Ea—-<2A2F7x—RX 87—8
(2000. 1. 28)

DFUFIZH ETBRHEDRRS

B fKHER" John M. Carroll! 4 EiEE"
WRKRE TR Ea—d « AF 4 7 L¥R
*Computer Science Department, Virginia Tech

FVFITHESLKBREINEL L, VT VAER VAT ARRIRBICRITAEEAREYD & 42 L, Bk
WICRIATAFRETHD. KBTI, VATARFIEBTRVF ) I0BECBEL T, RFRHNLHE
O EBIR Y. BEMICE, REOLZ45% BIERE, AiarVYa—F L oMEER, BEX
TH, 7= MEASH « ®E) KBITHL TV FOREE R a—TDBNERLMNITEE &
T, VT VARV AT AR ISR AT — 7 RN F T A RIBEBL 2V EBAE D L ERT.

Surveying scenario-based approaches in system design

Kentaro Go’, John M. Carroll, and Atsumi Imamiya“

“Department of Computer Science and Media Engineering, Yamanashi University
fComputer Science Department, Virginia Tech

Scenario-based design is a design methodology that uses scenario as a central artifact in system design. This
article analyzes the roles of scenarios in system design based on a survey of the major scenario-based design
approaches. To be precise, it examines the characteristics and differences on scopes of scenario among the four
major fields: Strategic Management, Human-Computer Interaction, Requirements Engineering, and Object-
Oriented Analysis and Design.  Also, it shows that scenarios can provide a common language for design among
various stakeholders who participate in design activities.

communities includiﬁg Strategic Management
(SM), Human-Computer Interaction (HCI),
Requirements Engineering (RE), and Object-
Oriented Analysis and Design (OOAD). Recent
researches in these communities have been
progressing rapidly; nevertheless, their mutual
contributions are not well made yet [11].

1. Introduction

Scenario-based system design is an approach
that employs scenarios as a central representation
throughout the entire system lifecycle [1], [6], [11].
The approach encourages user involvement in
system design, provides shared vocabulary among
the people participating in the system development

project, envisions the uncertain future tasks of the
system users, and enhances ease of developing
instructional materials. It provides a good
brainstorming tool for planning and allows the
stakeholders to consider alternative choices in
decision making. It addresses dynamic, muitiple,
parallel, and/or distributed factors in a manageable
manner. This rich variety of roles is selectively
used from different viewpoints in diverse

The purpose of this paper is to help build a
common language in software design for
stakeholders from a wide range of disciplinary
backgrounds providing an overview of scenario-
based system design.

2. Scenarios in System Design
A scenario is a description that contains (1)
actors, (2) background information on the actors



and assumptions about their environment, (3)
actors’ goals or objectives, and (4) sequences of
actions and events. Some applications may omit
one of the elements or they simply or implicitly
express it.

Scenarios are expressed in various media and
forms. For example, scenarios can be textual
narratives, storyboards, video mockups, or scripted
prototypes. In addition, they may be in formal,
semi-formal, or informal notation. A typical
example of an informal scenario is a story, a kind
of scenario frequently used for envisioning user
tasks in HCI [4].

3. Scenario-Based Approaches

We will examine four communities that
actively use scenario-based approaches: SM, HCI,
RE, and OOAD. SM forecasts the future
environment of an organization and helps
stakeholders plan actions. HCI aims to design
usable computer systems that support their users’
tasks in a safe and fluent manner. RE is about
eliciting users’ needs regarding computer systems,
and about producing specifications; the
specifications must be unambiguous, consistent,
and complete. OOAD is a methodology for
constructing a world model; the model is based on
the idea of objects associating with data structure,
class hierarchy, and object behavior.

Each of the four communities has its own use
of scenarios. SM lists “what-if” questions and
their answers in a scenario to plan a course of
actions. HCI uses scenarios to analyze a system
and to envision a more usable system. RE
acquires system requirements and specifies them
by using scenarios. OOAD’s scenario usage is to
identify objects and data structures and to model a
class hierarchy.

