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Multiscale Time Series Clustering: A Consensus Clustering Approach

Hur ZeANGt and Tu Bao Hot

Multiscale analysis has played an important role in signal processing and statistics. Multi-
scale analysis analyzes the time series data in multiple scales, and each scale catches specific
features of the data, thus it gives us the ability of observing time series data in various views.
When applying multiscale analysis to time series clustering, it is not trivial to determine the
appropriate scale. This problem is circumvented in this paper by getting a consensus of the
clustering solutions over each scale. We first perform clustering with the data of each scale,
then merge the cluster solutions together. Two contributions of this paper are: we propose a
multiscale time series clustering scheme based on the consensus of multiple clustering and a
novel consensus clustering algorithm is presented in this paper. The benefits of the proposed
approach are experimental evaluated with several real time series data.

1. Introduction

Clustering is a widely used data mining tech-
nique for partitioning a data set into sub-groups
so that the instances within a group are simi-
lar to each other and are very dissimilar to the
instances of other groups. A number of differ-
ent clustering approaches have been proposed
from different point of view® such as hierarchi-
cal clustering, distance based clustering, model
based clustering. Time series data accounts
for a huge amount of data stored in financial,
medical, gene expression and science databases
and is very popular in real life world and there
is increasing interest in clustering time series
data in recent years. Distance-based cluster-
ing that groups the time series data set by the
distance between the subgroups of the data set
has been widely used in time series clustering.
The K-means algorithm may be the most com-
monly used distance-based clustering algorithm
for its simpleness and efficiency. The consensus
clustering approach is an approach of cluster-
ing the multiple clustered solutions obtained by
reinitializing the start points of clustering algo-
rithms or resampling the data set. It does not
matter which clustering algorithm is used for
generating each solution and it can even handle
multiple clustering algorithms. For simplifying
the comparison between different algorithms,
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we only take the K-means algorithm in our ex-
periments.

In the past decades, wavelets have become
one of the most exciting developments in ap-
plied mathematics, signal/image processing,
and statistics. The most significant contribu-
tion of the development of wavelets is to in-
troduce a new framework - multiscale analysis,
that is proven to be effective in many appli-
cations. Recently there are increasing inter-
ests in applying wavelets for time series min-
ing. However, most of the proposed ideas used
wavelets for time series matching, few work con-
cern about time series clustering. It is natural
of thinking about using wavelets for time se-
ries clustering, as comparing the similarities be-
tween time series is the key point for both time
series clustering and matching.

With multiscale analysis, we can observe the
time series data in different aspects, from de-
tail to rough. Nevertheless, it is not easy to
choose the appropriate scale for clustering. We
don’t know which scale is better than others.
This problem is circumvented by merging the
cluster solutions over each scale in this paper
hence we don’t need to choose the proper scale.
The final cluster result is the consensus of the
clusters obtained with all individual scales. It
has been demonstrated that classifier consensus
systems such as boosting and bagging are suc-
cessful in many domains. If all clusters obtained
in different scales agree on how a dataset should
be partitioned, aggregating the clusterings will
show improvement over any of the individual
clustering.
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Most of the proposed consensus clustering al-
gorithms obtain the consensus by first define
a similarity matrix between instances by the
frequency of two instances locate in the same
meta-cluster then performing clustering algo-
rithm with the similarity matrix. This ap-
proach needs quadratic memory and computa-
tional complexity. We propose a similarity mea-
sure between clusters in this paper. The final
clustering solution is obtained by corresponding
clusters within different scales.

The remainder of this paper is organized as
follows. The basic knowledge of Haar wavelet
transform and K-means clustering algorithm
are introduced in section 2. Some related work
also been reviewed in section 2. In section 3,
we present our multiscale clustering algorithm.
Experimental results are presented in section
4. Finally, section 5 concludes the paper with
discussions of some possible future work.

