clark [3] and Kanamori and Fujita [5), in which it
is stated rather intuitively without proof. The idea is, to prove p(...) = g(...) it suffices to ick up all the
definition clauses of p, to replace all the occurences of p in them with ¢, and to prove the replaced clauses.
This idea, based on the fixed point induction, seems quite simple and obvious in simple cases as they
exemplified, but is not so trivial in application to more general cases that we need some care.

In the following we restate the idea and justify it.

Let us consider a program defining p, ¢ and all other necessary predicates under consideration. Let P (or
Q) be a program obtained from the above mentioned program by deleting the clauses whose head predicate
symbol is ¢ (or p, respectively). Then the program mentioned is equal to P U Q. It is easily observed that
Mpug = Mp U Mg means that p (or q) is defined without any knowledge of ¢ (or p, respectively), or that p
and q are defined without referring to one another. :

n the remaining of this section, the above defined P, Q, p, ¢, (X1,...,Xn), (Xiy5- - ,X;,) are used in
the above stated meaning. ,
Proposition 6.1. Suppose Mpuq = MpU Mq. Then, VX1, Xn D(X1y- -y Xn) = @(Xiys- - Xin)s
iff VYXi,...,Xn p(X1,-..,Xn) € Mp— o(Xiyy.. ., Xi,) € Mq.

The following theorem is a Prolog version with slight modifications of the fixed point induction.
Theorem 6.2. Suppose Mpug = Mp U Mq. Then, VX1, X0 (X1, Xn) = @ Xiyy e Xy), iff
Mpy C Mg, where 9 is a predicate substitution of p by q.

Corollary 6.3. Suppose Mpug = Mp U Mq. Then, VX1,..0, Xn 2(X1,..., Xn) @ a(Xiyyeo o Xi,), iff
Mpg = Mg, where ¥ is a predicate substitution of p by q.

Theorem 6.4. Suppose Mpug = Mp U Mqg. Then, VXi,... X 0(X1y.- s Xn) = @(Xiyyo-o5 Xiy), I
Mpd C Mg and Q |= RY, where 9 is a predicate substitution of p by g, P consists of a set of rules R and a
set of facts F.

Next, we consider a sufficient condition for the validity of VX;’s p(X1,..., Xn) = ¢(Xiy, . - - ,Xi,) The
argument to follow is to redundant or incomplete substitutions, as what the argument above is to complete
su%stitutions. Asis ea.silK forseen, we could find sufficient conditions for the case n < m, but not for the case

n > m. We restate the theorems here without proofs.

(57

Proposition 6.5. Suppose Mpug = Mp U Mg, n < m and (1,...,%m) is a permutation of (1,...,m).
':I‘hen, VX1, X (X1, Xn) = ¢(Xy v Xim)s

iff VXi,...,Xn o X1,...,Xn) €E Mp — oXi,..., X5,) € Mg.

Theorem 6.6. Suppose Mpug = Mp U Mq. Then, VX1,...,Xm p(Xy,...,Xn) — o Xy, .0 X)), iff
Mpy C Mg, where 9 is a redundant predicate substitution of p by q. :

Theorem 6.7. Suppose Mpug = Mp U Mgq. Then, VXy,...,Xm p(X1,...,X,) — Xy Xa), if
Mpd C Mg and Q |= RY, where ¥ is a redundant predicate substitution of p by q, P consists of a set of
rules R and a set of facts F.

7. Applications

7.1 The First Example: To Get (z + 1)+ y from z + (y + 1)
This example is to show a Prolog version of if z 4+ (y + 1) = (z + y)+1 ther (z+1)+y=(z+9y)+1
The problem stated in Prolog is to show P |= R’ where

. Jsum(X,0, X). I
: {sum(X:sEY), 5(2)) — sum(X,Y, Z). R sum(s(X),Y,s(2)) « sum(X,Y, Z).
Utilizing the corollary, we reduce the problem to showing the followings.

