2003—1CS—133 (1)
200379714

HEEA ERAUERS ERE
IPSJ SIG Technical Report

A Fast Algorithm of Generic Pattern Retrieval and Its Application

Fuminori ADACHI!, O Takashi WASHIO!, Atsushi FUIIMOTOT, and Hiroshi MOTODA'

i LS.IR., Osaka University Mihogaoka 8-1, Ibaraki-shi, Osaka, 567-0047 Japan
E-mail: {{adachi,washio,fujimoto,motoda}@ar.sanken.osaka-u.ac.jp

Abstract The needs of efficient and flexible information retrieval on multi-structural data stored in database and
network are significantly growing. Especially, its flexibility plays one of key roles to acquire relevant information
desired by users in active retrieval process. Ilowever, most of the existing approaches are dedicated to each content
and data structure respectively, e.g., relational database and natural text. In this work, we propose a generic in-
formation retrieval method directly applicable to various types of contents and data structures. The power of this
approach comes from the use of the generic and invariant feature information obtained from byte patterns in the
files through some mathematical transformation. The experimental evaluation of the proposed approach for real
data indicates its high feasibility.

Key words active data mining, information retreival, mathematical transformation, transformation invariance

BIRPLH NS — U IRBRFIEE T DOEREM
masgEt OBR K A % xm B
tRBREBERETRT T 567-0047 KIRRATERY £ 8-1

E-mail: j{adachi,washio,fujimoto,motoda}@ar.sanken.osaka-u.ac.jp

HOEL THFRN—RRRy hU—J RILZ, wAF AT 4T —FOEEMETLTEY, £ 50OHMRATREK
REBRFEPRDLNTVD. BT 77 4 7T RRFEBRE TR, BEEOEVERZZEICNEST S 2 &z —F—
WWESTEERL, LHLEED, BROREDFREE, J— a3 FAF—FX—-IXRHRTO L 5 REH0MH
BIZH L LREZTILOTHSL., KBTI, BeDFATFOarT 7 —F s cEA TR — RN 2ESR
BRBFEETT. THET 7 A NVFONSA bRE—VITHBAEREZRL, —RNTRERZET D HEIERE MY
LTHEATIFETHS. AFERET—FICHEAL, BVEEZHERLE.

F—0—F TIT4TT—F~vA =07, BRBRR, BENER, THAEE

the work of the development and the maintenance of the

1. Introduction)
retrieval system.

The recent progress of information technology increases
the variety of the data structure in addition to their amount
accumulated in the database and the network. The flexi-
ble environment of information retrieval on multi-structured
data stored in the computers is crucial to acquire relevant
information for users. However, the state of the art remains
within the retrieval for each specific data structure, e.g., nat-
ural text, relational data and sequential data[1]~[3]. Ac-
cordingly, the retrieval on mixed structured data such as
multimedia data containing documents, pictures and sounds
requires the combined use of the retrieval mechanisms where
cach is dedicated to a data type respectively [4], [5]. Because

of this nature, the current approach increases the cost and

To alleviate this difficulty, we propose a novel retrieval
approach to use the most basic nature of the data represen-
tation. All real world data are represented by the sequence
of bits or bytes. Accordingly, a generic retrieval method
is established if a set of data which is mutually similar on
this basic representation can be appropriately searched. The
main issue on the development is the definition of the sim-
ilarity in the low level representation which appropriately
corresponds to the similarity on the content level. Though
the perfect correspondence may be hardly obtained, the fol-
lowing points are considered to enhance the feasibility of our
proposal.

(1) Commonly seen byte sequences in approximately

similar order and length are searched.

(2) The judgment of the similarity is not significantly
affected by the location of the patierns in the byte sequences.

(3) The judgment of the similarity is not significantly
affected by the noise and the slight difference in the byte
sequernces.

(4) The mutual similarity of the entire files is evaluated
by the frequency of the similar byte sequences shared among
the files. .

(5) The similar byte sequences shared by most of the
files are removed to evaluate the similarity among the files
as they do not characterize the specific similarity.

The last point addresses the matter that the excessively
common patterns do not provide any key information to suf-
ficiently reduce the scope of the retrieval. This has been also
addressed by the idea of TFIDF (Term Frequency Inversed
Document Frequency) in the information retrieval [6] and the
idea of “Stop List” [7].

