AEa—-FEFaUT4 14-7
(2001. 7. 25)

WEHT 2

45ith 5B RE AT T HEARR
R B IHERE
259-1292 #ANRPIRTHILEH 1117
TEL: 0463-58-1211 A## 4164, FAX: 0463-59-4014
Email: {kikn,nakazato}@ep.u-tokai.ac.jp

Ho5FL ABHLE, 12 000ORBEFRL S 2VET, ARKIARLZAETCELEEZENTLI7O0 2 ViR
ZLTWD, BEFRE, EROBAGERZEE LMENORET T Y FELBELLINF =T 47
OhIVEGRERY, EHFHNAEREOT Y YN EEMTEEEICOENE DML ELH %
Er4n, BEANL, 2SN TVE. BEHRE, WEEPHERRE DR SNARBEIIOWTHE
EALLCHREL, £HEIERBEESL DL VT IR L LV BERZICHTRETH 5.

F—7—F YOoR#iE, EFHRE, BENHEE

Oblivious Counter

Hiroaki Kikuchi Junji Nakazato Shohachiro Nakanishi
School of Information Technology and Electronics
Tokai University
1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
Tel: +81-463-58-1211 Ext. 4164
Fax: +81-463-50-2412
Email: kikn@ep.u-tokai.ac.jp

Abstract The paper presents a new protocol for counting 1-bit secrets without revealing if the bit is 1 or
0 in publicly verifiable way. Other than the conventional multi-party protocols that involve enormous
number of rounds and huge bandwidth consumption, the proposed protocol, based on the Mix and Match
approach [2] in which computations are dealt with ciphertexts, requires a non-interactive constant number
of round and simple but verifiable computation for both of sender and counter. The expected application
of proposed protocol is an (one-bit) secret voting in which voters cast a ballot encrypted for distributed
public key and an oblivious party makes a tally of how many votes are polled.

Key words zero-knowledge proof, electrionic voting, secret function computation

1 Introduction

Oblivious Counter is a counter which takes n ciphertexts of one-bit secret as an input and outputs the logn
ciphertexts which encodes the sum of all secrets. The counter is oblivious party who learn no information about
the secrecy from his inputs. The counter has no private information and thus the processes of adding are all
publicly verifiable. The corresponding private key is shared among some trusted parties called administrators,
who involve at the end of the protocol in order to jointly decrypt the tally.

The indented use of oblivious counter is electronic voting, in which we have two conflicting goals; the
privacy of votes and the accountability of parties. (For requirements and styles of voting, see [1]. So far, major
efforts have been made for universally and publicly verifiable Mix-net.) The oblivious counter can match the
requirements, i.e., each voter can casts a ciphertext of his/her private vote to the oblivious counter without
care of the private vote being compromised or discarded. The double-counting and altering are prevented by
an additional verification protocol.

Our idea is based on the protocol “Mix and Match” presented by Jakobsson and Juels[2]. The Mix-and-
match is a multiparty protocol in which an arbitrary function is computed without revealing private input values.
Other than the GMW multiparty schemes, the Mix-and-match manipulates ciphertexts directly without being
secret shared. New building block is introduced; Plaintext Equally Test (PET) which examine two ciphertext
to be identical or not without revealing plaintexts.

The naive approach of Mix-and-Match to electronic voting is that El Gamal ciphertexts of votes (say b; = a
for yes; b, = a~! for no) are simply multiplied and then published. The resulting ciphertext contains the total
number of active votes S (3 E[b;] = E[[] b:] = E[a®]). The approach satisfies the privacy of votes and publicly
verifiability. However, to open the tally, we have to examine all possible S even after it is decrypted. Letting n
be the possible number of votes, the naive protocol takes a cost of O(n), which is far practical.

Instead, we present O(logn) solution in this paper. Our idea is based on n-bit (up) counter which takes
one bit input and outputs the n-bit number of inputs. The PET can be used to design the arbitrary counter,
however, it requires enormous number of interaction between counter and administrators who have the shared
private key. Instead, we use internal states as carry bits in conjunction with proof of disjunctive knowledge
presented in [4]. Our contribution is to present up-counter protocol without AND.