3.1 Strategic Management

The dominant idea in the SM community is
that scenario planning is a process of envisioning
and critiquing multiple possible futures. Kahn
considers scenarios as an aid to thought in
uncertainty [12]. He uses scenario (1) as an
analysis tool, (2) in narrative form, and  (3) with
psychological, social and political assessments.
He encourages combining role-playing exercises

with scenario development. He says, “A scenario
results from an attempt to describe in more or less
detail some hypothetical sequence of events.
Scenarios can emphasize different aspects of
‘future history.”” He goes on to say, “The
scenario is particularly suited to dealing with
several aspects of a problem more or less
simultaneously. By the use of a relatively
extensive scenario, the analyst may be able to get a
feel for events and the branching points dependent
upon critical choices. These branches can then be
explored more or less systematically.” He then
continues, “The scenario is an aid to the
imagination.”

One of the milestone papers in the field is
Wack [17], which describes how in the late 1960s
and early 1970s, the Royal Dutch/Shell Group
constructed  scenario-planning  techniques to
foresee and prepare for the 1973 oil crisis. He
distinguishes two distinct ways to use scenarios.
On one hand, scenarios are used for direct
forecasting. He claims that the scenario usage
before the Royal Dutch/Shell case had been
focussing on this use.

On the other hand, the current scenarios can be
flexible tools for brainstorming. Wack discusses
that scenario planning is an approach helping
stakeholders to think about new possibilities. He
emphasizes the iterative construction of scenarios,
in which new scenarios are derived through the
analysis of the old scenarios.

3.2 Human—Computer Interaction

HCI is another field that actively discusses
what scenarios are and how to use them in system
design [1], [4], [6]. HCI uses scenarios to
describe the use of systems and to envision more
usable computer systems. To observe and then
analyze the current usage of a system, it is
necessary to involve authentic users. In the
approach, actors in a scenario are specific people
who carry out real or realistic tasks. To envision
the use of a system that has not yet been
constructed the scenario writers have to describe
potential users and what they may do with the
system in extensive detail, including for example
description of workplace contexts.

Day-in-the-life scenarios are one of the most



powerful methods for envisioning the authentic
computer use [14]. They illustrate users’ daily
activity with computers over time. For example,
a scenario might describe how a musician uses
music software through various input devices and
gets frustrated [14]. Day-in-the-life scenarios can
be used to envision the future use of computers.
One famous example is Apple Computer’s
“Knowledge Navigator” video [5]; it shows how a
person interacts with computer capabilities that
have not yet been developed. The scenario gives a
vivid view of how people could use computers as
an intelligent assistant in daily life.

Envisioned scenarios can be analyzed to create
explicit rationale for future designs. Carroll and
Rosson [3] proposed an iterative process of writing
scenarios and of analyzing their psychological
claims. They write textural narrative scenarios
for envisioning future use of a system; then, they
conduct claims analysis by listing upside and
downside consequences of features of tools and
artifacts in the scenarios. After that, examining
the claims, they derive new scenarios. This
iterative process makes the design of the system
sharpen in response to analysis of its future.

Evaluation of systems is another typical use of
scenarios in HCI. During the evaluation activities
on system development, careful observations of a
real work setting are necessary. The technique is
frequently used in HCI to analyze social aspects of
user tasks. Scenarios are used in ethnographic
field study as a device for describing the context of
work. Scenarios are analyzed to reveal how the
work is socially organized [8].

One of the significant views derived from HCI
is that scenarios are not specifications. Carroll
[1] contrasts two complementary perspectives: the
perspectives clearly separate scenarios from
specifications. Scenarios are  concrete
descriptions, focusing on particular instances, work
driven, open-ended, fragmentary, informal, rough,
colloquial, and envisioned outcomes. In contrast,
specifications are abstract descriptions, focusing
on generic types, technology driven, complete,
exhaustive, formal, rigorous, and specified
outcomes.

3.3 Requirements Engineering

Because the goal of RE is to elicit and specify
users’ requirements, its scenario usage focuses on
analysis. In particular, it gives weight to how to
specify the requirements and provide a smooth
transition to the next development phase.
Scenarios for this purpose, therefore, must be
written from the system’s viewpoint, This makes
scenario-based RE relatively concrete and process-
oriented as a methodology.

