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1. Introduction

Since the discovery of the Diffie-Hellman key ex-
change (9], many researchers have tried to design
a cryptographic protocol for realizing secure chan-
nels. This kind of protocol is necessary because
higher-level protocols are frequently developed and
analyzed assuming the existence of secure channels
between all parties. In the 2-party setting (e.g., a
client and a server), this can be achieved by an au-
thenticated key exchange (AKE) protocol at the end
of which the two parties authenticate each other and
share a common (and temporal) session key to be
used for subsequent cryptographic algorithms (e.g.,
AES-CBC or MAC). For authentication, the par-
ties typically share some information in advance.
The shared information may be the form of high-
entropy cryptographic keys: either a secret key that
can be used for symmetric-key encryption or mes-
sage authentication code (e.g.,[7],[20]), or public
keys (exchanged by the parties, while the corre-
sponding private keys are kept secret) which can be
used for public-key encryption or digital signatures
(e-g-, (2], (10], [16], (20], [23]).

In practice, high-entropy keys may often and
commonly be substituted by low-entropy human-
memorable passwords chosen from a relatively small
size of dictionary (e.g., alphanumerical passwords).
Owing to the usability of passwords, password-
based AKE protocols have been extensively inves-
tigated for a long time where a client remembers a
short password and the corresponding server holds
the password or its verification data that is used to
verify the client’s knowledge of the password. How-
ever, there exist two major attacks on passwords:
on-line and off-line dictionary attacks. The on-line
dictionary attack is a series of exhaustive searches
for a secret performed on-line, so that an adversary
can sieve out possible secret candidates one by one
communicating with the target party. In contrast,
the off-line dictionary attack is performed off-line
massively in parallel where an adversary exhaus-
tively enumerates all possible secret candidates, in
an attempt to determine the correct one, by simply
guessing a secret and verifying the guessed secret
with recorded transcripts of a protocol. While on-

line attacks are applicable to all of the password-
based protocols equally, they can be prevented by
letting a server take appropriate intervals between
invalid trials. But, we cannot avoid off-line attacks
by such policies, mainly because the attacks can be
performed off-line and independently of the server.
At first sight, it seems paradoxical and more difficult
to design a secure AKE protocol for the password-
based setting partly because that has to "bootstrap”
from a weak shared secret to a strong one.

1.1 Previous Works: AKE Protocols with

Anonymity

Natural AKE protocols one can think of are those
(e.g., SSL/TLS[11),[15]) based on PKI (Public Key
Infrastructures). In the password-based user au-
thentication mode of SSL/TLS, a client remembers
his/her password and holds a server’s public key
whereas the corresponding server has password veri-
fication data and its private key. The AKE protocol
works as follows: the parties first establish a secure
channel with the server’s public key* " and then
the password is transmitted through the channel.
In(16], Krawczyk discussed carefully anonymity of
the previous PKI-based AKE and their SIGMA pro-
tocols. One can easily see that these kind of proto-
cols guarantee client’s anonymity against an outside
adversary who fully controls the networks.

Without the use of PKI, Lomas et al., proposed
AKE protocols with heuristic discussion of resis-
tance to off-line dictionary attacks where a client re-
members his/her password and holds a server’s pub-
lic key in advance whereas the corresponding server
has password verification data and its private key
[18]. This kind of AKE protocols were further stud-
ied by Gong [12], and Halevi and Krawczyk [13] gave
formal definitions and rigorous proofs of security in
the setting. Very recently, Kolesnikov et al., pointed
out a subtle flaw in the Halevi and Krawczyk’s pro-
tocol and then géneralized the model by introducing
another shared secret (i.e., MAC key) in addition to
password and (public, private) key pair[17). The
interesting point is that this kind of AKE. proto-
cols don’t suffer from off-line dictionary attacks at

(i% 1) :Before running the actual protocol, the client must
verify the server’s certificate via CRL (Certificate Revacation
Lists) or OCSP (Online Certificate Status Protacol). '
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the expense of storing the server’s public key be-
forehand. These AKE protocols can also preserve
client’s anonymity with the same way as the above
paragraph (by encrypting client’s identity with the
server’s public key).

