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Least Fixpoint Semantics
of Generalized Logic Programs

Kiyoshi Akama

Faculty of Engineering, Hokkaido University

GLP theory is an axiomatic theory of logic programs, which are sets of clauses consist-
ing of abstract atoms which are defined by an abstract axiom. Such programs are called
generalized logic programs. In this paper we give the least fixpoint semantics of
generalized logic programs, which has the following characteristics. First, this theory is
very general and is widely applicable. Second, we use lower continuous functions
rather than continuous functions used in the usual theory. Lower continuity, which is
more general than continuity, is enough to develop the least fixpoint theory here. Third,
in the usual theory one-step-inference transformation T'p is used to define fixpoints. But
the fixpoints of T are meaningless. Instead we use knowledge increasing transforma-
tion Kp = Tp + I4, which results in a general and elegant theory of the least fixpoint
semantics.
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1 Introduction

Instead of starting with usual concrete defi-
nitions of atoms and substitutions, we adopt
abstract definitions of them and are con-
structing an axiomatic theory of logic pro-
gramming. We call it GLP theory (theory
of generalized logic programs).

The basic axiom is called specialization
systems, which is defined as follows:

Definition 1 A specialization systemis a
4-tuple < A,G, S, u > that satisfies the fol-
lowing conditions.

1. p: 8 — partial_map(A)
2. V81,52 € 85,35 €S :

p(s) = pfs2) o u(s1)
3. Ise€S,Vae A: pu(s)(a)=a
4. GC A

Flements in A are called atoms. G is called
the interpretation domain. Elements in &
are called specializations. The specializa-
tions that satisfy the third condition are
called identity specializations.

Several examples of specialization systems
are found in [3]. Here we show one of such
examples : I's =< As, Gs, S5, s >, where

1- AS = {x,y,z,p,q,r,s,t}
2- g5 = {p)q)"‘)s)t}
3. 8 = {e,a,b,c,o0}

4. psis a mapping from Sy to partial_map
(As) which is defined by :

us(e) =< As, As, {(a,a) | a € A} >

ps(a) =< As, As, {(z,p), (v, 9), (2,7)} >

us(b) =< As, As, {(2,p)} >
.U'S(c) =< AS) -’457 {(1:’ Q)? (y) 8)} >
ps(o) =< As, As,{ } >

We have defined generalized logic pro-
grams on specialization systems [3].

Definition 2 A logic program on a spe-
cialization system I is a (possibly infinite)
set of program clauses on A. A program
clause is of the form : H «— Ay, ..., A,,
where H, A, ..., A, are atoms in A.

GLP theory does not refer to predicates,
variables, constants, functions and substi-
tutions which are the basic components of
ordinary logic programs.

In [4], we have discussed the minimal model
semantics of generalized logic programs. In
this paper we will give the theory of least
fixpoint semantics of generalized logic pro-
grams. See the figure in appendix. The
figure shows our plan to develop GLP the-
ory.

In the usual theory of logic programs,
for example [10], the fixpoint theory is dis-
cussed based on the one-step-inference trans-
formation Tp. However the knowledge in-
creasing transformation Kp = Tp+ I, plays
the central role here. We should use the fix-
points of Kp rather than the ones of Tp. X
is a fixpoint of Kp iff we can not increase
X by the inference of P. But fixpoints of
Tp do not have such good interpretations.

2 Fixpoint Theory

2.1 Introduction

In this section we give a fixpoint theory
on a complete lattice. The theory is in-
dependent of the axioms of specialization
systems, and has the following characteris-
tics. The theory is different from the usual
theories, such as [10], of logic programs, in
the following points.

¢ We use lower continuous functions rather
than continuous functions used in the
usual theory. Lower continuity, which
is more general than continuity, is enough
to develop the least fixpoint theory
here. GLP theory tries to find the
most general preconditions to discuss



the main structure of generalized logic
programs.

e We use an increasing, monotonic and
lower continuous transformation K =
T + I; instead of a monotonic and
lower continuous transformation T in
the usual theory, because the least
fixpoint of T is meaningless when it
is applied to logic programs in section
3.