Typical scenario-based approaches in RE
include the formal scenario analysis by Hsia,
Samuel, Gao, Kung, Toyoshima, and Chen [7], the
inquiry-based requirement analysis by Potts,
Takahashi, and Anton [15], and the CREWS
project [16].

Hsia and associates [7] proposed a formal
approach to scenario analysis, a requirement
analysis model in the early phases in software
development. Their approach defines systematic
development stages from the initial semi-formal
scenarios to the final formal scenarios. Each of
the stages except the first stage uses scenarios in
formal notation, which enable the system analysts
to derive part of the system-requirement
specification.

Potts and colleagues [15] developed the
Inquiry Cycle Model of requirement analysis,
which is “a structure for describing and supporting
discussions about system requirement.”  The
model consists of three phases of requirements:
documentation, discussion, and evolution. These
three phases make a cycle for acquiring and
modeling the knowledge of problem domain.
Their scenarios are part of the requirement
documentation and in hypertext form.  The
scenarios are intended to be semi-formal; in fact,
they are expressed in tabular notation. “In the
broad sense, a scenario is simply a proposed
specific use of the system. More specifically, a
scenario is a description of one or more end-to-end
transactions involving the required system and its
environment.”

The CREWS (Cooperative Requirements
Engineering With Scenarios) project is a large
European project on scenario use in RE [16].
Based on the existing techniques and tools, the



project is trying to make scenario usage a
systematic engineering discipline; hence, its
approach to scenario usage is tool- and/or method-
driven. In the project, Rolland, Achour, Cauvet,
Ralyte, Sutcliffe, Maiden, Jarke, Haumer, Pohl,
Dubois, and Heymans [16] have developed a
framework to classify scenarios in scenario-based
approaches. They give four dimensions: the form
view, the contents view, the purpose view, and the
lifecycle view. The form view represents the
format of scenarios; for example, narrative texts,
graphics, images, videos, and prototypes are in the
form view. In addition, formality (e.g., formal,
semi-formal, and informal) is discussed from this
viewpoint. The contents view expresses what
knowledge scenarios express. It consists of four
elements: abstraction, context, argumentation, and
coverage. In the purpose view, scenarios are
categorized from the reasons of usage. The
lifecycle view deals with how scenarios are
handled (e.g., creation, refinement, and deletion).
Applying the framework to eleven scenario-based
approaches, they found out that scenarios are used
to describe system behaviors interacting with its
environment and most of them are in textual
representation. They pointed out the importance
of the formalization of scenario-based approaches,
the variety of the application fields, and the need
for practical scenario evaluation.
3.4 Object-Oriented Analysis and Design

OOAD models an application domain. It
identifies objects, data structures, and class

hierarchies. Its viewpoint is that of a system
model.
There are three typical scenario-based

approaches: Jacobson’s use-case approach [10],
Wirfs-Brock’s responsibility-driven approach {18],
and Koskimies, Systa, Tuomi, and Mannisto’s
automated modeling support approach [13].

A use-case depicts how a user or another
system uses a system. A basic concept behind the
use-case approach is that a system is well
described from a black-box view. A use-case
model consists of two elements: actors and use
cases. In essence, “The actors represent what
interacts with the system. They represent
everything that needs to exchange information

with the system. Since the actors represent what
is outside the system, we do not describe them in
detail” [9]. Then, Jacobson claims that a use-case
is fundamentally different from a scenario:
scenarios correspond to use-case instances. There
is no correspondence to use-case classes. A use-
case expresses all the possible paths of events, but
a scenario describes part of the possible paths. In
addition, a use-case seeks a formal treatment
defining a model while a scenario seeks an
informal treatment.

Another object-oriented approach relating to
scenarios is the responsibility-driven approach by
Wirfs-Brock [18]. She states that the approach
emphasizes informal methods for characterizing
objects, their roles, responsibilities, and
interactions. By using the informal methods, the
designer is to determine the software system,
stereotype the actors, determine system use cases,
construct conversations, identify candidate objects,
identify responsibilities of candidate objects,
design collaborations, design class hierarchies,.
fully specify classes, and design subsystems.