In this work, a generic method to retrieve similar files in
terms of the byte sequences is studied. A certain mathemat-
ical transform on the byte sequences is used by treating each
byte as a numeral. This can extract invariant characters of
the sequences, and the relevant files can be retrieved under
the aforementioned consideration. The basic performance of
the proposed approach is evaluated through a realistic appli-
cation to the retrieval of raw binary format data of a word

Processor.
2. Principle of Similarity Judgment

The aforementioned point (1) is easily achieved by the
direct comparison among byte sequences. However, the point
(2) requires a type of comparison among sequences that is
If the direct

pair wise comparison between all subsequences selected from

invariant against the shit of the sequences.

two sequences is applied, the computational complexity is
O(nfn%) where n; and n; are the numbers of bytes in the
two sequences. To avoid this high complexity in practical
sense, our approach applies a mathematical transform to
the byte sequence in each file. The transform has the prop-
erty of “shift invariance” where the value obtained through
the transform is hardly changed against the shift of the se-
quence. To address the point (3), the result of the transform
should be quite robust against the noise and slight difference
in the sequence. Moreover, the transform must be conducted
within practically tractable time. One of the representative
mathematical transform to suffice these requirements is the
Fast Fourier Transform (FFT)[S].
tation time of O(nlogn) in theory when the length of the

1t requires only compu-

byte sequence is n, and a number of methods for practical

implementation are available. In addition, the resultant co-

efficients can be compressed into the amount of 50% of the
original if only their absolute values are retained. However,
when the transform is applied to very long sequences or sub-
sequences contained in a large file where each part of the
file indicates a specific meaning, the characters of the local
byte sequence reflecting a meaning in the contents level will
be mixed with the characters of the other local part. Ac-
cordingly, we partition the byte sequence in a file into an
appropriate length, and apply the FFT to each part to de-
rive a feature vector consisting the absolute values of the
Fourier coefficients.

The feasibility and the characteristics of the proposed
method have been assessed though some numerical experi-
ments on some pieces of byte sequences in advance before
the further study and implementation are proceeded. In the
experiment, the length of each byte sequence is chosen to
be 8 bytes because it is the length of byte sequences to rep-
resent a word in various languages in standard. A number
128 is subtracted from the value of each byte to eliminate
the bias of the FTT coefficient of order 0, while each byte
takes an integer value in the range of [0,2535]. First, we shift
the byte sequences to the left randomly, and the bytes out
of the edge are located in the right in the same order. Thus,
the byte sequences are shifted in circular manners. Because
of the mathematical nature of FFT, i.e., shift invariance, we
observed that this did not cause any change on the absolute
value of the transformed coefficients. Next, the effect of the
random replacement of some bytes is evaluated. Table 1 ex-
emplifies the effects of the replacement in a basic sequence
“26dy10mo” on the absolute coefficients. The distance in
the table represents the Hamming distance, i.e., the num-
The absolute

coefficients from f5 to f8 are omitted due to the symmetry

ber of the different bytes from the original.

of Fourier Transform. In general, only n/2 + 1 coefficients
for an even number n and (n + 1)/2 for an odd number n
are retained. The numbers of the absolute coeflicients are
quite similar within the Hamming distance 2 in many cases.
However, they can be different to some extent even in the
case of distance 2 such as *“(LF)5dyl0mo” where the value
of “(LF)” is quite different from that of “2”. Accordingly,
some counter measure to absorb this type of change or noise
in the similarity judgment must be introduced.

The method taken to enhance the robustness against the
replacement noises in this work is the discretization of the
absolute value of the FFT coefficients. If the absolute coef-
ficients are discretized in an appropriate manner, the slight
differences of the coefficient vales do not affect the similar-
ity judgment of the byte sequence. An important issue is
the criterion to define the threshold values for the discretiza-

tion. A reasonable and efficient way to define the thresholds

Table 1 FFT R#UCHET 331 M-S EEOEE
Table 1 Effect of byte replace on FFT coeflicients.