Bellovin and Merritt [4] brought up an interesting
problem about how to design a secure password-only
protocol where a client remembers his/her password
only (without any device and any additional as-
sumption) and the counterpart server has password
verification data. Their proposed protocols are good
examples (though some are turned out insecure)
that a combination of symmetric and asymmetric
cryptographic techniques can provide insufficient in-
formation for an adversary to verify a guessed pass-
word and thus defeats off-line dictionary attacks.
Later, their AKE protocols have formed the ba-
sis for what we call Password-Authenticated Key
Exchange (PAKE) protocols® ?. However, client’s
anonymity is another problem in that client should
send his/her identity first in order to authenticate
each other and share a master-secret (to be used for
authenticator and session key). Recently, Viet et
al., [21] have proposed an anonymous PAKE proto-
col that combines a PAKE protocol for generating
secure channels with an Oblivious Transfer (OT)
protocol for client’s anonymity. The anonymity is
guaranteed against an outside adversary as well as
a passive server, who follows the protocol honestly
but it is curious about identity of client involved
with the protocol. As an application, one may think
of a company’s public bulletin board to which any
employer can upload opinions in a password-based
authenticated and anonymous way. Another exam-
ple can be found in [21]. ‘

1.2 Our Contributions

Our motivation is simple: ”Is it possible to design
a more efficient anonymous PAKE protocol?” In this
paper, we give a positive answer with an efficient
construction for anonymous PAKE protocol (we call
it the EAP protocol) which modifies the underlying
PAKE protocol [1], as a component, used in [21] as
well. We also show that the EAP protocol provides

(£ 2) :Such protocols are in standardization of IEEE
P1383.2 [14]

semantic security of session keys by proving its se-
curity in the random oracle model with the reduc-
tion to the computational Diffie-Hellman problem.
One might think that what makes the EAP protocol
more efficient than the original anonymous PAKE
one. The main difference comes from the fact that
we do not need to apply the OT protocol [22] as it
is. Clearly, Theorem 2 shows that our construction
is enough to guarantee client’s anonymity against a
passive server under the same definition of[21]. In
addition, we can state the numerical improvements
for efficiency: the EAP protocol has about 50% re-
duction (compared to[21]) in the number of modu-
lar exponentiations for both client and server, and
its communication bandwidth for the modular size
of primeb is independent from the number of clients
while[21] is not (see Table 1).

1.3 Organization

This paper is organized as follows. In Section
2., we propose an efficient anonymous PAKE (EAP)
protocol. Section 3. and 4. are devoted to its model
and security proofs, followed by some comparisons
of efficiency in Section 5.. Finally, we conclude in
Section 6.. '

2. An Efficient Anonymous PAKE
(EAP) Protocol

In this section, we propose an efficient anonymous
PAKE (for short, EAP) protocol that provides se-
maﬁtic security of session keys as well as anonymity
against a passive server who follows the protocol
honestly, but it is curious about identity of a client
involved with the protocol.

2.1 Preliminary

We give some notation to be used. Let G be
a finite, cyclic group of prime order g and g be a
generator of G (quadratic residues modulo p where
p = ag + 1) where the Diffie-Hellman problem is
hard. Let h be another generator of G so that its
discrete logarithm problem with g (i.e., computing
b = log, h) should be hard. These parameters are
given as public information. In the aftermath, all
the subsequent arithmetic operations are performed
in modulo p unless otherwise stated.

Let [ denote the security parameter for hash func-
tions. Let NV be a dictionary size of passwords. Let
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Public information:
Client C; (pwg;) .

& Z; X=g° ;
pw; f(iypr.')!VVi = hpwi

X =XxW (€, X*)

Fori=j, MS=2;PG(,Y*).

If Vs & #: (C|ISIX ||V I Z5]| M S), reject.

