HEEA HRLESS HRAS 2008 — CSEC—42 (43)
[PSJ SIG Technical Reports 2008/7/25

HH VHDL 01— RicEH LA DAL CAD W —IVOARIE 2 E—BHITA N

|E fEEt WA FE | AEt BH -t QE EAM

t #k 4t KDDI BF9EFF T 356-8502 MR 5 U HEFTAMR 2-1-15
tt AAREE KB AT LR EMART T 819-0395 MR MHTER TR 744
E-mail: {{ka-fukushima,kiyomoto,toshi}@kddilabs.jp, tsakurai@csce.kyushu-u.ac.jp,
t1tyvasuura@c.csce kyushu-u.ac.jp

HOSEL AHTHE, CAD V—IOREIC—REANTEHFEICOVTRINGT S, B4, EX6NH8HMOARE
L, Fhh b, CAD Y—IAHAT S VHDL 22— RiclBAAREM LICK D, Y—ILOFREIY—%RET
BZ7L—LU—PRBHETS. BUHIE, BHL e LTEMSAGHHIC OV TORMETRS. X, BERTED
LOEMHARAEL LT, BEERCLENLERTRTZFRICOVTHEAT S, BEIC, VHDL 2—FiLEE0
Yy FRIERESADFEICDOWTENT S, 2hbOFBEREWTE, B2 LUEEN L —FAT7OMRIcHS
fedh, YAFLORBEREEERLT, AVWA2AEEBIRTHEN DS, HETLIL—LT—2E, a3 15 -
FryTS, VI PREHEY—, SANFAF 4 FA=N Vi B, BhUARERTF—2EMHT3
Tuds LOFIHCEHATES.

#—7—F CADY—)l, VHDL, REJY¥—RH, |F&EIL, V7o xTENL, V7 bz TEEHE

Illegal Copy Detection Framework for CAD Tools based on Watermarks
Embedded in VHDL Codes

Kazuhide FUKUSHIMA!, Shinsaku KTYOMOTO?!, Toshiaki TANAKA!, Kouichi SAKURAI',
and Hiroto YASUURA't

+ KDDI R&:D Laboratories, Inc. 2-1-15 Ohara Fujimino, Saitama, 356-8502
1t Department of Computer Science and Communication Engineering, Kyushu University, 744 Motooka,
Nishi-ku, Fukuocka, Fukuoka 819-0395,
E-mail: §{ka-fukushima kiyomoto,toshi}@kddilabs.ip, ttsakurai@csce kyushu-u.ac.jp,
ttiyasuura@c.csce.kyushu-u.ac.jp

Abstract In this paper, we discuss an illegal copy detection scheme for CAD tools. We compare possible solutions
and propose an illegal copy detection framework for CAD tools based on watermarks embedded in VHDL codes.
Then, we propose an illegal copy detection framework for CAD tools based on watermarks embedded in output
VHDL codes. First, we study identification information to be embedded as a watermark. Next, we investigate a
transformation mechanism for identification information using a cryptographic technique. We can prevent leaks
of confidential information and alterations/removals of watermarks, and can detect alterations to VHDL codes by
transforming the identification information to be watermarked. Finally, we propose watermark embedding mecha-
nisms for VHDL cedes. These embedding mechanisms involve a tradeolf between security and execution efficiency;
thus, they should be selected giving due consideration to system requirements. Qur framework can be applied to
the protection of any software that outputs watermarkable data such as compilers/assemblers, software obfuscation
tools, and multimedia authoring tools.

Key words CAD Tool, VHDL, Illegal Copy Detection, Digital Watermarking, Software Watermarking, Software
Obfuscation

-303 -

1. Introduction

1.1 Background

Recently, system LSls have been designed as source codes
specified by hardware description language such as VHSIC
Hardware Description Language (VHDL). In addition, the
development costs of system LSIs have incressed as they
now have highly integrated large circuits. Design reuse and
reuse-based design are widely considered as the most efficient
way to reduce these costs. Existing circuits may be reused
as subcircuits to construet & much higher performance LSI.
However, we must guarantee provider’s intellectual property
rights and royalties in order to further promote reuse. Thus,
many watermarking schemes for hardware description lan-
guages that embed copyright information have been pro-
posed. Embedded watermarks are used to prove the own-
ership of the copyright of the code.

On the other hand, CAD tools are used to design system
LSIs. They enable the circuits of system LSIs to be designed
through & GUI interface and cutput source codes of a hard-
ware description language. Generally, these CAD tools are
expensive and illegal copying of them is another major issue.
However, there is no perfect copy protection scheme, though
many schemes have been proposed. Thus, we need not just
techniques that prevent illegal copying but also techniques
to detect the fact that illegal copying has taken place.