2 Preliminaries and Building Blocks

2.1 Models and Assumptions

We have three parties; voters who has an one bit secret, say 1 or 0, and let denote by N the number of total
voters, counter, an oblivious party who keeps a tarry of votes without revealing the result of count until the time
to open the ballot boxes comes, and administrators who are trusted parties sharing a private key and jointly
decrypt the result of count when the time to open voting box comes. We assume that some of administrators
may be faulty but not more than 2/n can corrupt, namely, any appropriate threshold schemes such as [3] can
be used to recover the corresponding plaintext in a secure way. All players agree the security parameter and
the public key securely and jointly generated by the administrators. We assume an authenticated broadcast
channel by which the counter can effectively publish the proof of every vote being counted in the tally, and the
common public-key infrastructure for listing all legitimate voters.

2.2 Building Blocks
2.2.1 El Gamal Cryptosystem

Let p = 2g+1 and G be the set of multiplicative group of order q in Z,. Let g be an element of G. All arithmetic
operations are done in modulo p, unless otherwise stated.- An El Gamal encryption of message m with public
key y = g% is of form E,[m] = (M,G) = (my®, g*), where a is a random number chosen from Z,. To decrypt
the ciphertext (M,G), we use the corresponding private key z to compute M/G* = mg**~** = m. The El
Gamal cryptosystem is indistinguishable under the Decision Diffie-Hellman (DDH) assumption over G. Namely,
given two ciphertexts E[m] and E[m'], no one can learn if m = m' or not. This property allows us to construct
an oblivious computation in later section.

The El Gamal cryptosystem satisfies a homomorphism under a multiplication of two ciphertexts, i.e., given
two ciphertexts E,[m,] = (M,,G.) and Eplmy] = (Ms, Gp), the products of the ciphertexts for each element
yields a new valid ciphertext (M, My, G,Gy) = (mamyy®™®, g%t = Eoqplmams]. We write this as E[M,] x
E[My]. Obviously, the homomorphism holds not only under a multiplication but also under a division and
under a raising to exponent, that are used to blind a result of Plaintext Equality Test in [2].

One more good property of the El Gamal cryptosystem is that it can be extended to use the threshold
schemes [3]. A private key is jointly generated by a collaboration of ¢ honest parties (key holders) out of n and
distributed among them using (¢ — 1)-degree random polynomials f(z) as f(1), f(2),..., f(n). To decrypt a
ciphertext provided with the public key y = gfm), i-th party publishes G/ for i = 1,...,t, and then computes
GIWn gl = GIO) where 4; is the LaGrange coefficient for i. For the sake of verifiability, we can have
the key holders proving that they follows the protocol correctly in the zero-knowledge proof of f(i) such that
G/ See [3] for details.

2.2.2 Various Protocols for Proof of Knowledge

We will use a proof of knowledge of private input to the counter, which is based on the variation of disjunctive
and conjunctive proofs of knowledge in [4].

Conjunctive Proof of Knowledge: Let g1,9o € G. By PK{(a) : y1 = ¢ Aya = g%}, we denote a proof of
knowledge of discrete logarithms of elements y; and y» to the bases g; and gs. Picking random nurmbers r; and
Ty € Z,, a prover sends ¢ = gi* and ¢; = g5? to a verifier, who then sends back a random challenge ¢ € {0, 1}*.
The prover shows s =r —cz {mod g), which should hold both g{y{ = ¢, and g5ys = to.

