BN LS SRS 2007—NL—178 (9)
IPSJ SIG Technical Report 200773728

Trees as Paths: Lessons from File Systems and Unix in
Dealing with Language Ttrees

Noah Evans, Masayuki Asahara and Yuji Matsumoto

ABSTRACT

Natural language parsers provide a variety of output formats. The
rationale for these output formats vary. Some formats emphasize read-
ability, others provide a format that is easily parsed by other programs.
This paper proposes a method of language tree output that enumerates
tree node structure similar to Unix paths. This approach emphasizes the
software tools methodology of early versions of Unix system and more
recently the plan 9 operating system. This method, by providing the
structure of the tree in the description of each output node, allows easy
interoperates easily with traditional Unix tools, allowing tree queries and
other tree operations to be performed by programs like grep and sort
interoperate with a wide variety of scripting languages.

Keywords: NLP, tree querying, software tools

Motivation
NLP tools typically produce two forms of output, human readable and machine readable.

Human readable output typically uses a display engine or text to represent the tree in a
form that visually represents the tree structure:

#%x-D
BREL—D
BEH-D
$<%5,

This representation allows visual, intuitive analysis of tree structures by the user; how-
ever, it is difficult to perform any kind of automated analysis on this type of data. To
compensate for this problem NLP tools also produce machine readable output.

Machine readable output is typically expressed in a standardized format, commonly s-
expressions like the Penn Treebank style

(S (SBAR (WHADVP When)
(S8 (NP your back)
(VP is
(PP against
(NP the whiteboard)))))
,» (8 (NP I)
(VP '11
(VP be
(PRT back) (S (VP to
(VP back
(NP you) (PRT up)))))))

or the XML output of CaboCha(edited for clarity):



<sentence>

<chunk id="0" 1ink="1" rel="D" >
<tok id="0" read="WHI" >fi</tok>
<tok id="1" read="7" >%*</tok>
</chunk>

</sentence>

These output formats can be parsed by any tool supporting the relevant tree format.
Tools parse the structured data and convert the input tree into a data structure. Pro-
grams can then perform various tasks like semantic role labeling or named entity recog-
nition on the data structure. Tree querying programs, like tgrep and 1path, or pro-
grams which analyze tree data like Bact use these tree structures as the basis of their
operation (Rohde 2004)(Bird 2005)(Kudo 2004).

While this reparsing is simple given the proper parser it is computationally expensive.
The structure of the data must be reinferred after each tree is generated by the parsing
tool. In addition, to support any one of these formats a tool requires specialized parsers
for each format or a conversion utility to convert trees to the proper format type.

To avoid the computational cost of reparsing and the difficulty of supporting a variety of
input and output formats many NLP tools also provide libraries to access the NLP tool’s
capabilities directly using a scripting language like Perl, Python or Ruby. However only
languages supported by the tool itself can be used. Implementing this support requires
a great deal of effort, using the Foreign Function Interface or some other mechanism to
connect the tool to the supported language.

These two traditional methods of interaction between NLP tools discourages interoper-
ability and the reuse, leading to a variety of incompatible and complex data formats.
This incompatibility and complexity compounds the difficulty of implementing tools like
morphological analyzers or language parsers. This has lead to a situation where tools
are constantly reimplemented and each tool implementer must devote a great deal of
effort to supporting different formats. This implementation time could be better spent
developing functionality directly related to solving NLP problems.

How would it be possible to allow NLP tools to support a variety of different languages
and formats without placing an undue burden on the implementer? An ideal system
would be language and format agnostic, allowing the implementer to concentrate on
implementing NLP tool functionality without worrying about supporting various formats.

The Software Tools Philosophy

The "software tools" philosophy developed by Bell Labs for the Unix operating system is
one way of allowing this kind of interoperability between programs.

A software tool is a program that is meant to take input from and give output to other
programs with no explicit connections between the individual programs. Connections
are created automatically by a command interpreter, in the case of Unix, the shell(Pike
1984). These connections, called pipes, allow programs to communicate without any
explicit communication protocols. Instead programs read and write binary streams
using flat(non recursive) text.