This paper proposes an illegal copy detection framework
for CAD tools based on watermarks embedded in output
VHDL codes. Now, many kinds of software are used to cre-
ate or traneform data such as image data, audio data, movies,
and programs. Some of them are used as expensive enterprise
goftware and illegal copying of them is a critical issue. We
can apply the proposed framework to any software that out-
puts watermarkable data such as compiler/assembler, soft-
ware obfuscator, and multimedia authoring tool.

1.2 Related Work

1.2.1 Software Watermark

Digital watermarking is a technique that embeds auxiliary
information into content. This information s used to prove
the ownership of copyright of the content or trace the user
who illegally distributes the content.

Previously, digital watermarking schemes aimed mainly at
copyrighted content such as image data, andio data, and text
data. These kinds of content have a high level of redundancy;
therefore, in many cases, & user cannot recognize that con-
tent is different if several bits are changed. Thus, we can
embed a lot of information into these data.

On the other hand, software haa less redundancy than im-
age data, audio data, and text data. For example, if only one
bit is changed, software may not run correctly. Therefore, it
is more difficult to embed watermarks in software. However,
watermarking schemes for software have also been proposed
in order to prove that illegal copying of software has taken

place.

Monden, e al, [1] proposed a scheme for Java byte codes
that embeds & watermark into opcodes and numeric operands
in dummy methods. Venkatesan et al. [2] proposed a scheme
that represents a watermark as a control flow graph and
merges it into the graph of the original program. These
are static watermarking schemes; that is, a watermark can
be detected without running a program. Collberg et al. [3]
and Thomborson et al. [4] proposed a dynamic watermarking
scheme, in which a watermark is output when a program is
executed with specific input.

Watermarking schemes for hardware description languages
have also been proposed. Horikawa et al. [5{, Kubo et al. [6],
and Yuan et al. [7] proposed schemes that embed watermarks
into redundant hardware descriptions for don’t-care condi-
tions.

1.2.2 Software Obfuscation

An obfuscation scheme transforms an original source code
or binary program into an obfuscated source code or program
that is more complicated and difficult to analyze, while still
preserving its functionality. That is, an obfuscated program
gives the same output as that of the original program when
both programs have an equivalent input.

Barak et al. [8) showed the existence of classes of functions
that are not obfuscatable. However, some practical obfus-
cation schemes have been proposed. These schemes are in-
tended to make the cost of analyzing a program higher than
the value of this program. Monden et al. [9] and Gannod
et al.[10) proposed an obfuscation scheme that obfuscates
loops. Collberg et al.[11] proposed a scheme that inserts
dummy instructions using conditional branching. Chan et
al. [12] proposed a scheme that modifies identifiers contained
in Java byte code in order to protect the code against decom-
pilation. Sosonkin et al. [13] proposed a scheme that changes
the structure of classes in a Java code by merging and di-
viding them. Obfuscation schemes with a theoretical basis
have also been proposed. Wang et al. [14], Ogiso et al. [15]
and Sakabe et al. [16] proposed obfuscation schemes based
on NP-hard problems. Collberg et al. [18], Sato et al. [19],
and Fukushima et al. [20] have both proposed obfuscation
schemes that encode variables.

1.3 Our Contribution

In this paper, we discuss an illegal copy detection scheme
for CAD tools. We compare the possible solutions: online
license checking, offline license checking, and embedding a
watermark in outputs. Then, we propose an illegal copy de-
tection framework for CAD tools based on watermarks em-
bedded in output VHDL codes. First, we study three can-
didates to be embedded as a watermark: 1) the execution
history of the tool, 2) the tool ID associated with a user,
and 3) the tool ID and PC information. Then, we propose
a transformation mechanism for identification information

using a cryptographic technique. We can prevent leaks of

-304 -

confidential information and alterations/removals of water-
marks, and detect alterations made to VHDL codes by this
transforming mechanism. Furthermore, we propose two wa-
termark embedding mechanisms for VHDL codes: a mecha-
nism using dummy instructions and a mechanism using an
obfuscation technique in addition to an existing mechanism:
a mechanism using redundant hardware description. These
embedding mechanisms involve a tradecff between security
and execution efficiency; thus, they should be selected giving
due consideration to system requirements. Our framework
can be applied to the protection of any software that outputs
waterroarkeble data such as compilers/assemblers, software
obfuscation tools, and multirnedia authoring tools.