Otherwise, SK + Ha2(C||SI|IX*||YV||Z;||MS)
and accept.

G,f,g,?l1,'Hz,C= {C],"',Cn}

(S1 Ys Zjv VS)

Server S (pwe; (1£j<n))

y& 73,y =g, M5 & (0,1}

For j =1ton,
W; = pFtewe;)
Xj = X'/"Vj,
K;= X;,

and Z; « G(j, K;) @ MS.
Vs « Ha(CIISIX|IY1IZ;11MS)

| SK « Ha(C||SIX*(IYI|Z;1|MS)

1 An efficient anonymous PAKE (for short, EAP) protocol

{0,1}* denote the set of finite binary strings and
{0,1}} the set of binary strings of length I. If D is
a set, then d & D indicates the process of selecting
d at random and uniformly over D. Let "||” de-
note the concatenation of bit strings in {0,1}*. Let
"@@” denote the exclusive-OR (XOR) operation of
bit strings. The hash function F is a full-domain
hash function, mapping {0,1}* to Z}. The other
hash functions are denoted G, Hy, : {0,1}* =+ {0, 1},
for k = 1,2 and 3, where H; are distinct secure one-
way hash functions (e.g., SHA-256 or RIPEMD-160)
one another. Let C and S be the identities of a
set of clients and server, respectively, with each ID
€ {0,1}*.
2.2 The Protocol

Here we assume that each client C; of the set C
has registered a password pwg; to a server S and
the latter maintains a database of clients’ passwords
pwe; (1 £ j £ n). For simplicity, we assign the
clients consecutive integer i (1 £ ¢ £ n) where C;
can be regarded as the i-th client.

When client C; wants to share a session key se-
curely with server § without revealing his identity,
he frst chooses a random number x from Z; and
computes the Diffie-Hellman public value X = g°.
The latter is masked in a way of the product of

the public value with the verification data W; where
W; = hP¥ and pw; is the output of F (i, pwc;). Then
the resultant value is sent to the server together
with the identity of a set of clients. On the other
hand, server S chooses a random number y from Z7
and a random master-secret MS from {0,1}, and
computes its Diffie-Hellman public value Y = g¥.
With the message from client C;, the server com-
putes X, by dividing the received masked public
value with each of the verification data, and Z; that
is derived from XORing M S and the hash of each
Diffie-Hellman key. Also server S generates an au-
thenticator and a session key, both of which are just
the hash of some values and the master-secret MS,
and then sends its identity, the Diffie-Hellman pub-
lic value, {Z;}1<j<n and the authenticator. After
computing MS from Y and Z; in an obvious way,
client C; verifies the received authenticator Vs prior
to generating his session key. In order to avoid so-
called partition attacks [19], [24], both of client and
server should check the subgroup order of ¥ and
X*, respectively: Y7 = (X*)? = 1. The graphical
description of the whole protocol appears in Fig, 1.

3. The Model and Security Notions

In this section we introduce the model based on
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(3], [8] and security notions.

3.1 The Model

We denote by C; and S two parties that partici-
pate in the key exchange protocol P. Each of them
may have several instances called oracles involved in
distinct, possibly concurrent, executions of P where
we denote C; (resp., S) instances by C* (resp., S9),
or by U in case of any instance. In the EAP pro-
tocol, client C; and server S share a low-entropy
secret pwg;, drawn from a small dictionary of pass-
word Dpassword, Whose cardinality is N. During the
protacol, an adversary has the entire control of the
network. Let us show the capability of adversary A
each query captures:

o Execute(C?,87): This query models passive
attacks, where the adversary gets access to honest
executions of P between the instances C* and S/ by
eavesdropping.

o Send(U,m): This query models active attacks
by having A send a message to instance U. The
adversary A gets back the response U generates in
processing the message m according to the proto-
col P. A query Send(C?,Start) initializes the key
exchange protocol, and thus the adversary receives
the initial flow.

e Reveal(U): This query handles the misuse of
the session key (e.g., use in a weak symmetric-key
encryption) by any instance U. The query is only
available to A if the instance actually holds a session
key and the latter is released to A.

o Test(U): This oracle is used to see whether
or not the adversary can obtain some information
on the session key by giving a hint on the key. The
Test-query can be asked at most once by the adver-
sary A and is only available to A if the instance U
is "fresh” in that the session key is not obviously
known to the adversary. This query is answered as
follows: one flips a (private) coin b € {0,1} and for-
wards the corresponding session key SK (Reveal(U)
would output) if b = 1, or a random value except
the session key if b = 0.

