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Abstract :  This paper describes recent efforts to improve the HMM-LR speech recognition system
for continuously spoken sentences. The HMM-LR system has been applied to Japanese phrase
recognition and has attained high recognition performance. However, up to now, the system has
not been applied to continuous spoken sentence recognition. In this work, several improvements
have been made on the system. The first improvement is HMM training with continuous utterances
as well as word utterances. In previous implementation, HMMs have been trained with only word
utterances. Continuous utterances are included in HMM training data because coarticulation effects
are much stronger in continuous utterances. The second improvement is the development of a
sentential grammar for Japanese. The sentential grammar was created by combining inter- and intra-
phrase grammars, which were developed separately. The third improvement is the incorporation of
stochastic linguistic knowledge, which includes stochastic CFG and an N-gram model of production
rules. The system was evaluated using continuously spoken sentences from a conference registration
task that includes approximately 750 words. A sentence accuracy of 83.9% was attained in the
speaker-dependent condition.



1 INTRODUCTION

Speech recognition systems that take full advantage of context-free grammar (CFG) constraints are increasingly
common. Also, the LR parsing technique has been extensively used in dealing with CFG constraints, due to its no-
backtracking table-driven efficiency (1, 2, 3, 4, 5, 6]. The HMM-LR speech recognition system, which is an integration
of phone-based HMMs and LR parsing, has provided high recognition performance for Japanese phrase recognition
with the introduction of multiple codebooks, accurate HMM state duration control, and fuzzy vector quantization
[7]. However, up to now, the system has not been applied to continuous utterances.

This paper describes recent improvements in the HMM-LR speech recognition system aimed at handling contin-
uously spoken sentences. The following outlines the major improvements:

1. In the system currently used for phrase utterances, HMM phone models have been trained with isolated word
utterances. However, phones in continuous utterances exhibit great variability due to strong coarticulation. To
overcome this problem, HMMSs were trained with continuous utterances as well as word utterances.

2. The grammatical structure of Japanese has two levels: the intra-phrase level and the inter-phrase level. Thus,
intra- and inter-phrase CFG grammars are developed separately, and then combined into one sentential gram-
mar. The sentential grammar allows pauses between phrases. The system recognizes naturally spoken sentences
including phrase utterances and continuous utterances.

3. In order to account for the stochastic aspects of a language, two kinds of stochastic knowledge are investigated:
a stochastic CFG and an N-gram model of production rules. The latter is a particularly powerful stochastic
language model that takes context-sensitivity into account.

This paper first gives an overview of the HMM-LR speech recognition system. Then recent improvements and
experiments evaluating performance are described.
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Figure 1: HMM-LR speech recognition system.



2 HMM-LR SPEECH RECOGNITION SYSTEM

The HMM-LR speech recognition system is'depicted in Figure 1. The system uses phone-based- HMMs for
acoustic modeling and an LR parser for dealing with grammatical constraints based on a context-free grammar.

2.1 Acoustic Component

Phone-based HMMs are used for acoustic modeling. HMM phone models are based on discrete HMMs. Vowels,
the syllabic nasal and a silence are modeled as a one-loop model, and other phones as a three-loop model.

For accurate phone modeling, separate vector quantization (multiple codebooks) is used, where the following
three parameters are vector-quantized separately:

o Spectrum (WLR)
o LPC cepstral difference

¢ Power

HMM state duration control is also introduced. State duration is approximated by the Gaussian distribution
through the process of Viterbi alignment for training data, and is used as a penalty for transition and output
probabilities.

2.2 Linguistic Component

The linguistic component of the HMM-LR system is based on predictive LR parsing [3]. Predictive LR parsing
is an extension of generalized LR parsing [8], which has symbol prediction capability. In other words, it predicts
possible subsequent symbols by refering to a parsing table. This prediction process is based on a table look-up, and
can thus be done very efficiently. Accordingly, predictive LR parsing provides a computationally inexpensive and
powerful mechanism for search space reduction.