2. Iliegal Copy Detection Framework

2.1 Goal and Assumption

Qur goal is to enable the manufacture of a CAD tool to
check whether illegal copying has taken place or not by using
watermarks embedded into output VHDL codes. We assume
that a CAD tool is expensive and the number of users of this
tool is limited, e.g., around 10. In this special situation,
detecting the fact of illegal copying is important as well as
tracing the illegal user. For example, one effective approach
is to warn all users that the manufacturer will take legal
action if it finds illegal distribution of this tool. An illegal
user will think twice about distributing the CAD tool on the
Internet if he/she fears that legel action will be taken. In-
stead, an illegal nser may give & copy of the tool to a friend
offline. Then, this friend may publish VHDL codes in order
to provide ar sell a circuit of his or her own design. Thus,
we propose a framework that enables the illegal copying of a
CAD toal to be detected based on watermarks embedded in
output VHDL codes.

We assume that a secure software obfuscation scheme for
the CAD tool is available. In our framework, the watermark
embedding function added to the CAD tool is an essential
function. If this function is removed or bypassed, our frame-
work does not work. Thus, we must obfuscate the CAD
tool in order to protect the watermark embedding function
against analyses, alterations or removals.

2.2 Possible Solutions

We consider possible ways of detecting illegal copying of
CAD tools.

mechanism to protect them against illegal use. There are

Generally, programs have & license checking

two forms of program checking mechanisms: offline checking
and ounline checking.

In online checking mechanisms, the program accesses a
license rmanagement server to register ownership of a user
when the program is installed in the user's PC. Or, it ac-
cesses the server to check whether the license is valid or not,
whenever the program is started. Howevar, this scheme has a
drawback in that the program manufacturer has to build and

maenage an online license management server. Furthermore,
network access between users and the license management
server is needed. If the program cannot access the license
management server, and an illegal user may not be detected.

The offline checking mechanism allows the license to be
verified without network access. The general method of of-
fline checking is to provide a tamper-proof device with the
program. This tamper-proof device includes license infor-
mation and/or a license checking mechanism. The tamper-
proof device ig difficult to copy and the program cannot be
started without this device.
cost-effective because the program manufacturer has to pro-

However, this solution is not

vide an additional device for each user license.

Another solution is to embed license information in the
output of the program as a watermark. CAD tools are used
for generating VHDL codes; thus, a program manufacturer
can discover if illegal copying of this tool has occurred by
checking watermarks in the output VHDL codes. This so-
lution may not detect illegal copying in real time; however,
the detection process does not need online access or special
hardware. Thus, we considered this approach as a way of
detecting the illegal copying of CAD tools.

Table 1 shows a summary of the above discussion.

3. Our Protection Framework

We present the detailed description of our framework that
enables detection of illega! copying of a CAD tool based on
watermarks embedded in output VHDL codes. In our frame-
work, & watermark embedding function is added to the CAD
tool. This function embeds two kinds of watermarks into out-
put VHDL codes. One is watermark WM (M) that is used
to detect illegal copying of the CAD tool. This watermark is
automatically embedded by the watermark embedding func-
tion. The other is watermark WM (U} that is used to detect
illegal distribution or reuse of cutput VHDL codes. This
watermark is selected by the user.

Figure 1 shows our framework. The manufacturer of the
CAD tool and users of this tool delegate a distributor to
detect copyright infringement of the CAD tool and out-
put VHDL codes. The distributor can detect illegal copy-
ing of the CAD tool by extracting watermarks WM(Ma)
and WM (M3g) from output VHDL codes. As discussed in
Sect. 2.1, we do not always have to identify that Alice il-
legally gave a copy of the tool to Bob. Insiead, it is only
important to detect the fact of illegal copying itself. Fur-
thermore, the distributor can also detect the illegal distribu-
tion of & VHDL code by extracting watermarks WAf(LU4) if
Charlie steals the VHDL code Alice generated and publishes
it a8 his own code.

There are many existing studies on watermarking achemes
to prove the illegal reuse of VHDL code. Thus, we discuss
only an embedding mechanism for WM (M) in the following

- 305 -

Table 1| Summary of Possible Solutions

Solution Advantages Disadvantages

Online License Checking Real-time detection Network eccess
Oflline License Checking Local checking Special hardware or logic needed
Watermark embedded in outputs | No special device or network needed | Impoasible to detect in real time.

Delegation Alice

2 Bob

.

CAD tool Hegal copy CAD tool
iatei ol 0]
Diatributor (afflinc)
?cmu-ne H H

VHDL VHDL cade VHDL code

Datacti
WU o] ST L W () WM(Uy)
R s I i
Manufacture
Dealegation
Distributor

Figure 1 Our Framework

sections of this paper.

3.1 Identification Information to be Embedded

We consider three candidates to be embedded as water-
mark WM(M): 1) the execution history of the tool, 2) the
tool ID associated with a user, and 3) the tool ID and PC
infarmation.