Disjunctive Proof of Knowledge: We denote by PK{(a, 8) : y1 = g*Vya = ¢°} to mean a proof of knowledge
of one out of the two discrete logarithms of y; and y2 to the base g. Namely, the prover can prove that he
knows a secret value under which either y = y; or ¥ = y» must hold without revealing which identity was used.
Without loss of generality, we assume that the prover knows « for which y = ¢g* holds. The prover uniformly
picks r1,82 € Z, and ¢, € {0, 1}* and sends ¢; = g™ and t, = g°2y5? to the verifier, who then gives a random
challenge ¢ € {0,1}*, where k is a security parameter. On receiving the challenge, the prover sends s; = 1 —c;
(mod q), 82, ¢1 and ¢z, where ¢ = ¢; @ 2. The verifier can see if the prover is likely to have the knowledge by
testing both t; = ¢*1y{' and ts = ¢°2y5* with provability 1 — 2~*. Note that the same test can be used when
t; and ty are prepared for the other knowledge £.

3 Oblivious Counter

3.1 1-bit (Half) Adder

Let V = {1,—1} be a set of truth values meaning boolean values false (0) and ¢rue (1). Let a and b be boolean
variables in V. We denote by capital letters the ciphertexts of boolean variables, e.g., A = E.[a] and B = E[b).
A half adder is a state-full circuit that takes two inputs, a and b, and produces sum s and carry ¢ as outputs
computed by

s=adb c=aAb,

and the internal state a will be updated when (edge-triggered) clock pulse arrives, we write this by a(t+1) = s(t)
where ¢ indicates the synchronous (discrete) time.

In consequence of the multiplicative homomorphism of E] Gamal cryptosystem, the function EXORing of two
plaintexts, a and b, is easily implemented by simply multiplying the ciphertexts A and B. Table 1 demonstrates
the result of multiplication, which shows the truth table of EXOR.

Table 1: Truth Table of EXOR.
AxB=S a®b=s

[1] x E[1] = E[1] 060=0

Ux E[-1]=E[-1] | 0®1=1
X
X

E[]=E[-1] |1e0=1
E[-1]=E[l] | 1&1=0

The carry ¢ (AND) is, however, hard to realize since the set of logical operations EXOR and negation,
which is done by EXORing 1, is not sufficient for achieving the functionally completeness. The Mix and Match
approach [2] is a solution to this problem, in which a truth table of AND is blinded and row-wise mixed and
then the plaintext equality test (PET) is used to figure out the match of the corresponding row for given input
ciphertexts with the help of distributed private key dealers. Rather than involving trusted parties and many
other players (MIXs), we would like to make our protocol non-interactive, i.e., avoiding the involvement of other
parties except the voter who has the private input b and the counter who has the private state a.

3.2 2-bit Counter

In this section, we show that the oblivious 2-bit counter is feasible without using the logical AND.
A voter has an one-bit secret b and wishes to have the counter add b to the oblivious tally without revealing
if bis 1 or 0. First, the voter casts a pair of ciphertexts (B, C) computed by

[(BBL,EL) ifb=1,
(B,C) '{ (EH,E[A]) i£h =1,

where A is the ciphertext of a and E[A] is the corresponding re-encryption defined as E[A] = A x E[1]. The
element B contains one-bit secret b to be added and the element C gives the output carry digit. Note that no
one can distinguish E[A] from E[1] from the assumption of semantically secure El Gamal cryptosystem.

Second, in order to prevent faulty voters from casting invalid pairs of ciphertexts, in particular, (E[-1], E[1])
and (E[1], E[—1)]), we require voters to provide along with the B, C the proof of disjunctive knowledge

PK{(u,v): B = EJIAC = E}V{(,v') : B= Ey[~1]AC = Ey[A]}.

We present the proof of knowledge based on zero-knowledge protocols in [4].
Given B = (Mp,Gpg) and C = (M¢,Gc¢), let us define

Mp) = M, Gp1 =Gs,
Mc, = Mc, Ge1 =Ge,
Mgy = ~Mp, Gp2 =Gs,
Mes = Mc/Ma, Geo2=Gc/Ga,

where (M4, G4) is the current ciphertext A. Protocol specified in Table 2 ensures that the pair of ciphertexts
(B, C) is either E[1] = (Mp1,Gp1) and E[1] = (Mc1,Gcr) or E[1] = (Mp2,Gp2) and E[1] = (M¢2,Gc2). The
technical details of the protocol are omitted.