2. Background And Related Work

2.1 Haar Wavelet Transform

Wavelet transform is a domain transform
technique for hierarchically decomposing se-
quences. It allows a sequence to be described
in terms of an approximation of the original se-
quence, plus a set of details that range from
coarse to fine. The property of wavelets is that
the broad trend of the input sequence is pre-
served in approximation part, whereas the lo-
calized changes are kept in detail parts. No
information will be gained or lost during the
decomposition process. The original signal can
be fully reconstructed from the approximation
part and the detail parts.

Haar wavelet is the simplest and most popu-
lar wavelet given by Haar. The benefit of Haar
wavelet is its decomposition process has low
computational complexity. Given a time series
with length [, where [ is an integral power of 2,
the complexity of Haar decomposition is O(1).
The concrete mathematical foundation of Haar
wavelets can be found in?.

The length of input time series is restricted to
an integer power of 2 in the process of wavelet
decomposition. The series will be extended to
an integer power of 2 by padding zeros to the
end of time series if the length of input time
series doesn’t satisfy this requirement.

The structure of decomposed hierarchical co-
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efficients are shown in Table 1.

Table 1 The hierarchical wavelet coefficients

Scale Coefficients
0 Ao
1 A Dy
. ... Dy | Dy
10g2 (l) Ak | Dk | e Do Dy

Scale 0 is the original time series. To cal-
culate the approximation coefficients A; =
{ao0,j,01,j,---,a1-1,;} and detail coefficients
Dj = {do,j,dl,j gees ,dlfl,]‘} within scale j, the
approximation part of scale j — 1 is divided into
an even part including even indexed samples:
even(Aj,l) = {ao,j,l, az;—1;--- ,a2[72’j71}
and an odd part including odd indexed samples:
Odd(Ajfl) = {al’jfl,ag’jfl,...,(7,2171’]',1}.
Approximation coefficients A; are calculated as

1
Aj = ﬁ(even(Aj_l) +odd(Aj_1)). (1)

The detail coefficients within scale j are cal-
culated as

D; = %(even(Aj,l) —odd(A;-1)). (2)

Therefore, the number of decomposing scales
for the input time series is loga(l) except the
scale zero, here [ is the length of zero-padded
input series.

2.2 K-means Algorithm

For a given data set D = {di,ds,...,dn}
containing N instances and a given number of
clusters K, K < N, where the target of clus-
tering is to divide the NN instances into a set
of partitions. The partition can be defined as
C ={Cy,Cs,...,Ck}, with UE_ C}, = D, and
CiNC; =@,V 1 # 7.

K-means algorithm is a fast and one of the
most commonly used clustering algorithms®. Tt
groups n samples into K clusters for a given
parameter K. K-means is an iterative hill-
climbing algorithm to optimize a score func-
tion which measures the intracluster similarity
or intercluster dissimilarity. The typical score
function is the squared-error-criterion defined
as E = Zfil Yaec, [di — my]?, where E is
the sum of square error for all samples in the
dataset D = {di,ds,...,dn}, d; is a sample,
and m; is the mean of the cluster C;. m; is
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calculated by )
m; = —

— > dij=12,...,K

J d;eC;
where n; is the number of samples in C';. The k-
means algorithm consists of the following steps:

Step 1: Randomly initialize K cluster centers
from the N samples {d;,dz,...,dn}.

Step 2: Assign a sample d; to a cluster Cj, j €
{1,2,...,K}, if and only if |d; — m;|*> <
|di —m,|>,p=1,2,...,K, and j # p.

Step 3: Recalculate the new mean value for
each cluster.

Step 4: If the value of the score function E
does not changed in the last iteration, exit.
Otherwise go to step 2.

2.3 Related Work

Combining multiple clustering results based
on resampling or reinitializing the initial clus-
ter centers has attracted increase attention over
the last years'® . 5 3) 11 4) The key idea of
these algorithms is to define a pairwise similar-
ity matrix between instances. Each solution is
represented by a D x D matrix where the (i, j)
position is either 1 if observations ¢ and j be-
long to the same cluster and O otherwise. The
average of all matrices is used as the input for
a hierarchical clustering algorithm. The dis-
advantage of this approach is that it requires
quadratic computational complexity. Our ap-
proach is to define a similarity measure be-
tween meta-clusters and correspond the clusters
by this similarity measure hence different with
other algorithms.

