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Abstract

The aim of this study is to propose a new expectation formation hypothesis, the relative expectation

formation hypothesis, and demonstrate that a standard probabilistic distribution on the trader’s
opinion, which is called the Bolztmann-Gibbs distributioni, is able to be derived from the relative
expectation formation hypothesis. The relative expectation formation of interacting agents will be
formularized by using mazimum information entropy principle and is considered as a mathematical
formularization of Keynes’ beauty contest.
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1 Introduction

The Markov switching models of interacting agents
have lately attracted considerable attention as an
alternative approach to the efficient market ap-
proach to finance. A number of studies have
already been made on this literature (see Aoki
(1994, 1996), Kirman (1993), Lux (1995, 1997,
1998, 1999), Kaizoji (1998, 1999a, 1999b) and the
others). Although the interacting agents models
are advocated as an alternative approach to the
efficient market hypothesis (or rational expecta-
tion hypothesis), little attention has been given to
the point how probabilistic rules, that an agent
switches their opinion, is connected with expecta-
tion formations. The aim of this study is to propose
a new expectation formation hypothesis, that is,
the relative expectation formation hypothesis, and
demonstrate that a standard probabilistic distribu-
tion on the trader’s opinion, which is called the
Bolztmann-Gibbs distributioni, is able to be derived
from the relative expectation formation hypothe-
sis. The relative expectation formation of interact-
ing agents will be formularized by using mazimum
information entropy principle and is considered as
a mathematical formularization of Keynes’ beauty
contest. In other words, we will reconstruct the
master equation approach to speculative activity
advocated by Kirman (1993) and Lux (1995) using
the information theoretic approach. Therefore the
information theoretic approach will make the dif-
ference between the master equation approach and
the traditional efficient market approach clear from
the standpoint of the expectation formation.

Then we consider that the learning algorithm
that agents memorize for sequence of the patters
of price changes in the model, the so-called asso-
ciative memory. The associative memory may help
account for the reason why the similar patterns of
the price changes are repeated in financial markets.

2 Information Theoretic Ap-
proach to Speculative Ac-
tivity of Interacting Agents

We think of the financial market that large num-

bers of traders participate in trading. It is assumed
that the total number of traders is 2NV, is con-

stant. Traders are indexed by j = 1,2,
The traders are supposed to determine the mode of
holding their wealth by choosing between alterna-
tive assets: risky assets (shares or foreign exchange)
and a riskless asset (money). Hence, a trader have
an investment attitude to the risky asset, the buyer
or the seller. x; denotes the investment attitude of
trader 4 at time t. The investment attitude z; is
defined as follows: if trader ¢ is the buyer of the
risky asset at a time, then z;; = +1. If trader ¢, in
contrast, is the seller of the risky asset at a time,
then z; —= —1.

2.1 Relative expectations formation

hypothesis

Every trader probably has an idea of the price of
risky asset which he expects to prevail in the future.
Hence, he expects a certain exchange profit through
trading. In speculative market the price changes
are subject to the law of demand and supply, that
the price rises when there is excess demand, and
vice versa. Thus a trader will predict the other
traders’ behavior, and will choose the same attitude
as the other behavior as thoroughly as possible he
could. Let us assume that trader 7 tries to minimize
the following evaluation function E;(z),

1 N
=5 2w = )" = fils" ~ s(@))zi. (1)
j=1

where «a;; denotes the connection weight from

“trader j to trader ¢, and §; denotes the strength of

the reaction of trader 4 upon the difference between
the fundamental price s* and the market price s(z),
and x denotes the vector of investment attitude
T = (T1, T2, e zn). We assume that the market
price depends upon the investment attitude of all
traders, z.

The optimization problem that the market
should solve is formalized by

min E(z

P=Bi(s"~s(2))zi].
2)

Assume that trader’s decision making is subject
to probabilistic rule. Let us introduce a random
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variable z* = (¢F 25, ... R, k=12, K.
Let the state ¥ occur with probability

P(2*) = Prob(z*) (3)

with the requirement 0 < P(zF) < 1 and
Zle P(z*) = 1. We define the amount of uncer-
tainty before the occurrence of the state z* with

probability P(z*) as the logarithmic function:
I(z*) =

—log P(zF). (4)

Formally the optimization problem that the mar-
ket should solve is formalized by

N
min(E(z)) = ) P(a*)E(z¥) ®)

k=1
subject to -
N N
H=- ZP(zk)logP(xk), Z P =1
k=1 =—N
(6)
where
k 1 k
B(@*) = 33" Eia") ™

zF is a state, and H is information entropy.

P(z*) is the relative frequency the occurrence of
the state z*.