Using streams provides a variety of implementation and interface advantages. Because
the connections between programs are provided transparently by the operating system,
changes to one program do not alter any of the other programs used. Even if one tool
understands a different text format, tools with differing textual interfaces can be com-
bined by altering their inputs using an intermediate pipe which changes the input and
output of programs to a common format. These intermediates are typically created
using a pattern processing language like awk or sed

Tools can use this freedom of interconnection to specialize. Since any tool can be used
with any other tool users only need one tool for one task.



The troff typesetting system is perhaps the best example of the tools philosophy in
action. Various tool pipelines take a variety of different domain specific graphical, tabu-
lar and equation layout languages and convert the output of these languages into the
more general troff language. For an in depth description of troff see (Ossanna 1977).

Most Unix users are at least somewhat familiar with this style of interaction i.e. using
the cat program with the more pager. More detailed explanations of the tools philoso-
phy can be found in(Pike 83)(Plauger and Kernighan 76).

A Software Tools approach to structuring NLP data.

So how would you structure an NLP tool using this philosophy? Unix tools seems inap-
propriate for processing the output of NLP tools. NLP tools deal with structured data;
Unix tools deal with flat text. However Unix does deal with structured data in one situa-
tion, Unix paths.

Unix paths are a representation of Unix’s hierarchical file system, which itself is a rooted
tree. A Unix path is a depth first enumeration of the path from the root to a node of a
tree structure. Paths represent the root of the tree with "/" and each child node is the
child’s name separated by a "/"’s for each level in the hierarchy.

This following examples show a Unix path structure:

/usr/
/usr/npe/
/usr/npe/ .bashrc

Although Unix path representation can describe structured data, the ordering of Unix
paths is still inappropriate for NLP data. Unix paths are ordered alphabetically; NLP
parse trees are ordered by sentence structure. Since Unix paths cannot represent arbi-
trarily ordered trees, to effectively represent NLP tree structures the order of the tree
must be represented explicitly. This ordering can be expressed by representing the
position of each node with a numerical prefix. Note that this path is intentionally
unordered.

echo ’

/2.usr/1.npe/
/2.user/2.glenda/
/2.usr/
/2.usr/1l.npe/1.file.txt
/1.bin/1.sed

One interesting aspect of this prefixed format is that the tree can be sorted with the
unix command sort to obtain the proper order of the tree structure.

% sort tree
/1.bin/1.sed
/2.user/2.glenda/
/2.usr/

/2.usr/1.npe/
/2.usr/1.npe/1.file.txt

This explicit expression of the order of a tree means that any NLP tree can be repre-
sented in the same style as Unix paths.

The parse tree fragment



(S (SBAR (WHADVP When)
(S (NP your back)
(VP is
(PP against
(NP the whiteboard)))))
,» (8 (NP I)
(VP ’11
(VP be
(PRT back) (S (VP to
(VP back
(NP you) (PRT up)l))))))

Can be represented using the following path format.

/1.8/1.SBAR/1.WHADVP/1.When
/1.S/1.SBAR/2.S/1.NP/1.your
/1.8/1.SBAR/2.S/1.NP/2.back
/1.S/1.SBAR/2.S/2.VP/1.1is
/1.S/1.SBAR/2.S/2.VP/2.PP/1.against
/1.S/1.SBAR/2.S/2.VP/2.PP/2.NP/1.the
/1.8/1.SBAR/2.S/2.VP/2.PP/2.NP/2.whiteboard
/1.8/2.,

/1.8/3.S/1.NP/1.1

/1.8/3.8/2.VP/1.'11

/1.8/3.S/2.VP/2.VP/1.be
/1.8/3.8/2.VP/2.VP/2 .PRT/1.back
/1.5/3.8/2.VP/2.VP/3.S/1.VP/1.t0
/1.8/3.8/2.VP/2.VP/3.S/1.VP/2.VP/1.back
/1.8/3.8/2.VP/2.VP/3.S/1.VP/2.VP/2.NP/1.you
/1.8/3.8/2.VP/2.VP/3.S/1.VP/2.VP/3.PRT/1.up

Advantages
Formatting NLP trees using a path based structure provides a variety of advantages.