e R'o{sum(X,0,X).} C {sum(X,0,X).}

o {sum(s(X),Y,5(2)) « sum(X,Y, Z).} and {sum(X, 8(Y),s(Z)) « sum(X,Y, Z).} are commutable.
The correctness of the above is clear, since
(R' o {sum(X,0,X).} C {sum(X,0,X).}) R'o {sum(X,0,X).} = {sum(s(X),0,s(X)).} C {sum(X,0, X).}
(commutativity) ps o {the rule in P} = {sum(s(X), s(Y), 3(s(2))) « sum(X,Y, Z).}

{the rule in P} o R' = {sum(s(X),s(Y), s(s(2))) « sum(X,Y,2).}

7.2 The Second Example: Sequence of a’s and b’s
Let us prove the equivalence of the following two programs.
s(0). s(0).
s(a(0)). s(b(0)).
Py: s(a(a(X)))— s(X). Py: s(b(b(X))) — s(X).
Ry: {s(a(b(X)))«— s(X). R;: {s(b(a(X)))<— s(X).
s(b(X)) « s(X). s(a(X)) « s(X).
The proof proceeds informally as follows. In the following, { and } are used to denote { and } for R’ for the
sake of clarity. We will show only the case Py |= P;.
¢ 3(0) = 5(0). Hence, P; |= s(0).
¢ 5(0),s(b(X)) « s(X) = s(b(0)). Hence, P; = s(b(0)).
. N(e)Zt, E:o(nsi) er if Ry)and z(sa)x)tisﬁes the c:)I':—iiti(ox(t 32 Theorem 4.16
o {s(6(5(X))) < s(X)} = {s(b(X)) — s(X)}2.
o Set By = {s(b(a(X))) < s(X)} U {s(a(X)) — s(X)}.
* {s(b(a(X))) s(X)}o{s(a(a(X))) — s(X)}=
{s(6(X)) < s(X)} ~o{s(a(a(X))) — s(X)}o{s(a(X)) « s(X)}
* {s(b(a(X))) « s(X)}o{s(a(b(X))) — s(X)}=
{s(b(X)) — s(X)} o{s(a(a(X))) « s(X)}o{s(b(X)) < s(X)}
- {s(b(a(X))) < s(X)} 0 {s(5(X)) — s(X)} = {s(b(X)) — s(X}} o {s(a(b(X))) « s(X)}
- {s(a(X)) — s(X)} o {s(a(a(X))) ~ s(X)} = {s(a(a(X))) — 5(X)} o {s(a(X)) « s(X)}
- {s(a(X)) — s(X)} o {s(a(b(X))) < s(X)} = {s(a(a(X))) < s(X)} o {s(b(X)) s(X)}
* {s(a(X)) = s(X)} o {s(5(X)) « s(X)} = {s(a(5(X))) < s(X)}
Therefore we get R} o Ry C (R} + R} + R1) + (R} + Ry) o R},
Hence, R} o Ry C (Ry + Id)® o (R}, + Id)
e The last thing is to consider R o {s(0)., s(a(0))}. Easily,
Ry 0 {5(0)., 5(a(0))} = {s(6(5(0)))., 5(b(a(0)))., s(a(0))., s(b(5(a(0))))., 5(b(a(a(0))))-, s(a(a(0))).}
C ([Ra] + 1d)? 0 {s(0)., 5(a(0)).}

7.3 The Third Example: Rev-rev Problem

6>

The next example is the “rev-rev” problem [2] stated in Prolog [5]. The problem is to show P |= R; where
rev([],[]).

rev([A|X), Z) « rev(X,Y),lins(A,Y, Z).
lins(A,[},[A].

lins(A,[B|Y),[B|Z]) « lins(A,Y, Z).
Let us assume two rev’s on each side of Ry to be different symbol but have same definition scheme. To show

it clear, let us rewrite rev in the premise of Ry as revp and add definition clauses of revp to P. Then the
problem is rewritten as showing V X,Y revp(X,Y) — rev(Y, X) under the program

rev([},[])-

revg}lll)]g],Z) «— rev(X,Y),lins(A,Y,Z). {lins(A,[],[A]).

revp([],{])- lins(A,[B|Y),[B|Z]) « lins(A,Y, Z).

revp([A|X], Z) « revp(X,Y),lins(A,Y, Z).
Using Theorem 6.4, the problem is reduced to showing Mp9 C Mgand Q |= RyY where 9 =
{revp(X,Y)/rev(Y, X)} and

P: Ry: rev(X,Y) « rev(Y,X).