We call the traders’ optimizing behavior a rela-
tive expectation formation.

The solution of the above optimization problem
is

P(z*) = L exp(—uE(ah)),

A
K
7= exp(—pB(ah)). (©)
k=1
17}
(B(z)) = ~5ﬁ10gZ (10)
18
(E*E) = 35 (1)
Var.E = (E*(z)) — (B(2))? = (,%z—z—logZ (12)
Hyax = IOgZ + [,L<E($)> (13)

where p denotes the Lagrangean. The probabil-
ity distribution P(z*) is called the Boltzmann dis-
tribution where P(z*) is the probability that the
network of agents is in the state k with the evalu-
ation function F(z*), and Z is the partition func-
tion.

2.2 Master Equations of P(z);

Now define a set of transition probabilities W (z —
z') from a state z into another state 2’. The master
equation is

P)—Plz)e =y W(z' = o)P(a)— Y W(z - 2')P(a)..

r#z! zHa’
(14)
What is the condition on W(X — z') so that
the system may reach and then remain in the ex-
pectational equilibrium ? A necessary condition for
maintaining equilibrium is that the average number

of transitions from z to 2’ and from z’ to z be equal:

W(z' = z)P(z), = W(z - 2)P(a'),,  (15)

or, by dividing by W(z — «') and assuming the
Boltzmann distribution (8)

Wz —~a) _ Pla). _ pexp(~E(z))
W' »z)  Pla'):  pexp(-E('))

(16)
where AE = E(z) — E(z') =. If ay; = aj; and
aj; = 0, then the resulting transition probability

exp(uAE;(z))

Wia: = —ai) = pexp(AE; (2)) + eXp(—ﬂAEi((x)))’
17

where AE;(z) = Zf\;l iz + Bi(s* — s(z)).

There are many possible choices of the transi-
tion probabilities which could have been made in
Equation (17), but the choice of the sigmoidal func-
tion like Equation (17) is motivated by statistical
mechanics (Glauber (1963), Amari (1972), Little
(1974), and Hinton and Sejnowski (1983)).

2.3 The volume of investment

The trading volume should depends upon the atti-
tudes of all traders. The aggregate excess demand
at time ¢ is given by

= exp(~pAE),



Excess Demand = g(z). (18)

where g(-) denotes the excess demand function.

2.4 The price adjustment process

There is a market-maker in the market, and he/she
compares the buying and selling orders by traders,
and executes trading. If the aggregate demand for
the risky asset at time ¢ exceeds the aggregate sup-
ply of the risky asset at time ¢, then the market-
maker raises the price at time t, and vice versa.
Hence, an adjustment process of the price can be
described as follows,

8t — 84—1 = Ag(@y). (19)

where the parameter, A represent the flexibility of
the market price change. The necessary condition
for the equilibrium prices is to satisfy the following

g(z) =0. (20)
The mean value of the price is
N
(As) =" P(a*)g(a*) (21)
k=1

where P(z*) is the stationary distribution (8).

3 Mean-Field Approximation

It was convincingly demonstrated that the two-
step probabilistic Markov process in the agents’
network can be replaced by a deterministic equa-
tioms in the so-called mean field theory approxima-
tion. The mean field theory approximation is a well
known technique in physics, particularly for spin-
systems (Glauber, (1963)). extensive studies of
the applicability of this approximation and refine-
ments thereof has been made for spin-glass system
(Mezard, Parisi, and Virasoro (1987), and which
are closely related to bidirectional neural network
model (Amit, et. al. (1985)). Here we briefly list
the key equations. The summation over all possible
agent configurations £ = (z1,.....,zy) is computa-
tionally explosive with problem size. Let us replace
this discrete sum with the mean field variable

1 N
(@) = (5 a0 (22)
=1

Foaj;=aand 8, =6,(i=1,... ,N), then the
evaluation function (2), that trader try to mini-
mizes, is approximated by

N N
E(@)~ =3 Y [aN (@), — B(s* — (s))z:)] (23)

=1 j=1

The first term of the right side of Equation (23)
is interpreted as a mathematical formularization of
Keynes beauty contest, because the first term rep-
resents that a trader tries to takes the same invest-
ment attitude as prediction of the average opinion.
The second term of the right side represents the
arbitrage trading because traders would buy (sell
short) an underpriced (overpriced) asset, driving
its price back to the fundamental value.

The mean field (z) is given by

(z) = tanh(paN(z) + uB(s* — s((z))) (24)

which represent steady state solutions. A
straightforward iteration of Equation (24) gives

<SE>¢+1 = tanh(,uaN(z)t +ﬂﬁ<5* - <5>t)) (25)

Next, let us approximate the adjustment process
of the exchange rate using (z).