We use the predictive LR parser for guiding the search of an HMM-based speech recognizer. During recognition,
the parser predicts at each stage of the parse all possible subsequent phone hypotheses. Each hypothesis is then
assigned a probabilistic likelihood value from its corresponding HMM. Recognition hypotheses with low likelihood
values are pruned by a beam-search technique. This integration of the predictive LR parser and phone-based HMMs
allows a tight coupling of speech recognition and natural language processing and results in a computationally efficient
algorithm.

3 SPEECH DATA

It is well known that HMMs perform better with more training data. It is also well known that phones in continu-
ous utterances exhibit great variability due to strong coarticulation. The previous attempt at phrase recognition used
HMMs trained by word utterances, which included 5,240 important Japanese words and 216 phonetically balanced
words, .

In this work, phrase and continuous utterances were extracted from the ATR speech database [9] and included in
the training data. Table 1 shows speech data used for HMM training or evaluation. All speech data were uttered by
one male speaker, recorded in noise-free environments, and phonetically labeled by hand.

Table 1: Training and evaluation speech data.

[ Speech Data | Utterance Type Number
5,240 important Japanese words &
Training Word 216 phonetically balanced words
Data Phrase 598 phrases
Continuous 90 sentences
Evaluation .
Data Continuous 137 sentences




The speech data is sampled at 12 KHz, pre-emphasized with a filter having a transform function of (1 —0.9727%),
and windowed using a 256-point Hamming window every 9 msec. Then, 12-order LPC analysis is carried out, and
finally the VQ code sequence is generated. For VQ codebook generation, 216 phonetically balanced words are used.

4 SENTENTIAL GRAMMAR

Japanese is very different from European languages such as English. The grammatical structure of Japanese has
two levels: the intra-phrase level and the inter-phrase level. The intra-phrase level constraints are well described by
a regular grammar or a CFG. As for the inter-phrase level constraints, most Japanese speech recognition systems use
a semantic relationship called the kakariuke relationship. However, it is very difficult to make kakariuke relationships
for large vocabulary tasks. Moreover, kakariuke relationships are very difficult to utilize for dynamically constraining
the search space during recognition.

In our implementation, both intra- and inter-phrase level constraints are described in CFG form. First, the
intra- and inter-phrase CFGs were developed separately [10}, and then these CFGs were combined into one sentential
grammar. Terminal symbols in the intra- and inter-phrase CFGs are phone names and phrase category names,
respectively. Table 2 shows the size and complexity of each grammar. The test-set perplexity of the sentential
grammar is 56/word.

In Japnese, since a phrase is both a grammatical and a phonological unit, it is uttered in one breath in a natural
speaking style. Thus, the sentential grammar allows pauses between phrases.

Table 2: Size and complexity of the intra- and inter-phrase grammars.

Grammar || Intra-Phrase Inter-Phrase
Rules 1,973 rules 471 rules
Vocabulary || 744 words | 133 phrase categories
Perplexity || 3.57/phone 65.5/phrase

5 STOCHASTIC LANGUAGE MODELS

A pure CFG model inherently contains the following problems:

¢ Overgeneration problem
A CFG is created by hand-parsing a corpus of text based on human linguistic knowledge. However, the resulting
CFG will not only generate correct sentences, but also many other incorrect sentences. We carried out a sentence
generation experiment to see how many incorrect sentences were generated from our sentential grammar. As a
result, about 80% of all generated sentences were incorrect {11].

¢ Ambiguity problem
The number of syntactic ambiguities in one sentence becomes increasingly unmanageable as the number of
phrases increases. Martin et al. [12] reported that the syntactic ambiguities of sentences can be approximated
by the Catalan number, which grows almost exponentially.

To address these problems, it is advantageous to use stochastic language models. A stochastic language model
assigns a high probability to a correct sentence and a low probability to an incorrect sentence. It also provides an
effective means for sentence disambiguation.

