HEEAN FRAERES HRSE
IPSJ SIG Technical Reports

2006—M B L —37 (18)
2006,75,/19

Privacy Protection with Customized Java Sandbox Architecture

Md. Nurul HUDA" Eiji KAMIOKA* and Shigeki YAMADA'*

T The Graduate University for Advanced Studies 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 Japan
1 National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430 Japan
E-mail: T huda@grad.nii.ac.jp, I {kamioka, shigeki}@ nii.ac.jp

Abstract Multi-party cooperative problem solving techniques require multiple inputs from multiple participants. The
participants may want to keep their inputs secret from one another. However in traditional agent based systems, the inputs are
exchanged directly with one another and can be disclosed to their users resulting in high privacy loss. We use a customized
Java Sandbox architecture for an agent server in which the agents exchange their private inputs, compute the result and give it
to a trusted service agent. The agents are protected from communicating with the outside world and from leaving the agent
server. The service agent checks for probable private data in the computation result, creates multi-signature on the result and
send it back to the users. Participating agents are disposed after the completion of the job. We also analyze probable covert
channel through the result sending process. The presented architecture can be very effective in protecting privacy in

multi-party cooperative computing.

Keyword Privacy protection, mobile agent, multi-party cooperative computing, covert channel, steganography

1. Introduction

Multi-party computing,
distributed satisfaction problem (DCSP),
distributed constraint optimization problem (DCOP) [1,2]

cooperative such as the

constraint
solving, involves multiple inputs from multiple
participants. The participants solve a common problem
based on the inputs they each supply. In many contexts,
such as the meeting scheduling, the participants may want
to keep their inputs secret from one another. Traditionally
DCSP are dealt with software agents, which act and take
decisions on behalf of their users. One reason for solving
a DCSP in a distributed fashion is that agents might not
want to communicate all the information to the
centralized leader agent [1]. In the centralized approach,
the privacy loss of the participants to the central agent or
the leader agent is high. However, Depending upon the
metrics used for privacy loss measurement, the relative
privacy loss in an approach might vary with respect to
other approaches [3, 4]. The main technique used for
reducing privacy loss in a distributed algorithm is to
reduce the amount of shared information with others.
However, all these algorithms have some inherent privacy
loss because the participants need to share their private
inputs to resolve the conflicts among them or to optimize
the solution.

Another method of reducing privacy loss is to remove
or hide the relationship of the personal data with the
identifiable individual [5,6]. This is commonly referred to
as anonymization. In a multi-party computation and for a

known number of participants, the relationship of the data

with an individual is bounded by the number of individual
(k) i.e., no less than (I/k). This approach is more suitable
in the cases where the number of data owners is very
large, such as in privacy preserving data mining where
there are a large number of individuals related to the data
set.

Besides non-cryptographic approaches, cryptographic
approach for protecting privacy has also been proposed
[7,8]. These
theoretical and not suitable for practical applications.

approaches incur a large overhead,

In traditional multi-party computing models, the data
owners or their agents retain no control over the data that
they give to others or on the data users (agents) that use
the given data. A data user may utilize the given private
data for an unintended job or disclose the given data to an
unauthorized third party resulting in privacy loss.

In this paper, we propose a new mechanism for
reducing privacy loss in multi-party collaborative
computing systems. In our proposed computing model,
mobile agents are provided user inputs which then
migrate into an agent server provided by a neutral service
provider. We describe an agent server platform
architecture named iCOP (isolated Closed-door One-way
Platform) into which the participating mobile agents are
trapped. To solve the problem, they negotiate and interact
with one another by sharing their private input data like
the distributed model. The privacy manager of the iCOP
architecture restricts the participating agents from
disclosing the acquired input data of other participants to

the outside world. It also restricts the participating agents

-97-

from leaving the platform with the learnt private data. A
service agent checks the computational result for probable
private data hidden with the computational result, creates
a multi-signature along with the participating agents and
sends the result to the users. In order to ensure protection,
finally the participating agents along with the learnt data
are disposed at the iCOP server.

2. Privacy loss model

When part of the personal data is shared with the data
user, the shared private data may get disclosed to third
parties from the data user's system (Figure 1). Besides
intruders, the data user may disclose the shared data to
unauthorized parties. But acquiring data by an
unauthorized third party does not necessarily mean
privacy loss. If the third party cannot map or associate the
acquired data with the specific individual we do not say it

as privacy loss.