- {rf:vp([AlX], Z) — revp(X,Y),lins(A,Y, Z). rev((},[])-
lins(A,[B|Y),[B|Z]) « lins(4,Y,2). Q: rev([A|X], Z) « rev(X,Y),lins(A,Y, Z).
Jrev((1,0))- ") tins(A, [1, [A]). .
F: { lins(A, [}, [A]). lins(A,[B|Y],[B|Z]) « lins(4,Y,Z2).
Doing some simplification, we are going to solve
renA1X) 2) o ren(X,) lin(4,, 2)
Tev ,Z) «— rev(X,Y),lins(A,Y, Z). ', .
P: lins(A, [, [A]) R': rev(X,[A]|Z]) « lins(A,Y, X),rev(Y, Z).

lins(AL(BIY],[BIZ]) « lins(4,Y,2).

Since R' does have two atoms in its body, we cannot apply Theorem 4.16. We give a brief sketch of a proof
here, because the method to be used here will be in the forthcoming paper.

(R'oP C P°o R+ P°) .
R o {lins(A, [} [A])., lins(A, [B|Y], [BIZ]) — lins(4,Y,2))
o{rev([},[1)-, rev([A|X], Z) « rev(X,Y),lins(4,Y, Z).}
={rev([A),[A))., rev([C]X],[A| Z2]) « lins(A, U, X),rev(U, V), lins(C,V, Z2).}
and {rev([A]X], Z) « rev(X,Y),lins(A,Y, Z).}
oflins(A,[B|Y),[B|Z]) « lins(A,Y,Z).} o R
={rev([A|X],[B|Z]) « lins(B,V, X),rev(V,U),lins(4,U, Z).}

7.4 The Fourth Example: Last-is-a-member

This is an example of the problem that we have to use many heuristics without knowing Theorem 6.7 [5].
The problem is to show YA, V, B rev(A,[V|B]) — member(V, A) where rev and member are defined as
rev([],[)).

rev([A’|X],Z) « rev(X,Y),lins(A,Y, Z). R: member(A,[A]).

lins(A,[],[A]). * I member(A,[B}X)) « member(A, X).
lins(A,[B|Y],[B|Z]) « lins(A,Y,2).

In the following, we show very brief and informal proof. The strategy is, first, to obtain a program to define
a predicate 3B rev(A,[V|B]), then, to apply Theorem 6.7 to it.

By Tamaki and Sato’s unfold/fold transformation [8], we obtain a program defining

. v, [V1[)D.
p(V, A, B) & rev(A,[V|B]) as {;;EV, % A|] ;H) Z) « p(V, X,Y),lins(A,Y, Z).

Our aim is, by transforming this, to obtain p(V, A) 4 3p p(V, A, B) by a goal deletion and unfold/fold

transformation. The transformation in brief proceeds as follows.

Cy: p(A, [A]’”)

Cy : p(A,[B|X), 2) « p(A, X,Y),lins(B,Y, Z).
Cs : lins(4,[], [A])-

Cy : lins(4,[B|Y],[B|Z]) « lins(A,Y, Z).

First definition is Dy : {Cs : {4, X) « p(4,X,Y)} Then P, = PoU{Cs}.

Cs : p(A,[A)).
Unfold Cs by Cy and Cy, we get {07 A, [BIX]) « p(A, X, Y),lins(B, Y, Z).