2.2 Basic Definitions

We begin with the definition of a complete
lattice.

Definition 3 A relation < on S is a par-
tial order iff it satisfies the following condi-
tions:

1. [reflexive]
z <z, forall zin S.

2. [asymmetric]
z < yand y < z implies z = y, for
all z and y in S.

3. [transitive]
z < yand y < z implies z < z, for
all z,y and zin S.

We often denote ¢ < y by y > z.

Definition 4 S is a partially ordered set
iff S is associated with a partial order on

S.

For every subset X of a partially ordered
set S, least upper bound of X, which is de-
noted by lub(X), is unique if it exists. Sim-
ilarly, greatest lower bound of X, which is
denoted by glb(X), is unique if it exists.

Definition 5 A partially ordered set L is
a complete lattice iff there are lub(X) and
glb(X) for any subset X of L.

From now on we assume that L is a com-
plete lattice, < is a partial order on L, F':
L — L is a mapping on L, L is the min-
imal element in L, and N is the set of all
non-negative integers.

Definition 6 F is increasing iff ¢ < F(z)
for any element z in L.

Definition 7 F is monotonic iff z < y
implies F(z) < F(y) for any element z, y
in L.

Definition 8 A sequence {z,}(n € N)is
on Liff z, € L for all n € N. A sequence
{z.}{n € N) on L is increasing iff =, <
Tyyy foralln € N.

Definition 9 F is lower continuous iff
F(lub{z,}) = lub{F(z,)} for any increas-
ing sequence {z,}(n € N) on L.

Note that continuous mappings are mono-
tonic [10], but lower continuous mappings
are not.

2.3 Fixpoint Theory on Com-
plete Lattice

In this section we discuss the foundation
of fixpoint theory of a mapping F on a
complete lattice L. In most definitions and
propositions here, we assume, implicitly or
explicitly, that F' is increasing. Increas-
ingness is the most important assumption
here.

Definition 10 a € L is a fixpoint of F iff
F(a) = a.

Definition 11 Forany F: L — L, F¥:
L — L is defined by

Vz € L: F*(z) = lub{F*(z) | n > 0},

where F(z) = z and Fl(z) = F(z).



Proposition 1 If F(z) = z then F¥(z) =
F(z) ==z.

Proof From F(z) = z, F*(z) = z for all
n € N. Then,

Fe(z) = ub{F*(z)|n >0}
= lub{z|n >0}

Proposition 2 K* is increasing, that is,
K“(z) > « for all z in L.
Proof Using F(z) =z,

Fe(z) = lub{F"(z)|n >0}
Fe(z) > F™(z) Vn >0
Fe(z) > =

Proposition 3 If F is monotonic, then
F¥ is also monotonic.

Proof Assume y > z. As F is monotonic,
Vn > 0: F*(y) > F™(z). Using this,

Fe(y) = lwb{F*(y)|n >0}
Fe(y) > F*(y) Vn >0
F*(y) > F*(z) Yn >0

This shows that F*(y) is a upper bound of
{F™(z) | n > 0}, then

F(y) 2 Wb{F"(z) | n > 0} = F*(z).

Proposition 4 If F'isincreasing and lower
continuous, then F“(z) is a fixpoint of F for
any element z in L.
Proof As F is increasing, {F"(z)}{(n > 0)
is also increasing. Since F' is lower contin-
uous,
F(lub{F"(z) | n > 0})

= lub{F(F"(z)) | n > 0}

Using these we obtain the following:

F(F(z)) = F(lub{F(z)|n > 0})
= 1b{F(F"(z)) | n > 0}
= lub{F(z) |
= lub{F"(z)|
= Fe(a)

>1}
2

0}

n
n

This means that F“(z) is a fixpoint of F.

2.4 Fixpoint Theory for K

We assume that K : L — L is increasing,
monotonic and lower continuous. The
following propositions are straightforward
from propositions 2, 3 and 4.