User
Probability of mapping

Probability of disclosure

Fig 1: Privacy loss model

Thus we can define privacy loss from the data user's
system as,

v=P,xP xi)

where, P, is the probability of disclosure from the data
user's system, P, is the probability of associating or
mapping the acquired data with the identifiable individual
by the unauthorized party and i is the size of the shared
data.

Let the ideal privacy level of a user be one and the
worst-case privacy level be zero. With this normalization
the privacy loss becomes,

w=axP,xP,xi @

where, I is the personal data used for the computation
and a=1/I.

In conventional multi-agent based systems, (a) the
agents are free to disclose the shared private data to their
users (i.e., P; = 1) and (b) the receiving agent can
identify the sender agent and thus can map or associate
the received private data with the sender agent/user (i.e.,
P, =1).

Among different approaches to reduce the privacy loss,

anonymization technique and some algorithms reduce the
value of P, and some distributed algorithms reduces the
value of i. In this research our aim is to reduce privacy
loss by reducing the value P,.

3. Privacy Protection Model

In an ideal privacy preserving multi-party cooperative
computing model, the computing system should take the
inputs from the participants and give back the result
keeping the inputs secret from each other.
Our mechanism of privacy protection is to provide inputs
to mobile agents, bring them into a neutral agent server,
allow them to interact locally to share their private data
and perform the desired computation, restrict them from
leaking out anything and send only the computational
result to the users. Since each agent uses the private data
of other agents, the agent server should be controlled by a
third party. In our proposed computing model the data
users (i.e., mobile agents) are trapped into an agent server
and restricted in a way such that they cannot disclose the
shared private data to unauthorized parties (Figure 2).

Fig 2: Proposed multi-party cooperative computing
model

The service provider should impose mneutral and
uniform control over all the data users (mobile agents)
and it should not have any impact on how the data are
utilized in solving the problem. The desired control over
the data users can be achieved by controlling the system
resources that they use. In the proposed model, we refer
the agent server platform as the iCOP (isolated
Closed-door One-way Platform), within which the agents
can interact and negotiate with one another like the
distributed
autonomy to implement their own strategies in solving the

conventional approaches and have the
problem. The agent server does not restrict the agents to
any specific approach- centralized or distributed i.e., they
can use any convenient algorithm based on their goals.
3.1. iCOP Architecture

iCOP is an

participating agents of multi-party computation, isolated

agent execution environment for
from user hosts and user direct control over their agents.

It is a closed-door platform from where the participating

- 98-

agents cannot communicate with the outside world. It is a
one-way platform that is the participating agents are
allowed to only enter into the iCOP host platform with
proper authorization but are not allowed to leave the
platform. On completion of their task, all the
participating agents are disposed at the iCOP host. iCOP
architecture consists of two basic units: a)Management
unit and b)Computational unit. Figure 3 shows a simple
conceptual diagram of iCOP architecture.

The participating agents of the multi-party computation
constitute the computational unit and perform basic
computations. The management unit oversees the
operations of the computational unit, monitors and
controls the resources that it may use to perform it's
computation and so on. The management unit exercises
access control over these computational input channel and

output channel.

(Output)

Computational
Channel

Management (Input)

Channel
(Input)

Fig 3: Logical structure of iCOP model

In order to make the decisions necessary to
properly oversee the operation of the computation of the
computational unit and to achieve flexibility, management
unit will carry with them, or otherwise have access to,
policies that govern and constrain their behaviors, current
mission and strategy.

The privacy manager of the management unit is the
controller that enforces the specified policies. It monitors
the resource access request activities and based on the
specified policies, it grants or denies the access to the
requestor. The closed-door and one-way properties of the
iCOP host platform are achieved by trapping any direct or
indirect access requests for communication resources by
the participating agents and denying their requests.

A service agent of the management unit coordinates
among participating agents in solving the problem and
sends the computational result to the users. The type of
coordination and its protocol vary depending upon the

type of application. Thus different application needs
different service agent. But all of them have four common
responsibilities: 1. coordination among the participating
agents, 2. verification of the computational result that no
send the
computational result, and 4. dispose the participating

private data has been encoded into it, 3.

agents.