(As)r = Ag(N(z)). (26)

We assume that g(-) is linear function with re-
spect to (z). Then we get

(As) = AN (z) 27)

and
(The1 = tanh(paN (z), + pB(s* — (s):)). (28)

where (As), = (s); — (8)1—1-



3.1

There is the formal equivalence between the
stochastic models of speculative activity and the
spin-glass models in statistical mechanics. The
striking similarity between the behavior of spin-
glass models and the above interacting agents mod-
els will lead to the discovery of important prop-
erties of the interacting agents model. The most
important difference between the two is that the
interacting agents models has a self-feedback from
the market exchange rate. The investment attitude
of traders changes the market exchange rate and
a change of the exchange rate has great influence
on the investment attitude. The interacting agents
model is a self-organizing system.

The local stability conditions for the equilibrium
({z)e = 0,(s): = 8*) are as follows

BAN

14+ —<a<]l,
tT3

Speculative Dynamics

B8>0

The figure illustrates that the dynamics of the
mean values are complex. Let us illustrate the dy-
namics of the model via numerical simulation. We
will show the dynamics in two case.
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Figure 1: The qusi-periodic attractor for (o, §) =
(1.2,0.1)

Figure 1 shows an attractor in the ((z)s, (s)¢)

plane with (o, 8) = (1.2,0.1). In the figure, the
orbits converges to attracting invariant ‘circle’ cre-
ated in the Hopf bifurcation. If the coefficient « is
above 1 in the case with 8 = 0.1, then a Hopf bifur-
cation occurs at the fundamental equilibrium, and
the orbits converges to attracting invariant ‘square’
created in the Hopf bifurcation.

Figure 2 shows an attractor in the ((z):, (s)¢)
plane with (a,3) = (1.9,6.0). The figure shows
the occurence of strange attractor’.
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Figure 2: The chaotic attractor for (o, 8) =

(1.9,6.0).

4 Associative Memory

In the proceeding section we show that the variety
of dynamics appear corresponding to the different
values of the parameters. These results will lead
us further into a consideration of learning. In this
section we will consider how the agents decide the
parameters o and 3. It seems reasonable to sup-
pose that the past patterns of the price changes
are stored in memory through a learning process
by agents, and the stored patters is recalled later

LFor further details of dynamical properties in the model
see Kaizoji (1999b).



when a key pattern appears in the market. This

kind of memory is called associative memory.

4.1 The gradient-descent-based
learning rule
Here we use a gradient-descent-based learning rule

as the learning algorithm for storage of the pat-
terns?. Inserting (28) into (27), we get

F({As)¢) = AN tanh(XMAs),+8(s*—(s)1)), a=

(29)

The gradient-descent algorithm is a stable and

robust procedure for minimizing the following one-
step-prediction error function

l\JlF—‘

E(a,B) = Z [As); — F({As)—1)]>.  (30)

More specifically, the gradient-descent algorithm
changes the parameter vector (&;, 8;) to satisfy the
following condition :

BE(a, B , 5
65} A/Bl < 07
(31)

where AE(ay,8) = E(@,B) — E(@-1,B-1),
Aay = @ — q_1, and AfG = B — Bi—1. To ac-
complish this the gradient-descent algorithm ad-
justs each parameters a; and 3 by amounts Ad
and Af; proportional to the negative of the gradi-
ent of E(a;, 5;) at the current location:

AE(ar,B) =

BE(ay, B) , -
oa Ady +

3E(011751)
a' b

OE(a1, B1)
3B,
(32)

Bl+1 = Bl -

Qry1 = —

where 7 is a learning rate.

When a stored pattern of price changes as a ini-
tial state is observed in the stock market, the finan-
cial network responds by producing the sequence of
the stored patterns. Hence, the recall is through as-
sociation of the observed pattern of price changes

2The gradient-descent method is often used for train-
ing multilayer feedforward networks. It is called the back-
propagation learning algorithmn which is one of the most im-
portant historical developments in neural networks (Rumel-
hart et al. (1986)). Another example of a supervised learn-
ing algorithm is the Boltzmann machin (Acley, et. al. (1985)
and Peterson and Anderson (1987)).

with the information memorized into the financial
network. In financial market the similar patterns
have been often observed in different time. Why
does history repeat itself in financial markets 7 The
associative memory may help account for the rea-
son.

5 Conclusion

This work presents a markov switching model of

po “integacting agents. I would now like to go on to de-
A velop the model by extending my investigations to

the following directions, (1) the models with het-
erogeneous agents, (2) the models in the financial
market that many securities are listed.
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