To combine the advantages of syntactic and stochastic language models, the following language models are
investigated:

o Stochastic CFG
¢ N-gram model of production rules (rule N-gram)

These models provide hybrid modeling of a language, in which stochastic models augment a syntactic model quanti-
tatively.



A Stochastic CFG assumes a strong assumption, namely a probabilistic independent assumption, that the choice
of the production rule is independent of the context. Recently, more powerful language models beyond stochastic
OFGs have attracted considerable attention [13, 14, 15, 16], where some models take context-sensitive probabilities
into account. An N-gram model of production rules is such an attempt. Actually, we use the model where N equals
2, which is the bigram model of production rules.

5.1 Stochastic CFG

A stochastic CFG [17) extends a CFG so that each production rule is of the form <A —» a,p>, where p is the
conditional probability of A being rewritten into e. The probabilities of all A-productions (rules having A on the
LHS) should sum to L.

In the stochastic CFG, the probability of a derivation can be computed as the product of the probabilities of the
rules used. Suppose that
Sé"névz%---:’é’yﬂ:z (1)

is a derivation of ¢ from the start symbol S, then the probability of this derivation is given by

P(z) = fI P(r;). )]

i=1

A stochastic CFG can be converted into a stochastic LR parsing table, in which each action entry contains a
stochastic factor [4]. The LR parser uses these stochastic factors in the computation of the runtime stochastic product,
which reflects the likelihood of each recognition hypothesis.

5.2 N-gram Model of Production Rules

The structure of a sentence is represented as its derivation, which is a linear sequence of applying production
rules. The co-occurrence of production rules is very helpful for avoiding rules that generate incorrect sentences [18].
The N-gram model of production rules predicts which subsequent production rule is likely to be used after particular
rules are applied.

In this model, if the derivation is given by
Sé%__’%%é,_,%%___% (3)
then the probability of this derivation is calculated as follows:

P(ry,...,rs) = P(ri|#)P(ra | #,7m1)
T P(ri | Pimzo Tt ) P(# | ) @)

k=3

In Equation 4, the rule sequence ry,...,m, is derived from top-down parsing. However, the LR parser is based
on bottom-up parsing. Therefore, in this case, the probability of a derivation is defined as P(ry,...,m1):

In a context-free grammar, there is no constraint on the contexts in whi ch a production rule can be applied. This
model, however, is considered to have context-sensitivity in terms of probability. This is because the probability of a
production rule is dependent on the previously applied rules.

Actually, the bigram model is used in continuous utterance recognition. We will give some consideration to the
rule bigram model.

First, the rule bigram model can be considered as an extension of the word bigram model. Now consider the
following CFG.

®) S — AB
(R) A —» CD
(Rs) C — wy
(R) D — 1wy
(Rs) B — ws




In this case, we have the following rightmost derivation from the parsing of the string “w;wqws”.

LNy LN Aws Ri: N CDws N Cwaws N Wy W W3 (5)

From the viewpoint of bottom-up parsing, the rule bigram model must calculate the probability for the sequence
Ra, Ry, Rg, Bs, Ry. Here, P(R4]R;) is an approximation of the word bigram P(w.jw;). Also, since P(Rs|R,) is
approximated by P(ws]A), this probability is a word occurrence probability that takes the previous context into
account. Thus, this model includes word bigram information.

Furthermore, the probability for the derivation is approximated by the following formula, which indicates that
the rule bigram model is very similar to the parse tree N-gram model [19].

P(Rs, Ry, Rz, Rs, Ry)
= P(Ra|#)P(R4|Rs)P(Rs|Ry)
P(Rs|Ro) P(Ra|Rs) P(#|R1) (6)
~  P(w|#)P(wafw:)P(A|w,)
P(ws| A)P(S|A)P(#]S5)
5.3 Training of the Models
The stochastic language models were trained by actually parsing the sentences extracted from the ATR dialogue
database [20].
Definition of Symbols
{Bi1,Bs,...,B;} -+ A set of training sentences.