The coordination of the service agent includes
distributing the list of participants, inviting them to join
the computation and passing them initial parameters of
the problem. The initial parameters includes problem
description such as name of the problem, list of variables
to be assigned, the domain of the variable values, the
domain of personal valuation of certain variables etc.
Based on the initial parameters, the participating agents
decide which data to bring into the iCOP host for the
computation. The service agent also performs steganalysis
on the computational result created by the participants to

detect any hidden private data in the computational result.

3.2. Service Protocol

A registered user can initiate the service by sending a
request to the service agent. The initiator agent must give
all of the initial parameters to the service agent before it
migrates into the iCOP host so that they cannot contain
other agents' (shared) private data (that will be shared
inside iCOP later) and are safe to send out from the iCOP
host with the invitation. The service agent invites other
participants to join the computation and provides the
initial parameters to them. All participating agents collect
related necessary data based on the supplied initial
parameters for the computation and migrate into the iCOP
host. The participating agents interact with each other and
carry out the computation by sharing their personal data.
Finally, they reach an agreement and create the
computational result.

In DCOP and DCSP, such as the meeting scheduling
problem, all the participants solve a common (set of)
problem by negotiating/exchanging their value assignment
to the variables and reach an agreement that satisfy all the
constraints [1,2]. In other multi-party applications, such
as the buying-selling application, two or more
participants create an agreement or contract with one
another as the computational result.

In the parallel multi-signature process, the participating
agents sign the computational result individually and pass
it to the service agent, which then recovers them from
individual signed message with their respective public

key.

-99-

User Host iCOP Host User Host

IA: Initiator Agent
SA: Service Agent
UA: User Agent

s
! > Athentication
e
é'<t-af§m(1) name, value>
¢arem(n) name, value>

|<<Migration>

Invite(intial param)

>cmamm

R
/SN SRR 1% S i S
[I Dispose

I

Fig 4: Service protocol sequence diagram

The group of agents who create the result must follow a
pre-defined format for creating the result consisting of set
of variable names and their values. The service agent
checks the compatibility of the recovered computational
result with the pre-defined format. The service agent
verifies that the participants have signed the same
message (i.e., none of them has not encoded hidden
information into the result) by exact matching the
After this
verification the service agent creates the combined

recovered messages with each other.
multi-signature (which also verifies that all of the
participants has signed exactly the same message) and
sends the signed result to the users. Finally it disposes the
participating agents at the iCOP host.
3.3. The Parallel Multi-signature Scheme

The parallel multi-signature scheme allows multiple
signers to sign a message separately and then combine all
individual signatures into a multi-signature. It verifies the
authentication of the sender, message integrity and
non-repudiation. The signature process also ensures that
all of the signers sign the same message. We adopt the
parallel multi-signature scheme presented by [9]. Because
of space limitation we skip its description.
3.4, Implementation issue

The main objective of the iCOP architecture is to
prevent participating agents from disclosing any data
(other than the computational result) to the outside world.

Data transfer from a participating agent in the iCOP can
occur in many different ways. For example, direct transfer
through message, mail, RMI etc. Even data may be
encapsulated in an agent and transferred by transferring
the agent itself. However, all these data transfer
techniques generally need to use network resources. Thus,
data transfer can be controlled by controlling the network
resources.

The Java security manager is a well-known architecture
for controlling access to system resources [10]. The
sandbox model can restrict external codes (external
mobile agents) from using system resources to transfer
data. However, it allows external codes to connect back to
the originator, which should not be allowed in iCOP
architecture to achieve its goals. So in iCOP, for any
network resource access request, the privacy manager,
which is a customized Java security manager, inspects the
system class stack corresponding to the current series of
method call. The privacy manager checks if there is any
external class in the system class stack by checking their
code bases and denies the access request if it finds any
external class in the class stack. This restricts the external
agents from any type of communication with the outside
world or from migration to other hosts from the iCOP.

A service agent is locally installed agent specialized
for specific kind of service and developed by an
experienced and reputed developer. It is given privileges
to dispose external agents and to communicate with the
outside world so that it can invite the participants and
send the result to the users. The flexibility is achieved by
implementing security policies, which allow granting
different privileges to different code from different
codesources. A user agent is a mobile agent, possibly
developed by the users or other organizations that
normally reside at the user host.