Proposition 5 K is monotonic.

Proposition 6 K“(z) is a fixpoint of K
for any element z in L.

Let z be an element in L. We denote by
Fp(K, ) the set of all elements in L which
are fixpoints of K and more than or equal
to , that is, y € Fp(K, z) iff K(y) = y and
y > z. We denote the minimal element in
Fp(K,z) by L fp(K, z).

The following is one of the most impor-
tant theorems in this paper.

Theorem 1 [fp(K,z) = K“(z) for any =
in L.

Proof From proposition 6, K“(z) is a fix-
point of K. From proposition 2, K“(z) >
z. Next, assume that y is any element in
Fp(K,z). From the definition, K(y) = y
and y > z. From proposition 5, K“ is
monotonic. Hence from z < y, K¥(z) <
K“(y). From Proposition 1, K“(y) = y.
Therefore, K¥(z) < y. Then K*(z) is proved
to be I fp(K,x).

This theorem states that the least ele-
ments in the set of all fixpoints of K which
are greater than or equal to z is given by
K“(z). The usual fixpoint of K is a special
case of this, because it is identical with the
least elements of the set of all fixpoints of
K which are greater than or equal to L.

2.5 Making K from T

We have discussed the fixpoint theory based
on a increasing, monotonic and lower con-
tinuous mapping K. In this section we give
one way to make a increasing, monotonic
and lower continuous mapping K from a



monotonic and lower continuous map-
ping T'. Some of the proofs are given in the
appendix.

Definition 12 For every element z,y in
L, we define z + y = lub{z, y}.

Definition 13 Let T} and T3 be mappings
on L. The mapping 71 + T on L is defined
by

Vz € L: [Ty + T2 )(z) = Ti(z) + Ta(z).

Lemma 1 If L’s elements z, y, z and w
satisfy z < y and 2 < w, then z+2z < y+w.

Lemma 2 For any sequence {z,},{y.} on
L, lub{z,} + lub{y,} = lub{z, + y.}.

Proposition 7 If 77 and 7, are mono-
tonic, then T; + T3 is also monotonic.

Proposition 8 If7; and T, are lower con-
tinuous, then T; + T5 is also lower continu-
ous.

Lemma 3 Let I; be the identity mapping
on L. Then, I; is monotonic and lower con-
tinuous.

Theorem 2 Let T : L — L be a mono-
tonic and lower continuous mapping. Let
K : L — L be defined by K =T + I;.
Then, K isincreasing, monotonic and lower
continuous.

Proof From the assumptions and lemma
3, T and I; are both monotonic and lower
continuous. From proposition 7 and 8, K is
also monotonic and lower continuous. Since
K(z)=T(z)+ Is(z) =T(z) +z > z, K is
increasing.

2.6 Least Fixpoint Theory

Definition 14 a € L is a least fixpoint of
F iff a is a fixpoint of F' and a < b for any
fixpoint b of F.

The least fixpoint of F is uniquely de-
termined if it exists. We denote the least
fixpoint of F' by [fp(F) if it exists. The
following proposition is obvious.

Proposition 9 When there is the least
fixpoint of F, Ifp(F) = fp(¥F, L)

Definition 15 F 1 wis defined as F*(1).

From these we can get a special case of
theorem 1.

Theorem 3 If K : L — L is increasing,
monotonic and lower continuous, then

Ifp(K)=Klw

Proof Let z be L in theorem 1. Then,
Ifp(K, L) = K“(L1). Therefore, Ifp(K) =
K T w is obvious from proposition 9 and
definition 15.

2.7 Least Fixpoint for T

The usual theory of logic programming uses
the fixpoint of T', instead of K. So we give
also the theory of the least fixpoint of T
However this does not mean that the least
fixpoint theory of T is absolutely necessary
for GLP theory. In fact, we can omit the
part of discussion of the least fixpoint of
T from this paper to give the fixpoint se-
mantics of generalized logic programs. The
main reason why we give the theory for T in
this and the next sections is to make clear
the relation between GLP theory and usual
theory of logic programming.