On receiving (B, C) and additional proof of knowledge from a voter, the counter computes the sum of input
b and the previous result encoded by (A, A1) (A2 is MSB), as for each digits

51:A1XB, 52:A2XC..
The internal states A; and As subsequently are updated by
At +1) = Si(t), Ao(t+1) = S(1).

An initial state for 4; is E[1] additionally proved in some manner. Since any computation involved in the
counter does not reveal private information of input nor the tally, the verification of procedures can be publicly
done. Any party who is interested in an accountability of the counter can easily check the consistency by
comparing the previously published sum As(t — 1), 4; (t — 1) and the updated sum A (%), A ().

Table 3 demonstrates the states transition when “active” voter who has b = —1 comes every even clock.
The carry digit ¢; is implemented by a duplication of the third row headed by a; but the duplication happens
only when b = —1. For example, the ¢; = —1 at clock ¢ = 4 comes from the a; at the same clock but the
duplication at t = 2 does not alter the internal state s, at all. Hence, it can properly deal with cases when
multiple “unactive” votes cast in succession.

3.3 n-bit Counter

In switching circuit theory, the 2-bit counter is known as a half-adder for which n-bit counter can be formed by
cascading n adders. The carry bits ripple from least significant bit to most significant bit. Our construction of
2-bit counter, however, requires a carry bit being duplicated from the previous internal state (A4;). Thus, the
n-bit extension is not trivial. ‘

The idea is having voter cast with all subsequent carry bits. For simplicity, let us consider a case n = 3
where we wish to have Cs. The second carry bit C; is provided by voter as

EN if b=1,
Cy :E[01 /\a‘Z] :{ E%‘JIZ] ;fb: -1,

where A} is defined as follows:

Ayt 1) = S

Table 2: Protocol for Proof of Knowledge PK{(u,v) : B = E,[1]AC = E,[1]} v {(u',0') :

Ev'[A]}
Step | (b=1) b=-1)
The prover (voter) picks random elements
TB1,TC1,2B2,2C2 € Zq and dy € {0,1}k ifb=1;
1 otherwise rga,rca, 281,2¢1 € Zy and dy € {0,1}*,

on which he computes the followings and sends to

the verifier

tpy = g'v!
wBl = y"‘Bl
tpa = ngzG}jaé
wps = y*2 Mg

tp1 = 92’“@%‘1
wp = y* Mg,
tpz = g""?
wpy =y’

tc,l — gTCl

wey =y
tcy = ngZngz
wee = y*eR M

tc1 = gZCIGdCll

wer = g7 MG,
tcr = g7c?
wep =y

The verifier randomly picks a
{0,1}* and sends to the prover.

challenge d from

The prover computes d; =
d®dy and sends di, ds and

The prover computes ds =
d®d; and sends dy, d, and

zg1 =7B1 — diu
ZB2

zc1 =711 ~ div
ZC2

ZB1

zp2 = Tp2 — dau
Zc

zoy = Ty — dav

The verifier accepts if d = d; & d» and

gszdBll = grm—dxu+ud1 =tm
y:BI _[\4;11 = yrnlvd1u+ud1
92820?2 =tB2
?JZDEMId;QZ = wg2
gt Gg}l = grovdieivdn — g
z gd1 — dy
yrer ME =y divtedy — g0
zeoade
g*2GE, = teo
z d;
zZc2 2
y* e Ml

= wp1

= W2

z dy
g B1G311 - tBl
Y Mg = wm
gZBzG'CE—’ — gruz'dzu+u¢lz =tpy
) = =
y:m]v[}% = yrpa-dautudy — gy p)
= d
g~C‘lGC11 =t
y=cr é“l = wca
gZCQGZ:Jz — chgfd-gll‘Fl’dQ =tco
chzMggz — yV"C2~d31’+Ud-3 = wey