8.1.1 Candidate 1: Execution History of the Tool

The CAD tool embeds the execution history into output
VHDL codes. The execution history is a sequence of pairs
of execution time and hardware information of the PC (PC
information) where this tool is executed. This approach re-
quires a trusted clock as well as a timestamp technique (21},
The PC information is dynamically obtained when the CAD
tool is executed. Illegal copying of the CAD tool is detected
by the watermark which indicates that this toe! is executed
on two or more PCs.

We assume that Alice executes the CAD tool at 9:00 on
Jan. lst and at 9:00 on Jan 2nd or her PC withk PC infor-
mation PC 4, and illegally gives a copy of this tool to Bab.
Then, Bob executes the CAD tool at 3:00 on Jan 3rd on his
PC with PC information PCg, and obtains a VHDL code.
The distributor can detect the fact of illegal coping from the
watermark extracted from Bob’s VHDL code since the exe-
cution history indicates that the tool has been executed on
two PCs.

The CAD tool must store the execution history to embed
it into output VHDL codes. For example, the tool itself may

have the execution history not to be deleted by illegal users.

3.1.2 Candidate 2: Tool ID associated with a User

The CAD tool embeds the identification information of the
tool {tool ID) into cutput VHDL codes. We assume that a
distinct tool ID is assigned to each CAD tool and associated
with a user when this tool is purchased. The pairs of a tool
[D and user name must be registered by the distributor. II-
legal copying of the CAD tool is detected by the watermark
which indicates that the owner of an output VHDL code is
different from the registered user of the tool. The diatributor
extracts & tool ID from the watermark in & VHDL code and
seeks the user with whom this identification information is
associated. Finally, the distributor checks whether the result
is same as the user who publishes the VHDL code.

We assume a CAD tool that has the tocl ID Tool, is as-
sociated with Alice. She illegally gives a copy of this tool to
Bob. Then, Bob executes the CAD tool and obtains & VHDL
code. The distributor can detect the fact of illegal copving
from the watermark extracted from Baob’s VHDL code since
the extracted identification information indicates that this
tool was purchased by Alice.

3.1.8 Candidate 3: Taol ID and PC Information

The CAD tool embeds the pair of the tool ID and PC in-
formation into output VHDL codes. Ilegal copying of the
CAD tool is detected by the watermarks which indicate thet
the same tool is executed on two or more PCs.

We assume Alice has the CAD tool with tool ID Toola.
She executed this tool on her PC with PC information PC a4,
and obtains & VHDL code. Then, she illegally gave a copy of
the tool to Bob. Bob executed the CAD tool on his PC with
PC information Toolm, and obtains another VHDL code.
The distributor can detect the fact of illegal copying from
the watermarks (Tools, PCg) and (Toolas, PC4) since the
CAD tool with tool ID Toola is executed on two PCs PCx
and PCg.

3.1.4 Comparison

We compere the above three cendidates.

Security: An illegal user can avoid detection by a backup
attack when the execution history is embedded to VHDL
codes. A user of the CAD tool can make a copy of the tool
with no execution history by backing up the tool before he
or she executes it.

Figure 2 shows an example. We assume that Alice buys
the CAD tool and backs up this tool before executing it, say
at 8:00 on Jan. 1st. Then, she executes the tool on her
PC with PC4 at 9:00 on Jan. st and 9:00 on Jan. 2nd.
She can give Bob the backed up tool as the CAD tool with

- 306 -

Figure 2 Backup Attack

no execution history. Bob executes the tool on his PC with
PCp at 9:00 on Jan 3rd. The disiributor cannot detect the
fact of illegal copying since both watermarks indicate that
Alice’s tool is only executed on her PC and Bob's toal is
only executed on his PC.

This attack utilizes the fact that an execution history is
dynamic i.e., it changes for every execution of this tool. On
the other hand, it cannot be applied to other two candidates
since this information does not contain dynamic data.

Operational Cost: The distributor must manage user infor-
mation when the tool ID associated with a user is embedded
into a VHDL code. Thus, this watermark entails a high op-
erational cost. Furthermore, it does not work if the user of
the CAD too! is different from the user who publishes the
VHDL code. We assume Alice designs a system L3I using
the CAD tool and Charlie, who is her colleague, publishes
the VHDL code. In this case, the watermark indicates that
the tool is illegally copied from Alice to Charlie even if she
legally uses the tool.

Cenerate Unique PC Information: The distributor must
generate unique PC information when the execution his-
tory or pair of the tool 1D and PC information is embed-
ded. We can consider the use of hardware information such
5 the identifier of a processor/hard disk drive/motherboard
or the MAC address of a network interface card. However,
the MAC addresses of some network interface cards can be
changed. Furthermore, a user can replace a processor and/or
hard disk drive. These identifiers may not uniquely specify a
PC. Thus, for example, we may use the identifier of a moth-
erboard to generate PC information since the motherboard
is considered ta be the most essential component of a PC.