P:

The initial program is Py :

<7

At this point, P = PoU{C5,Cg,Cy} and Dy = Dy. Clearly if we prove Mp, = p(A,X,Y) — 3Zlins(B,Y, Z)
then by a goal deletion and a folding we will get the aimed result from Cy C} : f{)(A’ {BIX]) « p(4,X). In
order to apply Theorem 6.7 to prove the implication we first obtain programs de ning
q¥) €34, X p(A, X,Y) UB,¥) ¥ 3Zlins(B,Y, 2Z)
and then show ¢(Y) — I(B,Y).
The tranformation to obtain the programs proceeds schemetically as follows.

unfold fa([])-
o(Y) 22 {Z(Z) « p(4,X,Y),lins(B,Y, Z). =25 ¢(Z) « ¢(V),lins(B, Y, Z).

unfold I(By [])
(BY) = { I(B,[CIY]) — lins(B, Y, Z). 2% (B, [C|Y]) — I(B,Y).

Now let us go to prove ¢(Y) — I(B,Y). Adopting Theorem 6.7, what we have to show is
it I(D,[]).
{definition of I} = {I(D,Z) — I(E,Y), lins(B, Y, Z).
The first clause is obvious. The second one is proved by showing (D, Z) « I'(Z) where

I'(z)%'3B,E,Y (B,E,Y,Z). U(B,E,Y,Zz) % I(E,Y),lins(B,Y, 2).
Again by unfold /fold tranformation, we get

unfolds ”(B, E’ []’ [BD
ll(B, E)Y, Z) é {II(B,E,[Cly],[C'Z]) — I(E, Y),Iins(B,Y,Z). %
10y untold [I([C)). (B, E,[C|Y],[C|Z]) «~ U(B, E,Y, Z).
'z == { I((CIZ]) — U(B, E,Y,Z). 24 1([c|2]) — I(2).

I(D,Z) « I'(Z) is proved by showing {definition of I} |= {igg’{g{)Z]) —I(D,Z).

Since the second clause is the same as the second one of the definition and the first clause is obtained by
applying the second definition clause to the first definitions one, this obviously holds.

. . V,[V).
Hence, Mp, |= p(A,X,Y) — 3Zlins(B,Y, Z). Consequently, p(X,Y) is defined by {i%V: %AIJA)X]) — p(V, X).
member(V,[V]).

Using Theorem 6.4, YV, X p(V, X) — member(V, X) if R |= { member(V, [A]X1]) « member(V, X).

Obviously this holds.

8. Conclusion
We have shown some sufficient conditions for the validity of definite clauses, related them to resolutions
between rules and shown their usefulness by examples.

The inductive proof which does not explicitly use induction is called inductionless induction £6] The
theorems we stated are not powerful to provide full inductionless induction on definite clauses, but will be
the first step to implement if. . ’

9. Acknowledgement

We would like to express our thanks to Mr. Yutaka Takuma, general manager of Naka Works, Hitachi Ltd., to
Dr. Eiichi Maruyama, general manager of Advanced Research Laboratory, Hitachi Ltd., and to Mr. Masahiro
Mori, manager of System and Software Design Department of Naka Wori(s, Hitahci Lid. for their giving us
to conduct the research. We also thank Mrs. Mariko Sakuraj for her encouragement and typing.

References
[1] K.R.Sé{t and M.H. van Emden, Contribution to the theory of logic programming, J. ACM 29 (1982)
841

[2] R.S. Boyer and J.S. Moore, Proving Theorems About LISP Functions, J. ACM 22 (1975) 129-144

[3] K.L. Clark, Predicate Logic as a Computational Formalism, Research Monograph: 79/59, TOC Imperial
College (1979) 75-76

[4] M.H. van Emden and R.A. Kowalski, The semantics of predicate logic as a programming language, J.
ACM 23 (1976) 733-742

{5] T. Kanamori and H. Fujita, Formulation of induction fomulas in verification of Prolog programs, ICOT
Technical Report TR-094 (1984)

[6] D. Kapur and D.R. Musser, Proof by Consistency, Artificail Intelligence 31 (1987) 125-157

{7] J.-L. Lassez and M.J. Maher, Closures and fairness in the semantics of programming logic, Theoretical
Computer Science 29 (1984) 167-184

[8] H. Tamaki and T. Sato, Unfold/fold transformation of logic programs, Proc. 2nd International Logic
Programming Conference (1984) 127-138

(8>