All the proposed consensus clustering algo-
rithms yield different clustering solutions from
the same data set by resampling or refining the
initial cluster centers. The multiple cluster-
ing solutions are generated from each scale of
wavelet transformed data set in our approach.
In this regard, our idea is similar with the it-
erative multiscale clustering algorithm®. They
set the clustering obtained from rougher scale
as the initial points of the detailer scale that
is different with our clustering consensus ap-
proach.

3. Multiscale Time Series Clustering

The motivation behind this algorithm orig-
inates from the observation that the gen-
eral shape of the time series is captured by
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the approximation Haar wavelet coefficients
(AHWC). The AHWC within lower resolution
(higher scale) correspond to more rough shape
and that within higher resolution (lower scale)
catch more detail information of the original
series. All the AHWC share the features of
the time series from rough to detail. In this
case, the AHWC can be viewed as the result of
smoothing the time series with kernel-varying
functions. As the clustering solution generated
by K-means algorithm crucially depends on the
initial points, and the AHWC within each scale
are different with each other, the clusterings ob-
tained over the AHWC of different scales should
also be different. However, the clustering solu-
tions share common information from the orig-
inal time series. Therefore, the more the at-
tained solutions are agree to each other, the
more the clusters are robust to the noise and
variability of initialization. In this point, we
have more confidence to the consensus of clus-
terings.

The multiscale time series clustering algo-
rithm is summarized in pseudo-code format in
Algorithm 1. In the remainder of this section
we illustrate in detail with each of the proce-
dure’s steps.

Algorithm 1 Multiscale time series clustering
procedure
input: a set of time series D =
{di1,ds,...,dn}, number of clusters K.
for scale = 0 to the maximum scale do
M « ¢ {the joint clustering matrix, ini-
tially empty}
A® + Wavelet transform(D) {Obtain the
Approximation Haar Wavelet Coefficients
(AHWC) within the scale}
M?# « Cluster(A®, K) {cluster A% into K
clusters}
M+ MUM?®
end for
C + correspond the meta-clusters within M
P + reclustering(C) {Cluster M into K clus-
ters based on the corresponded matrix C'}
output: The partition P
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3.1 Clustering with The Approxima-
tion Haar Coefficients of Each

Scale
We assume all the time series in the D have
the same dimensionality [ (This is a require-
ment for comparing Euclidean distance in K-
means algorithm). If the time series data in
D have different dimensionality, we can inter-
polate them to make the dimensionality to be
the same. Given a time series d,, once per-
formed the Haar wavelet transform, we obtain

1

a set of AHWC series {49, AL .. ‘,Alnog;)} as
introduced in section 2.1. Here we take the orig-
inal time series as the AHWC within the scale
0. Note that AHWC within the highest scale
s = logg) only have one item, which is propor-
tional to the mean of the time series. As the
time series data often need to be normalized
to reduce the influence of the scope, this item
should be the same for all time series data. So
we don’t take the coefficients within the highest
scale into calculation. Therefore, we have logg)
AHWOC series for each time series.

The K-means algorithm introduced in section
2.2 is performed over the AHWC within each
scale. The clustering solution M? correspond-
ing to the scale s is a 1 x N matrix whose ith ele-
ment indicates the cluster that the ith instance
belongs to. The value of the entries is an integer
number ranging from one to the user specified
number of clusters K. A log,(l) x N joint ma-
trix M corresponding to log,(l) * K clusters is
generated by merging the M* of each scale.

3.2 Corresponding Multiple Cluster-

ing Solutions

In order to get the final clustering solution,
one needs to solve the problem of grouping
the joint matrix log,(l) * K clusters into K
groups in an ”optimal” fashion. Unlike the
classifier combination problem, the correspon-
dence between different clustering solutions is
unknown. For example, consider two clustering
solutions A and B obtained from five instances
with two groups. The clustering solution A is
{1,2,2,1,2} and B is {2,1,1,2,1}, where the
ith element of A and B is the group to which
instance ¢ is assigned. Although these two so-
lutions appear to be different, they are in fact
the same. The cluster 1 of A and cluster 2 of
B are identical, and cluster 2 of A agrees with
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the cluster 1 of B. If the correspondence prob-
lem is solved, it’s easy to merge the solutions
together.