In this and the next section we assume
that 7" is monotonic and lower contin-
uous.

Proposition 10 {7"(L)}(n > 0) is in-
creasing.

Proof We prove T"*}(L) > T™(L) for any
n > 0 by induction. When n = 0, T(L) >
L is obvious since L is the minimal ele-
ment in L. Assume that the result holds



when n = k, that is, TF+1(L) > T*(L).

Applying the monotonic transformation T

to both sides of the inequation, we get
Tk+2(..L) Z Tk+1(_.|_)‘

This shows that the result also holds when

n=k+ 1.

Proposition 11 7%(Ll)is a fixpoint of T'.
Proof From proposition 10, {T™(L1)}(n >
0) is increasing. Since T is lower continu-
ous,
T(lub{T™(L) | n > 0})
= Wwb{T(T"(1)) | n > 0}
Using this we obtain the following:

T(T“(1)) = T(b{T(1) |n > 0))
WB{T(T(1)) | n 2 0)
wb{T"(L)|n>1}
lub{T™(L) | n > 0}

= T+(1).

I

]

This means that 7%(L) is a fixpoint of T

Proposition 12 T%(1) is a least fixpoint
of T.

Proof Assume that y is a fixpoint of T'.
We prove that y > T"(L) for all n > 0 by
induction. When n = 0, y > T%(L) is ob-
vious since it is equivalent to y > L. Next
we assume that y > 7%(L). By applying
monotonic transformation T' to both sides
of the inequation, we get T'(y) > T*+1(L).
Since y is a fixpoint of T, we know y >
T*+1(L1). Thus, y > T¥(L) for any fix-
point y of T'. From proposition 11, we can
conclude that T%( 1) is the least fixpoint of
T.

From this proposition we have T version
of the theorem 3.

Theorem 4 If T : L — L is monotonic
and lower continuous, then

lfp(T)=TTw

Proof Obvious.

2.8 Ifp(K) and lfp(T)

We will examine here the relation between
the fixpoint of K and the fixpoint of 7.
Please remind that:

e T is monotonic and lower continuous.
e K=T+ 1

¢ K is increasing, monotonic and lower
continuous.

First we prove that K™(L) = T"(L1).

Proposition 13 Forall nin N,
K*(L1)=T"1). ,
Proof We prove that K™(L) = T™(L) for
all n > 0 by induction. When n = 0,
K%(L) = T°(L) is obvious since it is equiv-
alent to L = 1. Next we assume that
K*(1) = T*(L), and prove K*+(1) =
THI(L).

Kk_H(L)

= K(K*(1))

= K(T*(L)) by induction

= T(T*(L)) + T*(L)
=THIL) +T*L)

= T*+1(1) from proposition 10

Then, it is easy to prove that
Klw=TTw.

Proposition 14 K Tw =T Tw
Proof

Klw
= K“(1)
= lub{K™(L) | n > 0}
= lub{T™(L) | n > 0} from proposition 13
=T<(L)
=TTw

Therefore we get the following theorem.
Theorem 5
Ifp(K) =K Tw=T1w=1fp(T)

Proof Obvious.



3 Least Fixpoint Seman-
tics

3.1 Least Fixpoiht Semantics

In this section we give the least fixpoint
semantics of logic programs on specializa-
tion systems. Let P be a logic program
on a specialization system. First we de-
fine a one-step-inference transformation Tp
which gives the result of one step inference
using a program P, and we prove Tp is
monotonic and lower continuous. Second
we define a knowledge-increasing transfor-
mation Kp = Tp + I; which represents the
increase of knowledge by one step inference
using a program P. By using the results in
section 2, we conclude that Kp has the least
fixpoint ! fp(Kp) and it is equal to Kp T w.

3.2 Tp and Kp

Proposition 15 X = powerset(G) is a
complete lattice with the inclusion relation
as a partial order, whose minimal element
1 is the empty set ¢.