4. Analysis

Data disclosure requires a disclosure channel from the
iCOP to the outside world. The participating agents are
protected from accessing system resources using which
they can leak out the acquired personal data of other
agents or take away during migration to other hosts.
However a participating agent may leak information
though a covert channel [11,12]. A covert channel
requires a shared variable between the sender and the
receiver. The sender puts data or some kind of signaling
on the shared variable and the receiver reads the shared
variable. For example, the sender may signal the receiver

- 100 -

by changing the frequency of use of a system resource
(e.g. file) which the receiver can monitor and decode the
secret data from the frequency of use of the resource by
the sender. Figure 5 shows the modular concept of covert
channel.

Receiver

Fig 5: Covert channel

The only shared variable between a potential sender
iCOP model is the
computational result. Thus the result sending channel

and an outside receiver in
might be a potential covert channel.

The art of sending hidden message is known as
steganography [13]. The analysis of steganography to
detect hidden message is known as steganalysis.
Assuming that the computational result is a plain text
object, our analysis is limited to text steganalysis.

Text steganography generally requires some kind of
modulation on the original text. The sender modulates the
original text using some protocol to include hidden
information and the receiver must perform related
demodulation to recover the hidden text. Different kinds
of modulation are possible. Following are some examples

Adding text: The sender adds additional characters like
whitespace, punctuation marks or decimal point in
numerical values etc. without changing the semantic of
the text. Table 1 shows a simple protocol.

Table 1: Simple text steganography protocols

Signal [Means Signal Means
1 whitespace | 0 1 decimal point{ 0
2 whitespace | 1 2 decimal point| 1

With the protocol shown in Table 1, the first line of
Figure 6 is the original text and the second line contains

hidden data “1011”. Similarly 3™ line is the original text
and 4% line includes hidden data “10”. But semantically
they are equivalent. The number of transferable bits
varies based upon the steganography protocol.
This is the computational result
This is the computational result
X=3,Y=2
X=3.00, Y=2.0

Fig 6: Examples of text steganography

Arranging components: A text may have some

distinguishable components and rearranging those
components may still possess the same semantic. For
example, the same date “dd/mm/yyyy” may be represented

with different formats as shown in table 2. If there are »

distinct elements in the original text, then by arranging
them in different ways factorial(n) unique values can be
represented. So, the number of bits that can be transferred
by choosing any one of them is

b=log,(n!) 3)
Table 2: Text steganography protocols with arranging
components
Format [Means Format [Means

dd/mm/yyyy | 000
dd/yyyy/mm | 001 yyyy/mm/dd | 100
mm/dd/yyyy | 010 yyyy/dd/mm | 101

With the protocol shown in Table 2, to send “010” the
sender must send a date in the “mm/dd/yyyy” format.

mm/yyyy/dd | 011

Changing graphical properties: Data encoding is also
possible by changing the case of certain characters (e.g.,
first character of each word) of the text.

Table 3: Text steganography protocols by changing case

Format Means
Capital letter | 1
Small letter 0

With the protocol shown in table 3, the text “This is the
Computational Result” contains hidden data “10011”. The
number of transferable bits varies based upon the

steganography protocol.

Non-modulating: Information can also be sent with
non-modulating steganography. In our investigation we
found one such approach that we call result biasing. If
there are s numbers of valid solutions of the problem, an
agent may bias the computational result towards a
specific valid solution by rejecting other solutions in the
negotiation process. For example, if there are 4 valid
solutions of the problem, the bits ‘00°, ‘01°, ‘10’ and ‘11’
may be signaled to the receiver by biasing the result into
solutions number 1, 2, 3 and 4 respectively. Thus the
number of transferable bits by this technique is,

b =1log,(s) 4)

This type of steganography can be mounted in any
architecture and the same number of bits can be
transferred by this attack irrespective of the architecture.
Figure 7 shows the minimum privacy loss in optAPO [14]
algorithm in VPS privacy metric [3] for traditional
multi-agent based distributed model and iCOP model
(with 8 valid solutions and 16 preference values).

Note that, all of the text steganography by text
modulation change the original text. Text steganography
by text modulation is detectable in iCOP with known
cover analysis [13] by comparing the computational
results from different agents. When they all matches with

-101 -

each other, all of the participants created the
computational result according to their agreement in the
negotiation and they followed the pre-determined format.
With the predetermined format “all caps, coma separated
variable_name=variable_value, two precision numerical
value, date_format dd/mm/yyyy” a possible computational
result that follows the format will be
“DATE=23/05/2006,ITEM=CD,QUANTITY=10,PRICE
=450.00". If at least one of the participants follows the
correct format, then the service agent can detect any
mismatch among the computational results signed by the
participants.