To solve the correspondence problem, we de-
fine a similarity measure between a group A and
another group B as

|AN B|

Sim(A,B) =1— miin( FTREZD)

It is easy to prove that the defined similarity
measure satisfies the following situations:
(1) Sim(A,B) =Sim(B, A)
(2) 0<Sim(4,B)<1
(3) Sim(A,B)=0,if A=B
(4) Sim(A,B)=1iff ANB|=0
(5) Sim(4,B)=0,if A DB, or BDA

We choose the first row of M as the standard
clustering solution (in fact, any row within M
can be chosen as the standard solution). The
clusters of other solutions within M are cor-
responded to the the clusters of the standard
solution according to the similarities between
them. If the standard solution A contains clus-
ters {C{*,C4',...,C#}, and another solution B
have clusters {CE,CE, ... CB}, the label of
the kth cluster CP should be assigned to i*,
where

i* = argmin Sim(CF, C{})

3.3 Obtain The Consensus Solution

After corresponding the clusters, we can find
the final clustering solution by Bayesian theo-

rem. From the Bayesian principle, we have
p(z | ci)p(ei) p(z | ci)p(es)

Pl D =T TS e egple)
, where x is an instance, ¢; is the meta-cluster.
Because the prior probability of p(c;) = & is
equal for all meta-clusters. We have
plci | z) = _pe)
>l | ci)

The instance z is assigned to the ¢* meta-
cluster, where

i* = argmaxp(c; | z)

4. Experimental Evaluation

To show the effectiveness of our approach,
we tested our clustering approach on six data
sets. We evaluated four algorithms in terms
of the clustering quality measured by three ob-
jective clustering measurements. Corr is our
proposed algorithm described in section 3. As
introduced in the section 2.3, other consensus


研究会temp
テキストボックス
－240－


clustering approaches used the average similar-
ity matrix of instances as the input of a hier-
archical clustering algorithm. We implemented
the hierarchical clustering algorithm with sin-
gle, complete, average linkage. Note that the
correspondence algorithm doesn’t need to do
further hierarchical clustering that needs long
computational time hence it is much faster than
the single, complete and average algorithms.

We first summarize the evaluation measure-

ments used in the experiments. We then briefly
describe the datasets used for evaluation. Fi-
nally, we report and discuss the results of the
evaluation.

4.1 Evaluation Measurements

Evaluating clustering systems is not a trivial

task. Since clustering is an unsupervised learn-
ing process we lack the information of the ac-
tual partitions. The classified data is used in
our experiments making comparing the labels
between the clustering results and the really la-
bels becoming possible. We used three objec-
tive clustering evaluation measurements in our
experiments, the Normalized Mutual Informa-
tion (NMI)'?), Conditional Entropy (CE)% and
similarity measures (Sim)7). All the three mea-
suremensts are in the range of [0,1]. Higher
NMI and Sim vlaue mean high agreement be-
tween the relly data classes and the clusters.
Lower CE value implies high certainty that the
relly data classes and the clusters have linear re-
lation. Therefore, we prefer to maximize NMI
and Sim and minimize CE.

4.2 Data Description

We used three classified datasets - CC, Trace

and CBF from the UCR Time Series Data Min-
ing Archive *1. Other three data sets are down-
loaded from internet. All the datasets are nor-
malized to avoid the influence of the data scope.

e Control Chart Time Series (CC): This
dataset has 100 instances for each of the
six different classes of control charts.

e Trace dataset (Trace): The 4-class dataset
contains 200 instances, 50 for each class.

e Cylinder-Bell-Funnel (CBF): The dataset
contains three types of time series: cylin-
der (c), bell (b) and funnel (f). We used
128 examples for each class with length 128

*1 UCR time series mining archive: http://www.cs.
usr.edu/ eammon/TSDMA /index.html
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and time step 1.