Sequneces {0 f1 f2 f3 f4 Distance

112.9 345.6 103.8 108
20dyl0mo 150 112.4 350.7 103.9 102
19dyl0mo 142 113.8 343.6 103.1 112

(LF)5dyl0mo 174 89.9 361.2 1362 156

(LF)5dylimo 178 86.6 364.4 137.3 152

(LF)5dy09mo 180 88.6 365.8 136.8 152

26dyl0mo 144

e WO R = O

of the absolute coefficients for arbitrary sequences is that
the absolute coefficient obtained from a randomly chosen se-
quence falls into an interval under an identical probability.
To define the thresholds of the absolute coefficient in every
order for a certain length of byte sequences, i.e., the length
n, we calculated the absolute coefficient value distribution
for all 28" byte sequences for every order. This computa-
tion is not tractable in straight forward, however in prac-
tice, this is quite easily achieved by using the symmetric and
invariant characteristics of the absolute values of the FFT
coefficients on various sequence patterns. For example, the
absolute coefficients are invariant against the aforementioned
circular shift. They are also invariant against the reverse of
the order in the byte sequence and the reverse of the posi-
tive and negative signs of all byte numbers in the sequence.
Furthermore, the absolute coefficients of the third order are
invariant against the reordering of the two byte units in the
sequence. For example, their values do not change among
“26dy 10mo” and “dy26mol0”. By combining these charac-
teristics of the absolute FFT coefficients, the space of the
sequences consisting of 8 bytes to be assessed for the deriva-
tion of the exact absolute coefficient value distributions is
significantly reduced, and the distributions are obtained in
a few hours computation. Upon the obtained absolute coef-
ficient distribution for every order, (m — 1) threshold values
for every order are defined where every interval covers the
identical probability 1/m in the appearance of a coefficient.
When the number of m is small, the character of each byte
sequence does not become significant due to the rough dis-
cretization. We tested various number m, and chose the value
m=16 empirically which is sufficient to characterize the sim-
ilarity of the byte sequence in generic means. Through this
process, the information of a FFT coefficient for every order
is compressed into 16 labels. In summary, a feature vector
consisting of n/2 + 1 or (n + 1)/2 elements for an even or
odd number n is derived where each element is one of the 16
labels.

Moreover, the moving window of a fixed length byte se-
quence is applied to generate a set of feature vectors for a

file as depicted in Fig.1. First, a feature vector of the byte

Glalalelewlala e Talulolx]

[ofofalalulaln]n]=r]r]w]w]w]

o oo [nlon]anj={v[n]u]u]n

Lo

'u-sl .r\»ﬁl 'ml

Figure 1 B#Ri<x¥ 5 FFT
Fig.1 FFT on moving windows.

sequence of a length n(= 8) at the beginning of the file is cal-
culated. Then another feature vector of the sequence having
the same length n but shifted with one byte toward the end
of the file is calculated. This procedure is repeated until the
feature vector of the last sequence at the end of the file is
obtained. This approach also enhances the robustness of the
similarity judgment among files. For example, the feature
vectors of the first 8 bytes windows of “26dy10mo02yr” and
“(LF)5dy10mo02yr” are quite different as shown in Table 1.
However, the feature vectors for the 8 bytes windows shifted
by one byte, i.e., “6dy10mn0” and “5dy10mn0”, are mutu-
ally very similar. Furthermore, the vectors for the windows
shifted by two bytes become identical because both byte se-
quences are “dyl0mo02”. This moving window approach
enhances the performance of the frequency counting of the
parts having similar patterns among files. Thus, the point
(4) mentioned in the first section is addressed where the mu-
tual similarity of the entire files is evaluated by the frequency
of the similar byte sequences shared among the files. To ad-
dress the point (5), the feature vectors which are obtained
from a given set of files more than a certain high frequency
threshold are registered as “Unusable Vectors”, and such un-

usable vectors are not used in the stage of the file retrieval.
3. Fast Algorithm of Retrieval

The data structure to store the feature vectors for given
vast number of files must be well organized to perform the
efficient file retrieval based on the similarity of the byte se-
quences. The approach taken in this work is the “inversed file
indexing” method which is popular and known to be the most
efficient in terms of retrieval time [3],{9]. Through the pro-
cedure described in the former section, the correspondence
from each file to a set of feature vectors derived from the file
is obtained. Based on this information, the inversed indexing
from each feature vector to a set of files which produced the
vector is derived. The data containing this inversed index-
ing information is called “inversed indexing data”. By using

the inversed correspondence in this data, all files containing

Abaiof
Dists Fiex Dais Exraction s Key Fiis
‘ :
v ! L ¥
Trasfaiation
1 H
¥
Wecior
LQusedawion
] §
Warinr
S
E £ NM” "
Sonrsind Uninilils
Indexing Vactor Ramavel
H
1 b 4
venad . g
dugng Dals ¥
X
Unusabis -
Yocioe List Fatrevsl Resut

Figure 2 RFEFHEOME

Fig.2 Outline of retrieval approach.

patterns which are similar with a given feature vector are
enumerated efficiently.