Proof Clear from the definitions.

Definition 16 Let P be a logic program
on a specialization system I' =< A4, G, S, u >.
For any P we define a transformation T» on
the power set X of G as follows. For any z
in X = powerset(G), we define
Tp(z) ={g|3H,3B,,...,3B,, 30 :
Cond(g,P,H,By,...,B,,8,0,z)}
where, Cond(g, P,H,By,...,B,,S,0,z) is
the conjunction of

1. H + By,...,B, is a P’s program
clause.

2.6€8
3. ¢ is applicable to H and By,..., B,.
4. H0,B40,...,B,0 arein G.

5. g= HS

6. Bif,...,B,0 are elements in z.

Tp is called the one-step-inference transfor-
mation of P.

In the following we use Cond(g, z) as an ab-
breviation of the above defined condition,
Cond(g,P,H,By,...,B,,S,0,z).

Proposition 16 Tp : X — X is mono-
tonic.

Proof Clear from the form of the condition
6 in Cond(g, z).

Proposition 17 Tp : X — X is lower
continuous.
Proof It is enough to prove

g € Tp(lub{z,}) & g € lub{Tp(z,)}

for any monotonically increasing sequence
{z.}(n € N) on X. From the assump-
tion that {z,}(n € N) is a monotonically
increasing sequence and that Tp is mono-
tonic, {Tp(z,)}(n € N) is a monotonically
increasing sequence. Then we have:

g € Tp(lub{z,})

& 3H,3By,...,3B,,30 : Cond(g, lub{z,})

& 3H,3By,...,3B,,30,3m : Cond(g, Tm)

& 3dm: g € Tp(zm)

& g € lwb{Tp(z,)}
Therefore, Tp(lub{z,}) = lub{Tp(z,)}.

Definition 17 For any logic program P,
a transformation Kp on the powerset X of
G is defined by Kp = Tp + I, where I is
the identity mapping on X. Kp is called
the knowledge-increasing transformation of
P.

Proposition 18 Kp is increasing, mono-
tonic and lower continuous.

Proof Straightforward from theorem 2 and
from propositions 15, 16 and 17.

—39—



3.3 Fixpoint Theorem for Kp

We can state that X is a fixpoint of Kp iff
we can not increase X by the inference of
P. Therefore, we have a good reason why
we believe that what the program P defines
is one of the fixpoints of Kp.

Theorem 6 [fp(Kp,z) = Kp“(z) for any
z in powerset(G).

Proof Obvious from theorem 1 and propo-
sition 18.

This theorem states that the least elements
in the set of all fixpoints of Kp which in-
clude z is given by K“(z). The usual fix-
point of Kp is a special case of this, because
it is identical with the least elements of the
- set of all fixpoints of K which include §.
Letting  be the empty set, we choose
the least fixpoint of Kp as the semantics of
P, that is, we regard what P represents as

Lfp(Kp).

Theorem 7 Ifp(Kp) = Kp Tw
Proof Obvious from theorem 3 and propo-
sition 18.

Assume that P = {y « = ; z «}
is a program on the specialization system
< As, Gs, S5, ps > in section 1. Since,

Kp(ﬂ) = {p7 T}

KIZ’(Q) = KP({P)T}) = {p: q,T}

Kg’(w) = KP({p) q, T}) = {p) q,7, 3}

K}(0) = Kp({p,q,7,5}) = {p.¢,7, 8}
we can conclude that

KP Tw = {p1Q)T,3}

As it is also clear that

KP({piana S)t}) = {pr q,7, S,t}

fixpoints of Kp are {p, ¢,7, s} and {p, g, 7, s, t},

and the least fixpoint is {p, q,7,s}. From
these,

lfP(KP) Z'KP T w = {p7qua S}.

3.4 Fixpoint Theorem for Tp

We can also have the following theorems.

Theorem 8 lfp(Tp) =Tp Tw
Proof Obvious from theorem 4 and propo-
sition 16 and 17.