First, unlike traditional tree representations, representing trees as paths explicitly
expresses the location of each node in relation to the root for every path node. The
explicit nature of the representation allows the extraction of tree patterns using regular
languages —the extracting program does not require recursive state to express tree
patterns.

This ability to use regular languages to express tree structures allows the user to search
and process trees using traditional Unix tools and scripting languages. Any language or
tool supporting line based input and regular expressions can be used as a tree querying
and processing language. This gives the user a set of de facto tools(i.e. sort , grep,
sed, awk ) to deal with trees and allows the user to use a variety of languages to pro-
cess trees without any explicit support from the tool providing the trees.

For instance simple vertical tree queries are trivial using a path based notation. Let
tpaths be a list of trees in path representation then the command

% grep ’'.NP/’ tpaths

will return all paths containing noun phrases.

Horizontal tree queries are more difficult but possible using a multi-pass approach, one
pass for every adjacent node. Each pass narrows a list of candidates to ensure that a
particular structure contains the specified elements.

To get all noun phrases containing "New England"”:

First find all of the noun phrases containing "New" and generate regular expressions
uniquely identifying that noun phrase with the second term.



% grep '.NP/.*.New$’' tpaths |
sed 's#A/([0-9]+.8).*([0-9]+.NP/)[A/]1*#A/1.*2England#’ >pats

Then use the pattern file as a basis to search for England. Generate a regular expres-
sion for all noun phrases and sentences matched(which will contain New and England by
default)

% grep —f pats tpaths |

sed ’

s#A/([0-9T+\.S).*([0-9]1+\.NP/)[A/]*#A/\1.*\2England#
' >pats2

Finally return all of the trees matched:
% grep —-f pats2 tpaths

the horizontal query process is much easier using an environment providing regular
expressions that aren’t limited by line boundaries like the structural regular expressions
of the plan 9 system detailed in (Pike 1987). The same query using the sam text editor
is

% sam —d tpaths <<«!
/\.NP\/[0-9]1+\.New\n.*\.NP\/[0-9]+\.England\n/p
!

Leaf names can be extracted with Unix tools as well:

% basename ’'/1877.S/3.PP/3.NP/2.own’ |
sed 's/A[0-9]1+.//°
own

In addition to being able to use Unix tools to query trees It is just as easy to apply
scripting languages to the parsed data.

We will use awk in the following examples because awk notation allows examples to be
expressed without any explicit record handling logic.

The first example is the same as our earlier examples it does a horizontal tree query for
"New England". The script performs the following actions, treating the record as a dou-
bly linked list

1. lterate backwards over the list starting from the last field(tree node) first.
2. Note when "New" and "England" are adjacent and in the end of their respective
fields.

3. Keep iterating backwards until the noun phrase ends.
4. Traverse the list forwards printing node elements until the end of the noun phrase.

The script makes the following assumptions about the structure of the path stream in
addition to the path structure proposed earlier. Complete trees are records separated
by a blank line. Individual paths are fields separated by newlines. Note that this exam-
ple omits searching for multiple matches in the same tree for brevity.



awk 'BEGIN { FS="\n"; RS=""; OFS="\n" }
hasne(0,0) {
for(i=NF; 4i; i—) {
if(i-1 && hasne(i-1, i)) {
foundpat=1; i-—
len=split($i,a,"/")
np=al[len-1]
break
}
}
if(foundpat) {
while(i && split($(—i),a,"/™)
&& allen-1] ~ np);
split($i,a,"/")
for(j=i; j && a[len-1]1 ~ np; ) {
print $j
split($(++3j),a,"/™)
}
foundpat=0
}
¥
function hasne(fldi,fld2) {
return $£f1dl ~ /New/ && $f1d2 ~ /England/
}

The second examples shows the ease in which the path format can be converted to
other formats. Because the relationship between root to node is inherent in the path
format, a simple approach comparing the previous to the current path can generate the
appropriate xml or s-expression.

The following awk script generates a Penn TreeBank style tree from one path expres-
sion.