Koskimies and his colleagues proposed
automated support for modeling object-oriented
software [13]. They follow the definition of
scenarios in the Object Modeling Technique
(OMT), a commonly used OOAD method: “In
OMT, scenarios are informal descriptions of
sequences of events occurring during a particular
execution of a system.” In fact, Koskimies and
his colleagues’ intention is to formalize scenarios
in order to provide an automated support of
scenario-based system development; therefore,
they formalize them as event trace diagrams.

4, Relationship of the Four Communities
The relationship among the four communities
can be discussed from their structure and lifecycle.

4.1 Structure of the Four Communities

The four communities—HCI, SM, RE, and
OOAD—have a nested structure, in which the
latter two communities can be categorized into
Software Engineering (SE). This structure is
illustrated as Figure 1. From inside to outside,
there are three layers: SE, HCIL, and SM. HCI
incorporates work-oriented approaches focusing on



users’ tasks and user participation.

SP

Year in the life

HCl  WOA
Day in the life

SE OOAD
RE

Keystroke
Command

Figure 1. The nested structure of Strategic
Planning (SP), Human-Computer Interaction
(HCI), and Software Engineering (SE). HCI
includes Work-Oriented Approach (WOA), and SE
consists of Object-Oriented Analysis and Design
(OOAD) and Requirements Engineering (RE).

The nested structure describes on what each
field focuses based on the degree of tangibility of
the target content of scenarios. Software
engineering scenarios focus on real world objects
or physical artifacts; also, they include scenarios of
the existing system use. Therefore in the field,
the materiality of a system attracts great attention
for designers and analysts. In addition to tangible
artifacts, HCI scenarios treat user tasks. User
tasks are not easily touched. That is, its degree of
tangibility is much lower than software
engineering. SM deals with much more
abstracted artifacts: future plans of an organization.
It includes, in some degree, current technology as a
basic assumption for planning.

Software engineering scenarios are relatively
small in scope. They typically include keystroke-
and command-level scenarios. HCI scenarios are
bigger in scope; they deal with day-in-the-life.
SM scenarios have the widest scope of the three
groups; they treat events and issues of the grain of
year-in-the-life.

The nested structure in Figure 1 also
summarizes the history of HCL.  HCI as it
originated in software psychology studied human
aspects in traditional system design approach and
use of systems constructed from the approach [2].
It grew out of software engineering research and
has focussed on practice. More recently, its
attention has shifted to work-oriented approaches;
the importance of the analysis of authentic user

tasks with a system has been emphasized. Its
research areas had been rapidly expanding, and
researchers recognized that real work is social
work though the conventional HCI research and
practice focused only on a single user and single
computer interaction.  This shift of concept
produced a new field: Computer-Supported
Cooperative Work (CSCW). CSCW is about
work-oriented system design, especially weighted
on social and organizational aspects, an area of
intersection with SM.

The transition of research interests of design
from concrete, physical artifacts to abstract,
indefinite organizations of people is clear from a
history of these fields relating to scenario-based
design.

4.2 Lifecycle of Scenarios

The four communities make different use of
scenarios in a system lifecycle; indeed, they
assume a different lifecycle generally. SM and HCI
presume development processes as complex,
dynamic processes; therefore, they prefer to
employ iterative design of scenarios. In SM,
Wack described a cyclic process of scenario
development [17]. Similarly, in HCI, the
dominant view is that of an iterative process of
design. The RE community generally assumes
that development processes are decomposable;
thus, techniques for the derivation of specifications
from scenarios at the end of the requirement
acquisition phase become a fundamental issue.
The OOAD community tends to apply the object-
oriented manner to any phases in the development
process; it emphasizes the seamlessness between
analysis and design in development using
incremental and iterative processes. This
discipline can be applied to HCI and RE.