Table 3: State Transition Table of the 2-bit Counter
t time 11234567819
b input 1(-1|1 (-1} 1|-1}/11]-1/1
ar | =si(t—1) 11|t a1
5 =a®)@blt) {1|-1|-1]1 |1 [-1|-1]1]1
a =a()Abt) (1] 111211111
ay | =s(t—1) I [T 1] al1laa]1
s |l =ma@®@ea@® |11] 1111]1]1]1
(az,a1) | decimal [0JoJ1]1]2]2]3T37J0

Sy(t) = Ca(t) x Ay(t) = Elc, @ a)

, _ [E[Q] ifb=1,

GO = {E[AQ] ith— 1.
Ap(t+1) = Sy(t)

Sg(t) = Cl(t)XAQ(t)

The ballot voter has to send consists of B,C;,Cj; and C;. The carry bit C; is identical to C in the 2-bit
counter protocol. In the protocol, note that the intermediate internal state A} and S} are used as T-FF (Toggle
Flip Flop) which decrease a cycle by one-half for each. We illustrate how 3-bit counter works in Table 4. For
simplification, we assume every vote is “active”. At the bottom row, we can observe that the second carry can
be obtained properly.

The n-bit counter can be naturally extended; the voter fetches the current internal states A;, ..., A, which
have been published and updated for every new vote is added to the counter. Then, the voter computes the
ciphertexts of ballot according to his private vote (b) and additional ciphertexts for bits of T-FFs, and sends it
with optional proof of disjunctive knowledge of conjunction of ciphertexts for all bits. :

In the previous section, we see that the T-FF decreases the cycle by half for each. Hence, with appropriate
number of T-FFs, any carry bit ¢x can be computed from the one-bit-left carry ¢;_;. For instance, to implement
¢3, we need three additional T-FF's, i.e., aj, af and af’, and the total of 4 + 4 = 8 ciphertexts are necessary to
cast one bit. In general, n-bit counter requires voter to send the total of 2"~! ciphertexts.

Remark 3.1 The communication cost for voter is O(2™).

The overhead at the counter is considerably small because it has no private information such as private key
and thereby it can reduce the cost for operation. But, the update process may alter at most 277! internal
states.

Remark 3.2 The computation cost for counter is O(2™).

The cost of administrators is the lightest in our protocol. The administrators involved at the begging of
the protocol (for key generation) and the end for distributed description of the tally (A, A,_1,..., A1), which
gives the total number of “active votes”.

Remark 3.3 The computation cost for administrator is O(n).

Table 4: State Transition Table of 3-bit Counter
t 1 2131415]|6 718

bl1]1] 1|1 1]-1|1] -1
ap | 11111]-1]1]1
s 111111171
a1]-1]1|2|1]1{1]2

ap | 1|1 (-1 |-1]1[1]-1]1
$5] 1 |-1]| 1] 1]1]-1]-1]1
Gl |-1]|-1]1]1]-1]
ay 111111
sh 1|1 |-1]1]1]1]1]1
R R RS s

"4 Conclusion

We presented an oblivious counter protocol which allows us to count up “active votes” without revealing privacy
of voters.

References

[1] M. Abe, “Universally Verifiable Mix-Net with Verification Work Independent of the Number of Mix-
Servers,” IEICE Trans. Fundamentals, Vol. E83-A, No.7, July 2000.

[2] M. Jakobsson and A. Juels, “Mix and Match: Secure Function Evaluation via Ciphertexts,” Proc. of
ASTACRYPTO 2000, LNCS 1967, pp. 162-177, 2000.

[3] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” EUROCRYPTO 91, pp.522-526,
1991.

[4] R. Cramer, 1. Damgard, and B. Schoenmakers, “Proofs of partial knowledge and simplified design of
witness hiding protocols,” CRYPTO 94, pp.174-187, 1994.

[5] J. Camenisch and M. Michels, “Proving in Zero-Knowledge that a Number Is the Product of Two Safe
Primes,” EUROCRYPT’99, pp. 107-122, 1999.