% awk ' BEGIN { FS="/"; nprev=0 }

{
if(NR != 1) {
for(j=2; $j ~ prev[j] & & NR != 1; j++);
for(i=j; i<=nprev; i++) printf ")"
print ""
} else
j=2
for(i=0;i<nprev;i++) printf "\t"
for(i=j; i <= NF-1; i++) {
sub("[0-97]+\.","",$i)
printf "("$i"\t"
}
sub("[0-9]+\.","",$NF)
printf $NF
nprev=NF-1
split($0,prev,"[ \tl1"™)
}
END { for(i=1l; i<nprev; i++) printf ")"

print "" } ’ tpath

This script has important implications. Any program that adheres to this path based
system can generate a recursive tree format by only referring to the previous tree path.
Thus path based tools can support a variety of tree formats by providing a common set
of shell scripts that use path based input to produce tree based output. This obviates
the need to support output formats in NLP tools themselves.



Disadvantages

While the software tools method of programming interaction is powerful and general the
tools approach has significant problems.

The software tools philosophy, specifically as implemented in Unix, is frequently
described as unintuitive and representative of bad human engineering
principles(Norman 1981).The creators of Unix themselves believe that the tools philoso-
phy is difficult for users to understand. Due to this lack of understanding the tools phi-
losophy has gradually become less common even as the number of systems using Unix
based operating systems has grown(Pike 2001).

These difficulties are apparent when using tree based path representations. Paths are
neither as concise as other tree formats nor as regular to query using Unix tools com-
pared query languages. Tree querying and processing using Tree Paths also requires a
facility with the Unix shell beyond what a tool implementer can expect of casual users of
NLP programs.

Conclusion

Because of these disadvantages path based representation of tree structures should be
considered an intermediate format. As the earlier shell and scripting examples show
paths can be used as a means of rapidly prototyping and laying the foundation of gen-
eral interfaces to interact with NLP data. By encoding the state of the tree into a line
based structure paths allow the systems administrator or the tool implementer to easily
tailor and manipulate tree structures without depending on the features of any one lan-
guage. The tool implementer can avoid specific implementations of format types, creat-
ing format types as needed using the extra information encoded in the path structure.
Simple languages such as tgrep or 1path could be implemented on top of tree path
expressions either using the output converted to another format or by implementing
native support for a tree based approach.

Future Work

The large amount of redundant data in paths makes paths an ideal candidate for com-
pression. Compressing paths while still allowing them to be searched would eliminate
one of the central problems of path representation. (Woods 1983) describes such a
method using unix paths. Future work could study the feasibility of this approach to tree
paths.

In addition to compression the self ordering and flat representation of paths makes
them an ideal candidate for parallelization. Future research could examine methods of
parallel tree querying and tree processing. The lack of dependence between tree nodes
would also seems to be an ideal candidate for processing using Google’s Map Reduce
parallel algorithm.

References
Rohde D.L.T. (2004). "TGrep2 User Manual." http://tedlab.mit.edu/dr/Tgrep2

Bird S., Chen Y., Davidson S., Lee H. and Zheng Y.(2005). "Extending XPath to Support
Linguistic Queries." In Workshop on Programming Language Technologies for XML
(PLAN-X).

T. Kudo and Matsumoto Y. (2004). "A boosting algorithm for classification of semi-
structured text." In Proceedings of the 2004 Conference on Empirical Methods in Natural
Language Processing.

Woods, J.A. (1983). "Finding Files Fast." ;login, 8:1

Ossanna J.F. (1977). "Troff User’s Manual". Bell Laboratories Computing Science
Technical Report



Pike, R. and Kernighan B. (1984). "Program design in the UNIX environment." AT&T Bell
Laboratories Technical Journal

Pike R. (1987). "Structural Regular Expressions." In EUUG Spring 1987 Conference
Proceedings.

Pike R.(2001) "The Good, the Bad, and the Ugly: The Unix Legacy." In Commemoration of
the Billionth Unix Second Since the Epoch

Norman D.A. (1981). "The trouble with UNIX." Datamation
Kernighan, BW and Plauger PJ(1976). Software tools. ACM Press New York, NY, USA