Figure 2 outlines our retrieval approach. The path rep-
resented by solid arrows is the aforementioned preprocessing.
The “Data Extraction” part applies the moving window ex-
traction of byte sequences to each file in a given set of data
files. The extracted byte sequences are transformed by FFT
in the “Mathematical Transformation” part. The “Vector
Discretization” part discretizes the resulted coefficients by
the given thresholds, and the feature vectors are generated.
The “Vector Summarization” part produces the correspon-
dence data from each file to feature vectors while remov-
ing the redundant feature vectors among the vectors derived
from each file. Finally, the “Inversed Indexing” part derives
the inverse correspondence data from each feature vector to
files together with the “Unusable Vectors List”.

The file retrieval is conducted along the path represented
by the dashed arrows. A key file for the retrieval is given
to the “Data Extraction” part, and the identical informa-
tion processing from “Data Extraction” to “Vector Summa-
rization” with the former paragraph derives the set of the

feature vectors of the key file. Subsequently, the unusable

vectors are removed from the set in the “Unusable Vectors
Removal” part. Finally, the files corresponding to the feature
vectors in the set are enumerated based on the inverse cor-
respondence data in the “Vector Matching” part. First, the
“frequency” of the complete match of every feature vector in
the set to the identical vector in the inverse corresponding
data is counted in this part. Then to focus the retrieval re-
sult to only files having strong relevance with the key file, the
total sum of the frequencies of all feature vectors in the set
are calculated. If the total frequency of the vector matching
is less than a given “frequency threshold value”, the file is
not retained in the retrieval result. Moreover, the result is

sorted in the order of the matching frequency.

4. Evaluation on Real-World Word Pro-
cessor Files

The practical performance of our proposed method is
evalnated by using real world data. The data is a set of 2253
word processor files having Microsoft Word doc format. The
average size of a file is around 20KB. Each contains a text
document consisting of 600 characters coded in a specific
binary format. Accordingly, the conventional text keyword
retrieval is not applicable to this retrieval problem. To eval-
uate the ability to retrieve similar content files within our
proposing approach, the raw Microsoft Word data are num-
bered from No.1 to No. 2253, and they are processed to have
stronger similarity in terms of contents when the number la-
bels of the files are closer. Initially, a seed file is selected
from the original set of word processor files and numbered as
No.1. Then, another file X is randomly chosen from the raw
file set, and a sequence consisting 16 characters is selected
from the file. Then, a randomly chosen part consisting of 16
characters sequence in the original file No.1 is overwritten
by the sequence selected from the file X, and the new file
is numbered as No.2. Starting from this stage, a part of 16
characters randomly chosen in the file No. n is overwritten
by the sequence of 16 characters selected from another ran-
domly chosen file X, and the new file is numbered as No.
n + 1. This process is repeated 2253 times to gradually and
randomly change the original seed file and newly generate
similar files. As a result, 2253 files in total are generated
where the files having close number labels have some simi-
larity.

Based on this real world data, the inversed indexing data
and unusable vector list are generated in the preprocessing
stage of our approach. Subsequently, 5 key files arbitrary
chosen from the real world files are used to retrieve their
similar files. Each key file is given to the retrieval system
and processed along the dashed line in Fig. 2. Table 2 show
the result of the top 10 retrieved files in the order of the