Detection of Hlegal Copying: Illegal copying can be detect
from only one VHDL code when the execution history or tool
1D associated with a user is embedded. However, we need

Encrypted by o Public Key

1dentification Information ‘Hash\'nlue

T

Figure 3 Transformation of Identification Information

two or more VHDL codes to detect illegal copying when the
pair of the tool ID and PC information is embedded. That
is, we have to find two VHDL codes that contain the same
tool ID and different PC information.

Remark: We propesed three types of identification infor-
mation to be embedded as a watermark. Table 2 compares
these candidates based on the above discussion, The can-
didates have advantages and disadvantage; thus, we should
select identification information after due consideration.

3.2 How to Embed Identification Information

We exptain our technique for embedding identification in-
formation. The technique for embedding identification infor-
mation consiats of two steps: transformation of identification
information and hiding the information in VHDL codes.

3.2.1 ‘Transformation of Identification Information

In the first step of embedding identification information,
the tool transforms the identification information into secure
encrypted data. The transformation technique is described
as Figure 3. Firat, the tool caleulates a hash value of the iden-
tification information and concatenates the hash value with
the identification information, and then the tool encrypts the
data using the distributor's public key. A public-key based
random encryption algorithm such as RSA-OAEP (22], (23] is
used for the encryption. The public key is securely embedded
in valid CAD tools by the distributor. The distributor has
a private key for decrypting the data. Thus, the distributor
obtains encrypted data from VHDL codes, decrypts it, and
verifies the hash value of the identification information. The
objective of the transformation is a3 follows;

e Alteration of the identification information can be de-
tected. If the attacker changes a VHDL cede including the
watermark without the public key, the distributor can detect
this since the distributor cannot correctly decrypt the identi-
fication information or fails ta verify the identification infor-
mation. Thus, the distributor can consider that the VHDL
code is generated in an illegal way.

e Embedded information becomes psendorandom data.
The tool transforms the identification information into pseu-
dorandom date using a random encryption algorithm. Dif-
ferent embedded data are generated for each transformation
from the same identification information. By randomizing
embedded data, the attacker will find it more difficult to
break the hiding techniques discussed in Sect. 3.2. 2.

¢ Embedded information becomes secret information. A
valid distributor who has a private key can decrypt the iden-

- 307 -

Table 2 Comparison of Passible Candidates

Identification Information Assumptions Advantages Disadvantages
Execution History Trusted clock | Detection using a code Low resistance to backup attack
PC information Low cost

Tool 1D associated with User | User registration

Detection using a code
High resistance

High cost of managing user information

Tool ID and PC Information | PC Information

High reslstance
Low cost

Detection using multiple codes

tification information and detect illegal copying. The iden-
tification information may include sensitive information re-
lated to a user's privacy. Thus, the information should only
be traceable by the distributor.

8.2.2 Hiding Identification Information

Transformed identification information is hidden in VHDL
codes using the following embedding techniques. Then,
we must obscure the position of the watermark to protect
ageinst coalition attacks.

a) Embedding Identification Information

We propose two watermark embedding mechanisms 2) and
3) for VHDL codes in addition to an existing mechanism 1).

Proposed mechanisms 2) and 3) use an obfuscation scheme,
the xor-encoding acheme. This scheme encodes multiple vari-
ables are simultaneously encoded to multiple variables using
a key, i.e.,, o Boolean matrix and an integer vector. The
encoding process uses only exclusive-or operations.

1) Mechanism Using Redundant Hardware Descriptionas:
Horikawa et al.[5], Kubo et al.[8], and Yuan et al.{7] pro-
posed schemes that embed watermarks in redundant hard-
ware descriptions for don’i-care conditions. In a VHDL code,
the behavior of an operational unit is described by & condi-
tional branch instruction if statement or case statoment
where each signal is used as a branch condition, We assume
a unit whose behaviors are defined for 3-bit input signals
“00g", “Qol1”, “010", “011", "1007, and “101". The behav-
iora of this unit for signala “110” and “111" are not defined
and these signals are don’t-care. Thus, we can consider that
the hardware descriptions for these conditions are redundant.

A watermark can be embedded into numerical date and
operations in these redundant hardware descriptions. Nu-
merical data 00000001 of instruction a <= "00000001"; can
be replaced with any data. Thus, we can embed 8-bit in-
formation by replacing this data with arbitrary data. Ad-
ditionally, operation + can be replaced with -, *, /, %, and,
or, o xor. These sight operations are commutative. We can
embed 3-bit information by replacing this information with
any of these elght opcodes when we encounter one of them
in a program. That is, we can express them in the data from
“000" through “111” by assigning “000" to +, “001" to -,
"010” to *, ..., and 111" to ixor.