5. Concluding Remarks: Scenario as a
Common Language

Scenario-based techniques contextualize and
concretize design thinking about people and
technologies. SM  scenarios  capture
organizational context; surprise-free continuations
and the status quo, as well as alternative, what-if
scenarios. RE scenarios help elicit and refine
functional descriptions of future systems. HCI



scenarios help users and developers describe and
evaluate technology currently in use, and envision
activities that new technology could enable.
OOAD use-cases of the system identify the
possible event sequences of the system to
accurately model the domain objects, data
structures, and behaviors. These different uses of
scenarios emphasize different viewpoints and
different resolutions of detail, and they address
different purposes. But the vocabulary of
concrete narrative is accessible to and sharable by
diverse stakeholders in a design project: planners
and managers, requirements engineers, software
developers, customer representatives, HCI
designers, and the users themselves. In this sense,
scenarios provide a common language for design.

References

[1] Carroll, J. M. Ed.
Envisioning Work and Technology in System
Development. John Wiley & Sons, New York,
NY, 1995.

[2] Carroll, J. M. Human-computer interaction:
Psychology as a science of design. International
Journal of Human—-Computer Studies, 46 (1997),
501-522.

[3] Carroll, J. M. and Rosson, M. B. Getting
around the task-artifact framework: How to

ACM
Transactions on Information Systems 10, 2
(1992), 181-212,

[4] Chin, G., Rosson, M. B., and Carroll, J. M.
Participatory analysis: Shared development of
requirements from scenarios. In Proceedings of
CHI 97 Conference (March 22-27, Atlanta, GA).
ACM, New York, 1997, pp. 162-169.

[5] Dubberly, H. and Mitch, D. The Knowledge
Navigator. Apple Computer, videotape, 1987,
appears in B. A. Myers ed. HCI’92 Special
Video Program.

[6] Go, K., Carroll, J. M., and Imamiya, A.
Bringing user's view to design: Roles of
scenario in system design, /PSJ Magazine 41, 1
(2000, to be published).

[71 Hsia, P, Samuel, J, Gao, J, Kung, D,
Toyoshima, Y., and Chen, C. Formal approach

IEEE Software 11, 3

Scenario-Based Design:

make claims and design by scenario.

to scenario analysis.

(1994), 33-41.

[8] Hughes, J. A, Randall, D., and Shapiro, D.
Faltering from ethnography to design. In
Proceedings of CSCW'92 Conference (Oct. 31—
Nov. 4, Toronto, Canada). ACM, New York,
1992, pp. 115-122.

[9] Jacobson, I. The use-case construct in object-
oriented software engineering. In J. M. Carroll
(Ed.), Scenario-Based Design:
Work and Technology in System Development
(1995), 309-336. John Wiley & Sons, New
York, NY

[10] Jacobson, 1., Christersson, M., Jonsson, P., and
Overgaard, G. Object-Oriented  Software
Engineering: A Use-Case Driven Approach.
Addison-Wesley, Reading, MA, 1992.

[11] Jarke, M., Bui, X. T., and Carroll, J. Scenario
management: An interdisciplinary approach,

Envisioning

Requirements Engineering 3, 3-4 (1998), 155
173.

[12] Kahn, H. Thinking about the unthinkable.
Horizon Press, New York, 1962.

[13] Koskimies, K. Systa, T., Tuomi, J., and
Mannisto, T. Automated support for modeling
OO software. IEEE Software 15, 1 (1998),
87-94.

[14] Mountford, S. J. A day in the life of ...
(Panel). In Proceedings of CHI’91 (April 27—
May 2, New Orleans, LA). ACM, New York,
1991, pp. 385-388.

[15] Potts, C., Takahashi, K., and Anton, A. I
Inquiry-based requirements analysis. [EEE
Software 11,2 (1994), 21-32.

{16] Rolland, C., Achour, C. B., Cauvet, C., Ralyte,
J., Sutcliffe, A., Maiden, N. A. M., Jarke, M.,
Haumer, P., Pohl, K., Dubois, E., and Heymans,
P. A proposal for a scenaric classification
framework. Requirements Engineering 3, 1
(1996), 23-47.

[17] Wack, P. Scenarios: Uncharted waters ahead.
Harvard Business Review 63, 5 (1985), 72-89.

[18] Wirfs-Brock, R., Wilkerson, B., and Wiener, L.
Designing Object-Oriented Sofiware. Prentice
Hall, Englewood Cliffs, NJ, 1990.