3.2 Security Notions

The adversary A is provided with random coin
tosses, some oracles and then is allowed to invoke
any number of queries as described above, in any
order. The aim of the adversary is to break the pri-
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vacy of the session key (a.k.a., semantic security) or
the authentication of the parties in the context of
executing P.

The AKE security is defined by the game
Game®*®(A4, P), in which the ultimate goal of the
adversary is to guess the bit b involved in the Test-
query by outputting this guess . We denote the
AKE advantage, by Adv3®(A4) = 2Pr{b = b] -1, as
the probability that A can correctly guess the value
of b. The protocol P is said to be (t,e)-AKE-secure
if A’s advantage is smaller than ¢ for any adversary
A running time £.

Another goal is to consider unilateral authentica-
tion of either C; (C;-auth) or S (S-auth) wherein
the adversary impersonates a party. We denote by
SuccE " (A) (resp., Succh2*"(A)) the probabil-
ity that A successfully impersonates an C; instance
(resp., an S instance) in an execution of P, which
means that S (resp., C;) agrees on a key while the
latter is shared with no instance of C; (resp., S).
A protocol P is said to be (¢,£)-Auth-secure if A’s
success probability for breaking either Cj-auth or S-
auth is smaller than € for any adversary .A running
time £.

By following the definition of anonymity from [21],
we can say that a protocol P is anonymous if a
passive server cannot get any information about a
client’s identity involved with the protocol, whereas
the client establishes a session key with the server.
In other words, any client C; can prove that he is a
member of the set C by sending his authenticator at
the end of the protocol, however the server doesn't
know who he is.

3.3 Computational Diffie-Hellman As-
sumption

A (t,e)-CDH, g attacker, in a finite cyclic group
G of prime order ¢ with g as a generator, is a prob-
abilistic machine B running in time ¢ such that its
success probability SuccS'é:(B), given random ele-
ments ¢* and g? to output g*¥, is greater than €.
We denote by Succ;‘.‘g (¢) the maximal success prob-
ability over every adversaries running within time ¢.
The CDH-Assumption states that Succg‘fg(t) Lefor

any t/e not too large.



4. Security Proofs

At first we show that the EAP protocol of Fig. 1.
is provably secure in the random oracle model [6].
Random oracles are used to model cryptographic
hash functions which produce a random value for
each new query. Note that security in the random
oracle model is only a heuristic: it does not imply
security in the real world [8]. Nevertheless, the ran-
dom oracle model is a useful tool for validating natu-
ral cryptographic constructions. Security proofs in
this model prove security against adversaries that
are confined to the random oracle world.

Here we assert that the EAP protocol of Fig. 1.
distributes session keys that are semantically-secure
and provides unilateral authentication of server S.
Note that secure unilateral authentication can be
easily extended to mutual authentication by adding
another authenticator as suggested in [3], [5].
[Theorem 1] (AKE/UA Security) Let P be the
EAP protocol of Fig. 1., where passwords are cho-
sen from a dictionary of size N and = is the number
of clients. For any adversary A within a polyno-
mial time ¢, with less than ¢, active interactions
with the parties (Send-queries), g, passive eaves-
droppings (Execute-queries) and asking g, (resp., g;)
hash queries to any H; (resp., G), Advi®(A) < 4¢
and Adv?;a""h(A) £ ¢, with £ upper-bounded by