{Di,Di,..., Di} --- A set of derivations for the i-th sentence B;. Here, n; represents the number of derivations
‘fOI‘ B,'. ‘

N]’:(r) -+« The function N counts the number of rule occurrences of its arguments in the derivation D;
Training of the Stochastic CFG
The conditional probabilities of rules in the stochastic CF'G were estimated using the following procedure [17].
1. Make an initial guess of P(a|A) such that 3=, P(a]A) = 1 holds.
2. Parse the i-th sentence B; and get the all derivations for B;.

3. Re-estimate P(alA) by the following formula.

wher
Cite) = 3 (2L _Nita - ) @®
@) =2 \spop™

4. Replace P(alA) with P(a]A) and repeat from step 2.

Training of the Rule Bigram Model

The rule bigram probabilities were estimated by relative frequency of occurrence of production rules in derivations
of training sentences. However, since ambiguous sentences have many different derivations, a simple relative frequency
approch does not work well. The following formula was used to calculate the relative frequency, in which the rule
frequency in one sentence is normalized by the number of derivations for that sentence.

_ Ei ',:__ Zj N;(Tn—-lyrn)
Tin 2 Ni(ran1)

P(ralrn-1) 9)



6 PERFORMANCE EVALUATION

The HMM-LR speech recognition system was evaluated on a speaker-dependent conference registration task.
This task consists of dialogues between secretaries and participants of international conferences.

Results of recognition experiments are shown in Table 3, where Correct indicates percent correct, and Subs, Dels
and Ins are substitution error rate, deletion error rate and insertion error rate.

Compared with the stochastic CFG model, the rule bigram model attains very high recognition performance.
Substitution and insertion error rates in particular decreased sharply. However, the deletion error rate is still high.
This is because all recognition hypotheses are sometimes rejected in the middle of the input due to recognition failure
at the very beginning. Indeed, the HMM-LR system gave no output for about 6~7% of all sentences. However, this
phenomenon is not a shortcoming of the HMM-LR speech recognition system because, from the viewpoint of speech
understanding, giving an incorrect result is much worse than no output.

Table 3: Recognition performance of the HMM-LR speech recognition system.

HMM Language Word Recognition Performance Sent. Recognition Performance
Training Data Models Correct | Subs | Dels | Ins | Accuracy || Correct Within top 5

CFG only 55.2 | 129 [ 31.9 | 11.9 43.3 48.9 56.9
Word Stochastic CFG || 56.6 7.8 [35.7] 5.1 51.4 59.9 66.4
Rule bigram 71.8 56 |16.6 | 1.4 76.4 78.1 81.0
CFG only 66.7 | 12.5 | 20.8 | 6.8 59.9 55.5 64.2
Word + Stochastic CFG || 69.1 92 [ 21.8] 3.3 65.7 64.2 72.3
Phrase - Rule bigram 83.1 29 |14.0] 0.1 83.0 83.2 86.9
Word + CFG only 708 |13.5]15.7] 6.9 63.9 57.7 65.0
Phrase + Stochastic CFG || 74.1 105 | 154 | 4.1 70.0 66.4 71.5
Continuous Rule bigram 81.0 29 [16.11] 0.0 81.0 83.9 86.1

7 CONCLUSION

This paper presented recent improvements in the HMM-LR speech recognition system. The system was evaluated
through continuously spoken sentence recognition. These improvements include: (1) HMM training with continuous
utterances as well as word utterances, (2) development of a sentential grammar, and (3) introduction of stochastic
language models. The stochastic language models investigated were a stochastic CFG mode] and a bigram model of
production rules. The recognition experiments demonstrated that the rule bigram model is much superior than the
stochastic CFG. One reason for this is that the rule bigram model has context-sensitivity in terms of probability. The
HMM-LR speech recognition system eventually attained a sentence recognition rate of 83.9% with the rule bigram
model.
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