e The personal income dataset *2 (income) is
a collection of time series representing the
per capita personal income from 1929-1999
in 25 states of the USA. Groupl consists
of the states in which the personal income
grows at a high rate. The states for a group
in which the personal income grows at a low
rate is called group2.

e The ECG dataset (ECG) was obtained from
the ECG database at physioNet *3 . We
use 3 groups of those ECG time-series in
our experiments: Group 1 included 22 time-
series representing the 2 sec ECG record-
ings of people having malignant ventricu-
lar arrhythmia; Group 2 included 13 time-
series that are 2 sec ECG recordings of
healthy people representing the normal si-
nus rhythm of the heart; Group 3 included
35 time-series representing the 2 sec ECG
recordings of people having supraventricu-
lar arrhythmia.

e The population dataset (population) *4was
a collection of time-series representing the
population estimates from 1900-1999 in 20
states of the US. The 20 states were par-
titioned into two groups based on their
trends: group 1 consisted of states had the
exponentially increasing trend while group
2 consisted of states had a stabilizing trend.

4.3 The Performance of The Algo-

rithms

The performance of all algorithms are com-

pared in terms of the mean CE, NMI and
Sim obtained from 100 different runs. Table
2 presents the average CE, NMI and Sim ob-
tained after a fixed number of 100 iterations of
the four algorithms for the six data set.The corr
algorithm performs better than other three al-
gorithms in Trace and income data and takes
the same result in population data.The corr al-
gorithm never takes the worst result for all data.

5. Conclusions And Future Work

We have presented a new scheme for multi-
scale time series clustering. The consensus of
the clustering solutions obtained by clustering

*2 income: http://www.bea.gov/bea/regional/spi

*3 ECG: http://www.physionet.org/phsiobank/database
*4 population: http://www.census.gov/population/www
/estimates/st-stts.html
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Table 2 The average CE, NMI and Sim obtained by
four algorithms from 100 distinct runs for the
six datasets

CC single complete average corr

CE 0.6613 0.6349 0.6237  0.6218
NMI 0.7371 0.7048 0.6956  0.7115
Sim 0.6674 0.6682 0.6759  0.6756
CBF single complete average corr

CE 0.8305 0.7411 0.7456  0.7463
NMI 0.2973 0.3454 0.3423 0.3415
Sim 0.5705 0.5789 0.5792  0.5769
Trace single complete average corr

CE 0.6904 0.6897 0.6904  0.6890
NMI 0.5288 0.5201 0.5079  0.5367
Sim 0.5656 0.5566 0.5442  0.5701
income single complete average corr

CE 0.4823 0.4643 0.4660  0.4561
NMI 0.2245 0.2490 0.2468  0.2707
Sim 0.7435 0.7532 0.7503  0.7613
ECG single complete average corr

CE 0.8300 0.8302 0.8309  0.8307
NMI 0.2415 0.2411 0.2397 0.2410
Sim 0.5857 0.5850 0.5825  0.5835
population  single complete average corr

CE 0.0391 0.0391 0.0391  0.0391
NMI 0.9458 0.9458 0.9458  0.9458
Sim 0.9854 0.9854 0.9854 0.9854

over each scale is taken as the final clustering

solution. We have introduced a new clustering

correspondence algorithm based on a similar-
ity between meta-clusters. The final solution is
calculated by the Bayesian theorem. The pro-
posed consensus clustering algorithm achieve
lower computational complexity than the ap-
proach of clustering with the similarity matrix
between instances. We have empirically demon-
strated that the proposed algorithm can offer
comparable results than performing hierarchi-
cal clustering with the similarity matrix.

We intend to extend the work in the following
directions:

(1) Applying the consensus clustering algo-
rithm for clustering multi-array time se-
ries. The multi-array time series data
have multiple time series associated with
each instance. Traditional clustering al-
gorithm cannot be applied to it directly.
A consensus solution over the clusters as-
sociated with each time series can serve
this target.

(2) Applying the algorithm to some real-life
data, such as hepatitis data and financial
data.
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