% + 4nq: X ,Succg"'g(t +37) + gT:
130+ o) | (9 + a5+ 0+ an)
2q 2+1 ’
where [, (resp., 1) is the output length of #; (resp.,
G) and 7, denotes the computational time for an

exponentiation in G.
This theorem shows that the EAP protocol is secure
against off-line dictionary attacks since the advan-
tage of the adversary essentially grows with the ratio
of interactions (number of Send-queries) to the num-
ber of passwords. Note that it is sufficient to prove
the security with regard to one client due to the fact
that each client’s password has been registered to
the server independently and the latter has no com-
mon information to be used for all clients (similar
discussion can be founded in Section 3.3 of [17)).
Now we prove that the EAP protocol provides

client’s anonymity against a passive server.
[Theorem 2] The EAP protocol provides client's
anonymity against a passive server
information-theoretic sense.

[(Proof 1] Consider server S who follows the pro-
tocol honestly, but it is curious about identity of
client C; involved with the EAP protocol. It is obvi-
ous that server S cannot get any information about
C;'s identity since the X* has a unique discrete log-

in an

arithm of g and, with the randomly chosen z, it is
the uniform distribution over G. This also implies
that the interactions between either C; or Cj4; and
S are completely independent one another. In addi-
tion, even if server S receives the client’s authenti-
cator Vg, = Ha(C||S||X*||Y||Z;|| M S) at the end of
the EAP protocol (in the case of mutual authentica-
tion), the X* doesn’t reveal any information about
the client’s identity from the fact that the probabil-
ity for all clients to compute MS is equal.

5. Efficiency

In this section we show how much the EAP proto-
col is efficient compared to the original anonymous
PAKE protocol (appeared in Section 3.2 of[21])
in terms of computation costs and communication
bandwidth to be required (see Table 1). In general,
the number of modular exponentiations is a major
factor to evaluate efficiency of a cryptographic pro-
tocol because that is the most power-consuming op-
eration. So we count the number of modular ex-
ponentiations as computation costs of client C; and
server S. The figures in the parentheses are the re-
maining number of modular exponentiations after
exclnding those that are pre-computable. In terms
of communication bandwidth, | - | indicates its bit-
length and hash denotes hash functions.

With respect to computation costs in the EAP
protocol, client C; (resp., server S) is required to
compute 3 (resp., 2n + 1) modular exponentiations.
When pré-computation is allowed, the reméining
costs of client C; (resp., server S) are 2 (resp., 2n)
modular exponentiations. One can easily see that
the EAP protocol has about 50% reduction from
the APAKE protocol in the number of modular ex-
ponentiations for both client and server. With re-
spect to communication bandwidth, the EAP pro-
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#1 Comparison of anonymous PAKE protocols as for efficiency where n is

the number of clients

The number of modular exponentiations Communication bandwidth
Protocols Client C; Server 8
["APAKE [21] 8@ In+2(Bn+1) | [Cl+18]+ (n+ Dhash] + (n + 2)[p]
EAP 3(2) 2n + 1 (2n) IC] + [S] + (n + T)jhash] + 2]p]|

tocol requires a bandwidth of ((n + 1)|hash| + 2|p|)-
bits except the length of identities C and S. Let us
consider the minimum security parameters recom-
mended in practice (|p| = 1024 and |hash| = 160).
The gap of communication bandwidths between the
EAP and APAKE protocols becomes larger as the
number of clients increases.

6. Conclusions

In this paper, we have proposed an efficient
anonymous PAKE (for short, EAP) protocol that
provides semantic security of session keys and
anonymity against a passive server. We also proved
its security of the EAP protocol in the random ora-
cle model with the reduction to the computational
Diffie-Hellman problem. The EAP protocol signifi-
cantly improves efficiency in terms of computation
costs and communication bandwidth compared to
the original anonymous PAKE protocol [21].

As discussed in[21}, one of the interesting prob-
lems may be to design an anonymous PAKE pro-
tocol against an active server who can deviate the
protocol by changing messages at its own.
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