06 ~-- Multi-agent

Privacy loss
s

3 8 13 18
No. of users

Fig 7 : Privacy loss in the meeting scheduling problem
in the optAPO algorithm

The service agent cannot detect steganography that
uses non-modulation technique. In fact, leakage through
this technique might be successful in any architecture.
However, this method might be difficult because it needs
to have a number of valid solutions, need to bias all
participants to a specific valid result and finally the
number of transferable bit is very small. Also the sender
agent may incur penalty as a group member if it tries to
bias the computational result to a specific solution
because that solution might not be the best solution for
the group. The result sending channel is a transient
channel [12], which transfer a fixed amount of data and
then cease to exist.

5. Conclusion

We have presented a privacy protection model with a
customized Java sandbox architecture for agent based
multi-party cooperative computation and analyzed the
privacy protection aspect of the model. In our analysis,
we found that the privacy protection using our iCOP
model is very efficient and probably only few bits of data
can be leaked through covert channels. The potential
application domains of our proposed model can be
privacy preserving DCSP, DCOP, agent based business
applications etc.

References:

[1] Yokoo M., Durfee E. H., Ishida T. and Kuwabara K,
The Distributed constraint satisfaction problem:
formalization and algorithms, JEEE Transactions on
Knowledge and Data Eng, 10(5), 1998, pp: 673-685

[2] Modi, P.J. Shen, W. Tambe, M. Yokoo. M. ADOPT:
Asynchronous distributed constraint optimization
with quality guarantees. Artificial Intelligence
Journal (A1J). vol 161, 2005, pp: 149-180

[3] Maheswaran, R. T. Pearce, J. P. Bowring, E.
Varakantham P. and Tambe, M. Privacy Loss in
Distributed Constraint Reasoning: A Quantitative
Framework for Analysis and its Applications,
Journal of Autonomous Agents and Multi-Agent
Systems, Springer, vol.13, no.1, Jul 2006, pp:27 - 60

[4] Greenstadt, R. J. Pearce, J. P. Bowring, E. and
Tambe, M. Experimental analysis of privacy loss in
DCOP algorithms, In Pro. of Third Int. Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS’06), Hakodate, Japan, May 2006.

[5] David E. Bakken, Data obfuscation: anonymity and
desensitization of usable data sets, JEEE Security &
Privacy, Vol. 2, no. 6, 2004. pp: 34-41

[6] L. Sweeney, K-Anonymity: A Model for Protecting
Privacy, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, Vol. 10, no.
5, 2002. pp:557-570

[7] Yao, A. Protocols for secure computations, In Proc.
of the 23rd Annual IEEE Symposium on Foundations
of Computer Science, 1982

[8] Du, W. and Atallah, M. J. Privacy-Preserving
Cooperative Scientific Computations, In proc. of the
14th IEEE Workshop on Computer Security
Foundations, Canada 2001, pp: 273 — 282

[9] Shieh, S. P. Lin, C. T. Yang, W. B. and Sun, H. M.
Digital multisignature schemes for authenticating
delegates in mobile code systems, IEEE Trans.
Vehicular ~Technology. vol.49, Jul 2000, pp:
1464-1473

[10] Gong, L. Ellison, G. Dageforde, M. Inside Java 2
Platform Security: Architecture, API Design, and
Implementation (2* edition), Addison-Wesley
Professional, May 27, 2003

[11]U.S. Department of Defense. Trusted Computer
System Evaluation, Publication DoD 5200.28-STD.
Washington: GPO 1985. http://www.radium.ncsc.mil/
tpep/library/rainbow/5200.28-STD.html

[12]National Computer Security center, A guide to
understanding covert channel analysis of trusted
systems, NCSC-TG-030, Version-1, Nov 1993.
http://www.radium.ncsc.mil/tpep/library/rainbow/NC
SC-TG-030.html ‘

[13]Krista Bennett, Linguistic steganography: survey,
analysis, and robustness Concerns for hiding
information in text, CERIAS Tech Report 2004-13,
https://www.cerias.purdue.edu/tools_and_resources/b
ibtex_archive/archive/2004-13.pdf

[14]Mailler R. and V. Lesser, Solving distributed
constraint optimization problems using cooperative
mediation. In Pro. of Third Int. Joint Conference on

Autonomous Agents and Multiagent Systems
(AAMAS). New York, 2004 pp: 438- 445

-102 -