For example, we can embed 6-bit information in the VHDL
¢ode in Fig. 4 by adding the redundant hardware description
for signals “110° and “111".

cage Bignal ia
vhen "000" => a <= "00Q";
when "001® =a> a <= "010";
whan "010" => a <= *100%;
when "011" o> a <= "110";
when "100% => a <= "Q0i";

whep P101" => a <= "D11";
=~ redundant hardware descriptions --
when "110" => a <= "Q011";
when 111" => a <= "111";
end case;

Figure 4 Sample of Redundant Hardware Deacriptions

2) Mechanisms Using Dummy Instructions:

Monden st al.[1] proposed » watermarking scheme for &
Jave program that embedded a watermark using a dummy
method. We propose a mechanism based on the same tech-
nique that can be applied to VHDL codes. We can add
dummy instructions that are never actually executed while
keeping the functionality of a VHDL code. Then, a water-
mark can be embedded intc numerical data and operations
in these dummy instructions.

For example, we can embed 22-bit information in & VHDL
code in Fig. 5 by replacing two operations and two 8-
bit numerical data. We can extract the 22-bit sequence
“0000010010011111011010" from this dummy method ac-
cording to the above rules. false cond in the if statement
is a predicate that is always evaluated as false; thus, the
instructions in the 1f statement are never executed.

In this mechanism, & sophisticated predicate is required
to conceal the fact that the instructions in the if statement
are dummy instructions. 1f we use a trivial predicate such as
1#1<0, an illegal user may find that this predicate is evalu-
ated as false and these instructions are dummy instructions
to embed a watermark. Then, the illegal user may remove or
alter thege instructions to modify the watermark. Thus, we
need a predicate that is difficult to analyze while it is always
evaluated as false. This predicate is called an opaque pred-
icate. We can construct an opaque predicate using the xor-
encoding scheme. This obfuscation scheme sncodes multiple
variables using a key, i.e., o matrix and vector as follows:

A 01 10010110
a

B|=(11 () & | 01100101

C 1 0 10100101

- 308 -

if (false_cond) then
a <= a 4+ "00100100";
b <= b xor "11011010%;
end if;

Figure 5 Sample of Dummy Instructions

In this situation, two variables a and b are encoded to 4,
B, and C. Encoded variables A, B, and C satisfy a non-trivial
relation A® B & C @ 01010110 = 0. Thus, we can construct
an opaque predicate using this relation. For example, if
(A xor B xor C xor 01010110 < 0) is a false opaque pred-
icate. On the other hand, normal predicate 1f (a < 0} that
ig sometimes evaluated as true and sometimes as false is
transformed into 1£ (A xor B xor 11110011 < 0). Thus,
it is difficult to distinguish an opaque predicate and a nor-
mal predicate since they have the same form.

8) Mechanism Using Obfuscation Technigue:

We propese a mechaniem based on the above obfuscation
scheme. We can embed a watermark into a dummy variable
by assigning arbitrary data to this variable. However, an il-
legal user can specify the dummy variable since the value of
this variable is not used. To solve this issue, we use the xor-
encoding scheme. This obfuscation scheme makes it difficult
to specify the dummy varieble since the value of a dummy
variable is mixed with those of the existing valuables. Only
the distributor who knows the key can decode the variables
and obtain the watermark.

Figure 6 shows the VHDL code of an 8-bit counter. A wa-
termark is embedded in variable dummy; however, the value
of this variable is not used. Thus, an illegal user may know
that this variable is a variable to embed a watermark. Fig-
ure 7 shows the obfuscated code where variables dummy and
counter are encoded to D and € while keeping the function-
ality of the code in Fig. 6. These veriables are encoded ac-
cording to the rule

By (01 dummy o 00101111
¢/ " \1 1} \counter 10110100/

The value of variable dummy is mixed with that of the existing
variable counter. An illegal user cannot specify the dummy
variable since both values of € and D are used to calculate
the next value. The distributor who knows the encoding rule
can decode variables D and € and obtain the watermark from
variable dummy.