Theorem 9
1fp(Kp)=Kp lw=Tp 1w=1fp(Tr)
Proof Obvious from theorem 5.

In spite of the theorem 9, we should not
use the fixpoint of Tp in order to define the
semantics of P. This is because the fixpoint
of Tp has no natural interpretation for ex-
plaining the semantics of P. As we stated,
the fixpoints of Kp is meaningful because
X is a fixpoint of Kp iff we can not increase
X by the inference of P. But fixpoints of
Tp do not have such good interpretations
and it can not provide good reasons to re-
gard the semantics of P as the fixpoint of
Tp.

4 Concluding Remarks

The following are the characteristics of the
theory in this paper.

e The GLP theory enables us to dis-
cuss logic programming from a new
abstract level.

o We seek for the most general condi-
tions for the propositions and the the-
orems, therefore they are very general
and widely applicable.

¢ We do not assume any groundness con-
ditions for interpretation domains.

o We use lower continuous functions rather

than continuous functions used in the
usual theory. Lower continuity, which

is more general than continuity, is enough

to develop the least fixpoint theory
here.

e The requirement for K is increasing,
monotonic and lower continuous, which
is more general and easier to under-
stand than the .one of usual theory.



Instead of the fixpoint of one-step-inference

e We use Kp instead of T as the map-
ping of the fixpoint theorem. This is
because there is no good interpreta-
tion for the fixpoint of Tp.

transformation Tp in the usual theory we
have used the the fixpoints of knowledge
increasing transformation Kp = Tp + I,
This results in a general and elegant the-
ory of the least fixpoint semantics. Kp also
leads us to the elegant theorem: model =
fixpoint, which is discussed in [2, 5].
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Appendix

1. Proof for lemma 1

Assume that z < y and z < w, then

T y < y+4+w
z w < y+w

INIA

Therefore, y + w is an upper bound of
{z,z}. From the definition,  + z is the
least upper bound of {z,z}. Then we
get z+z <y+w.

2. Proof for lemma 2

(a) The proof of lub{z,} + lub{y,} <
lub{z, + yn}-
Vn:zn < o+ Yn < lub{za + yu}
Y iyn < Ty + Yo < IUb{mn + yn}
Then lub{z,+y, } is an upper bound
of {zn} and {y.}, then

lub{z,} < lub{xn+yn}
lub{yn} < lub{zn +yn}

From lemma 1,

lub{z,} + lub{yn} < lub{zn + yu}



(b) The proof of lub{z,} + lub{y,} >
lub{z, + yn}. From the definition
of lowest upper bound,

Vn:
Vn:

lub{z,} > z,
lub{yn} > yn

From lemma 1,
YV lub{za} + lub{yn} > T + yn.

Thus lub{z, }+lub{y,} is an upper
bound of {z, + y.}, then

lub{z,} +lub{yn} 2 lub{z, +ya}.

3. Proof for proposition 7

Letting T' = 17 + 1% we prove the mono-
tonicity of T. Assume that ¢ < y. As
Ty and T3 are monotonic,

Ti(z) < Ti(y)
Ta(z) < Ta(y)

Then from lemma 1,
Ti(z) + Ta(z) < Ta(y) + T2(v)
T(z) < T(y)

. Proof of proposition 8

Letting T' = Ty + 1>, we prove that T' is
lower continuous. Let {z,}(n € N) be
any increasing sequence on L. Since T}
and T are lower continuous, then

T1(lubd{z,}) wb{T1(za)}
To(lub{z,}) ub{T,(za)}

Adding each side of the formula and us-
ing from lemma 2,

T(lub{za}) = lub{T(z,)}.

5. Proof for lemma 3

(a) The proof of monotonicity. Assume
z <y, then Iy(z) =z < y = Li(y)-
This leads to Iy(z) < Ie(y).

(b) The proof of lower continuity. From
the definition of Iy, Iy(lub{z,}) =
lub{z,} and lub{I4(z,)} = lub{z.},
then Ij(lub{z,}) = lub{la(z,)}.

Logical
Consequence
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