similarity in the feature vector matching for the 5 key files.
The result clearly shows that the files having close number
to the key file are retrieved. Some files are missed to be re-
trieved even when their numbers are close to the number of
the given key file. This is because the character sequence
for the replacement can be quite different from the original
overwritten sequence as numerical series data, and this re-
placement significantly affects the coefficients of FFT in the
feature vectors. This effect has been already discussed in
the example of the feature vectors of ”26dy10mo02yr” and
”(LF)5dy10mo02yr” in Table 1. Though the moving window
approach alleviates this type of distortion in the judgment
of similarity, the judgment is infected to some extent even
under this approach when the character sequence for the re-
placement is much different from the overwritten sequence.
The third row from the bottom in the table indicates the
standard deviation of the number labels of the top 50 re-
trieved files, and the second row from the bottom shows the
chi-squared value on the difference of the distribution from
the expected distribution of the number labels of randomly
sampled 50 files. The numbers from 1 to 2253 are divided
into the 50 sections, then the expected number of files in each
section is 1 when 50 files are sampled randomly. At this time,
the chi-squared value follows chi-squared distribution which
flexibility is 49. If the chi-squared value is more than 94.6,
the probability that the files retrieved are randomly sampled
is less than 0.0001. Therefore, the distributions of the re-
trieval results are sufficiently skewed around the key files in
the sense of the similarity. The bottom row represents the
computation time to retrieve the 50 files for each key files.
The 50 similar files are retrieved within a second among the
2253 doc files for each key file. The difference of the time for
retrieval is due to the difference of the number of the feature
vectors which is not unusable for each key file. For exam-
ple, the number of the usable feature vector of the key file
No.1500 is 1474 while it is only 593 for the key file No. 2000.
This difference is reflected on the retrieval time. The re-
trieval time is almost linear with the number of the effective

feature vectors of each key file.
5. Summary

In this work, a generic retrieval approach for the data,
where one dimensional byte sequences reflect the contents of
the data, is proposed. The proposed approach covers most
of the advantage of the conventional approaches. The next
issue is to extend this approach to multi-dimensional data
such as image data and 3D data where the information of the
contents are not reflected in the byte sequences in straight-
forward manner.

Acknowledgement

Table 2 %7 —# ICHT SRR
Table 2 Retrieval on real world data.

Key File Key File Key File Key File Key File
No.100 No.500 No.1000 No.1500 No.2000
100 500 1000 1500 2000
102 676 789 1499 2001

99 664 979 1494 1999

104 508 648 1498 1995

96 554 999 1502 2158

97 508 967 1497 2258

105 579 997 1496 1868
106 561 856 1503 2019
103 543 852 1504 1989

98 485 543 1506 1877

Std. Std. - Std. Std. Std.
17.0 142.4 176.4 190.0 108.2
2= 2= 2= = 2=
1352 316 256 1765 385

0.642 sec. 0.466 sec. 0.422 sec. 0.844 sec. 0.370 sec.

This work was partially supported by the grant-in-aid for
scientific research on priority area “Active Mining” (No.
13131101, No. 13131206) funded by the Japanese Ministry
of Education, Culture, Sport, Science and Technology.

References

[1] Baeza-Yates, R.A.: String Searching Algorithms, Informa-
tion Retrieval, Data Structures & Algorithms, Chapter 10,
ed. Baeza-Yates, R.A., New Jersey: Prentice Hall, pp. 219-
240 (1992).

[2] Faloutsos, C: Signature Files, Information Retrieval, Data
Structures & Algorithms, Chapter 4, ed. Baeza-Yates, R.A.,
New Jersey: Prentice Hall, pp. 44-65 (1992).

[3] Harman, D., Fox, E. and Baeza-Yates, R.A.:
Files, Information Retrieval, Data Structures & Algorithms,
Chapter 3, ed. Baeza-Yates, R.A., New Jersey: Prentice
Hall, pp. 28-43 (1992).

[4] Ogle, V.E., Stonebraker, M: Chabot: Retrieval from a Re-
lational Database of Images, IEEE Computer, Vol. 28, No.
9, pp.1-18 (1995).

[5] Faloutsos, C., Equitz, W., Flickner, M., Niblack, W.,
Petkovic, D., Barber, R.: Efficient and Effective Querying
by Image Content, Journal of Intelligence Information Sys-
tems, 3, 3/4, pp.231-262 (1994).

[6] Salton, G. and McGill, M.J.: Introduction to Modern In-
formation Retrieval, McGraw-Hill Book Company (1983).

[7] Fox, C: Lexical Analysis and Stoplists, Information Re-
trieval, Data Structures & Algorithms, Chapter 7, ed.
Baeza-Yates, R.A., New Jersey: Prentice Hall, pp. 102-130
(1992).) .

[8] Digital Signal Processing, The Institute of Electronics, In-
formation and Communication Engineers (IEICE) 10th Ed.,
Gihoudou, pp.49-61 (1983) (in Japanese).

[9] http://www.namazu.org/

Inverted