Remarks: We compare the security of the three water-
mark embedding mechanisms. The mechanism using redun-
dant hardware description and the mechanisms using dummy
instructions embed a watermark into redundant parts of a
program; thus, these mechanisms do not affect the execution
efficiency of the circuit described by a VHDL cade. However,
if an illegal user finds that they are redundant parts of this
VHDL code, he or she may alter or remove the watermark by
medifying these parts. On the other hand, the mechanism

counter:process {clock);
bagin
== dummy variable --
dummy <= "10010010";
count <= "0°;
if {clock’event and clock = "1") then
count <= count + 1;
end if;
end process

Figure 8 Sample of Dummy Variable

counter:process (clock);
begin
B <= "10111101";
C <= "10110100";
it (clock’event and clock = *1"1 then
C <a D xor ((D xor C xor "10011G11"}
+ 1) xor "100110Q11";
count <= D xor C xor “00101111°;
end if;
end process

Figure 7 Obfuscated VHDL Code

using the obfuscation technique decreases the execution ef-
ficiency of the circuit. However, this mechanism provides
higher security since watermarked data is mixed with the
existing data in the original VHDL code. It is difficult for
illegai users to alter or remove only the watermarked data.

Therefore, these mechanisms involve a tradeoff between se-
curity and execution efficiency; thus, they should be selected
giving due consideration to system requirements.

b} Obscure the Position of a Watermark

Existing watermarking schemes for VHDL codes are de-
signed to embed common copyright information. Thus, these
achemes cannot protect ageinst coalition attacks when they
are used to embed distinct identification information. Some
parts of the identification information in & VHDL code are
distinct for each user while the other parts are the same for
all users. As a reault, illegal users can collude to identify the
position of a watermark by comparing their VHDL codes
and finding the parts that are different. A comparison of
VHDL codes can he carried out using the diff command in
UNIX. They can easily alter or remove the watermarks by
modifying parts of the watermark in VHDL codes.

We can apply an obfuscation scheme so that each user has
a VHDL code with a distinet structure. A software obfus-
cation scheme transforms a code while keeping its function-
ality. Some obfuscation schemes for VHDL codes are avail-
able [24]~[26]. In this case, a desirable obfuscation scheme
is & probabilistic scheme or a scheme with a parameter, e.g.,
key, which contrels the transformation. These obfuscation
schemes provide a distinct transformation for each user; thus,
they make it difficult to specify the watermark by comparing
VHDL codes.

- 309 -

4. Conclusion

In this paper, we presented an illegal copy detection
scheme for CAD toals. We compared the possible solutions:
online license checking, offline license checking, and water-
mark embedding in outputs. Then, we proposed an illegal
copy detection framework for VHDL code based on water-
marks embedded in output VHDL codes. First, we studied
three candidates to be embedded as a watermark: 1) the
execution history of the tool, 2) the tool ID associated with
a user, and 3) the tool ID and PC information. Then, we
proposed a transformation mechanism for identification in-
formation using a cryptographic technique. We can prevent
leaks of confidential information and alterations/removals of
watermarks, and detect alterations of VHDL codes by this
transforming mechanism. Furthermore, we propesed two wa-
termark embedding mechanisms for VHDL codes: a mecha-
nism using dummy instructions and a mechanism using an
obfuscation technique in addition to an existing mechanism:
a mechanism using & redundant hardwara description. These
embedding mechanisms involve a tradeoff between security
and execution efficiency; thus, they should be selected giving
due consideration to system requirements. Our framework
can be applied to the protection of any software that outputs
watermarkable data such as compilers/assemblers, software
obfuscation tools, and multimedia authoring toois.

References

[1] A.Monden, H. Iida, K. Matsumoto, K. Inoue, and K. Torii,
“A practical method for watermarking java programs,”
Proc. 24th Computer Software and Applications Conference
{COMPSAC2000), pp.191-197, 2000.

[2] R. Venkatesan, V. Vazirani, and $. Sinha, *A graph theo-
retic approach to software watermarking,” Proc. 4th Inter-
national Information Hiding Workshop (ITHW2001), Lecture
Notes in Computer Science 2137, pp.167-168, 2001,

f3] C. Cotlberg, and C. Thomborson, “Software watermarking:
Models and dynamic embeddings,” Proc. Principles of Pro-
gramming Languages 1999 (POPL1999), pp.311-324, 1998.

[4] C. Thomborson, J. Nagra, R. Somaraju, and C. He,
“Tamper-proofing software watermarls,” Proc. 2nd Aus-
tralasian Information Security Workshop {AISW2004),
Pp.27-36, 2004,

[5] T. Horikawa, N. Togawa, M. Yanagisaws, and T. Ohtsuki,
“Soft ip protection algorithms (in japanese),” Proc, 14st
Workshop on Circults and Systems in Karuizawa, pp.601-
596, 4 2001.

[6f Y. Kubo, N. Togawa, M. Yanagisawa, and T. Ohtsuki, *A
watermarking technique for vhdl based on additional re-
dundant descriptions (In japanese)," Proc. DA Symposium
2003, pp.3742, 7 2003.

{7] L. Yuan, P.R. Pari, and G. Qu, “Soit ip protection: Wa-
termarking hdl codes,” Proc. 6th International Information
Hiding Workshop (IHW2004), pp.224-238, 2004.

[8) B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sa-
hai, 8. Vadhan, and K. Yangpages, "On the (im)possibility
of software obfuscation,” Proc. Advances in Cryptol-
ogy {CRYPTQ2001), Lecture Note in Computer Science,
vol.2139, pp.1-18, 2001.

[9] A. Monden, Y. Takads, and K. Torii, “Methods for scram-~
bling program containing loops,” IEICE Transactions on In-

(10]

(11]

[12)

(13

[14)

[15]

(18]

[17]

18]

18]

j20)

(21]

(22)

[24)

(24)

[25)

(28]

-310-

formation and Systems, Part 1 (Japanese Edition), vol.J80-
D-1, no.?, pp.644-652, 1997.

G.C. Gannod, and B.H.C. Cheng, “Using informal and for-
mal techniques for the reverse engineering of ¢ programs,”
Proc. IEEE International Conference on Software Mainte-
nance 1996 (ICSM'98), pp.265-275, 1986.

C. Collbarg, and C. Thomborson, *Watermarking, tamper-
proofing, and obfuscation — tools for software protection,”
IEEE Transactions on Software Maintenance, vol.28, no.8,
pp-735-748, 2002.

J.T. Chan, and W. Yang, “Advanced obfuscation techniques
for java bytecode,” Journal of Systems and Boftware, vol.71,
no.1-2, pp.1-10, 2004,

M. Sosonkin, G. Neumovich, and N.D, Memon, “Obfus-
cation of design intent in object-oriented applications,”
Proc. 3rd ACM workshop on Digital rights management
(DRM2003), pp.142-153, 2003.

C. Wang, J. Hill, J. Knight, and J. Davidson, "Software
tamper resistance: obfuscating staticanalysis of programs,”
Tech. rep. SC-2000-12, Dept. of Computer Scisnce, Univer-
sity of Virginia, 2000,

T. Qgiso, Y. Sakabe, M. Soushi, and A. Miyaji, “Soft-
ware obfuscation on a theoretical basis and its implemen-
tation,” IEICE Transactions on Fundamentals, vol.E86-A,
0.1, pp.176-186, 2003,

Y. Sakabe, M. Soshi, and A. Miyaji, “Java obfuscation with
& theoretical besis for building secure mobile agents,” Proc.
Tth IFIP TC-6 T'C-11 Conference on Communications and
Multimedia Security (CMS2003), Lecture Note in Computer
Science vol.2828, pp.89-103, 2003.

D.E. Bakken, R. Parameswaran, D.M. Blough, A.A. Frang,
and T.J. Palmer, “Data obfusacation: anopymity and de-
sensitization of usable data sets,” IEEE Security and Pri-
vacy, vol.2, pp.34-41, 2004,

C. Coltberg, C. Thomborson, and D. Low, “A taxonomy
of obfuscating transformations,® Tech. rep. 148, Dept. of
Computer Science, University of Auckland, 1987.

H. Sato, A. Monden, and K. Matsumoto, "Program obfus-
cation by coding data and its operation,” Tech. Rep. of
IEICE, vol.102, no.743, pp.13-18, 2003,

K, Fukushima, 5. Kivomoto, T. Tanaka, and K. Sakurai,
“Analysis of program obfuscation schemes with variable en-
coding technique,” [EICE Trans. on Fundamentals, vol. E91-
A, no.1, pp.316-328, 2008.

S. Haber, and W.S. Stornetta, “How to time-stamp a digital
document,” Journal of Cryptalogy, vol.3, no.2, pp.88-111,
1991.

RSA Laboratories, "PKCS#1 v21: RSA Cryptogra-
phy Standard,” Ftp://ftp.rsasecurity.com/pub/pkes/pkes-
1/pkes-1v2-1.pdf, 2002.

M. Bellare, and P. Rogaway, “Optimal asymmetric encryp-
tion,” Proc. of EUROCRYPT'94, Lecture Note Computer
Sclence 950, pp.92-111, 1895,

M. Brzozowski, and V.N. Yarmolik, “Obfuscation a5 & in-
tellectual protection in vhdl language,” Proc. of 6th Inter-
national Conference on Computer Information Systems and
Industrial Management Applications (CISIM’07}, pp.337-
340, 2007.

R. Stern, P. Maciaszek, A.G. Michael Hsia, and R. Karri,
“Digital logic obfuscation techniques to thwart clening of
asica,” http:/ /isis.poty.edu/csaw/winners/research/Richard
Stern.pdf.

SEMANTIC DESIGNS, INC., “VHDL Source Code Obfus-
cater," http://www.semdesigna.com/Products/Obfuscators/
VHDLObfuscator.html,

