CIVFXF 47 BIEE BB 38 —4
(1988 7 14)

BETOFIVOEEDIZODY 7+« 7B

R FEF miE B gR AR BOo E—
ALK F BB ERFAT

ARXTR, BREWABETO I VEERTAY 7 by 7REZHLE, AV 7 b2 7BBEEIC220 7O R
PO % 5BEARRERR(FSM)TERT S 70 b a Vo0&l sY vy K- FT 5, She0 70+ 2320 OFIFO. .
F=7)—, FREREYFOF xRN TOLNBE, RV T MY T7REZI 7O LA VEHOTR IOBLLEERORLD
2D, BREN, F0AD, AV I MY TRER UM ILNESRTHEE, BB LEOE S ICADT 35 LEY
KT FNA R B, RAEBEVBCNLDT NS AL >TANERELLL, ARERAT7OFaVICBBBELS -2 %
Vig Xy BRY 7Py 2 7TRBEI-HF IV FY =TT TL 97408 72— R %FH>T05h, CONENLETYST T4 92
AV 72— ABTINUFEDERT T IRB, #7—LFFAVRBELREOBESXFO O TS S ICRHEL+HIL, AV
T2 TREOICHMIE LT, X20FRE7 2 —X0EH£T,

A Software Environment for Synthesizing Communication Protocols

Yao-Xue Zhang, Kaoru Takahashi, Norio Shiratori, Shoichi Noguchi

Research Institute of Electrical Communication
TOHOKU UNIVERSITY

Abstract : A software environment for synthesizing communication protocols has been developed to synthesize a protocol
without logical errors. The software environment supports the Communication Finite State Machines (CFSM) model
consisting of two processes. The aim of the software environment is to help the protocol designer easily design a protocol
without logical errors such as unspecified receptions and state deadlocks, i.e., facilitate the design of protocol. To do this, the
system provides the advices on how to give the input for the protocol designer in any current synthesizing stage. These advices
protect the protocol designer from creating a protocol containing the logical errors. The software environment contains a
user-friendly interactive graphical interface. This graphical interface provides a multiwindow environment and has the
functions expressing two kinds of labeled directed graphs, colors and texts on the given windows. Consequently, the protocol
designer without experience in protocol synthesis can easily design a protocol without logical errors. Asan example, call-
establish phase of X.25 has been synthesized by using the developed software environment.

1. INTRODUCTION

Communication protocols are very important in
computer networks and distributed systems. The increasing
complexity and variety of computer networks and distributed
systems have increased the difficulty of designing, analysing
and testing protocols. To eliminate errors or inconsistencies of
protocols, a number of formal medels and verification methods
of protocols have been proposed and applied to verification and
construction of protocols.

One useful method of representing and verifying protocols
is Communicating Finite State Machines (CFSM). This
method depicts the processes as being Finite-State Machines (
FSM’s) that send and receive messages among themselves.
One process is described as one finite-state machine. The
finite-state machines are connected by communication
channels which are unidirectional, error-free, lossless and
FIFO.

With the CFSM model, it is most convenient and efficient
for a protocol designer to synthesis FSM’s graphically. As the
synthesized protocols do not contain logical errors (or have the
required properties), executabie code can be generated directly
from the internal representation of the FSM’s. Motivated by
this objective, several graphical tools for protocol synthesis
have been developed, such as the one introduced in [1].

We were motivated to develop the software environment
for interactively synthesizing communication protocols by the
following objective. = When a protocol designer specifies
FSM’s, some logical errors often occur. These logical errors
may be unspecified receptions, state deadlocks,
overspecifications, buffer overflows, and ete.[1], [3], [5]. The
proposed interactive synthesis tools, such as intruduced in [1],
have successfully prevented the logical errors unspecified
receptions and overspecifications, and can detect the logical
errors state deadlocks and buffer overflows. These synthesis
tools are used to design and analysis a protocol go hand in
hand. The state deadlocks and buffer overflows can not be
avoided or prevent in synthesizing protocols. Therefore, if
there exists a synthesis environment which not only has a user-
friendly graphical interface but also provides the advices or
instructions for how to specify the FSM’s which lead to
avoidance of the logical errors, unspecified receptions, state
deadlocks, overspecifications and buffer overflows, the
protocol design activities will be enormously facilitated. Our
environment for synthesizing communication protocols has
been developed for the above objective. The synthesis
algorithm embedded in the environment provides its advices
for the protocol designer. At the same time, the interactive
graphical interface of the environment facilitates the
applications of this synthesis algorithm.

Currently, this environment supports only the CFSM
model consisting of the two processes. The two communication
channels connected the two processes are assumed to be
bounded and the transitions of the messages are instantaneous.
The protocols produced by the environment should be
considered as a communication skeleton.
executable code, these protocols need to be augmented with

To generate

data specification and internal operations. We are now
developing a knowledge-based system which will contain this
environment.

The paper is constructed as follows. In Section 2, we give
the synthesis method for FSM’s. In Section 3, we briefly
overview our system. In Section 4, we discuss the features and
applications of the proposed environment through synthesizing
the call-establish phase of X.25. Section 5 is for desirable
extensions of the environment and for concluding remarks.

2. INTERACTIVE SYNTHESIS METHOD OF
COMMUNICATION PROTOCOLS

In this section, we give the interactive synthesis algorithm

which has been implemented in our proposed environment.
The outline of the interactive synthesis algorithm is shown in
Fig. 1. The synthesis algorithm consists of four major
components: (1) a set of rules for constructing Global State
Transition Graph (called GSTG hereafter), (2) a set of rules for
eliminating the logical errors and providing advices, (3) an
algorithm for construction of GSTG and (4) an algorithm for
production of the two processes, i.e., a protocol, from GSTG.
The synthesis algorithm works as follows (See Fig.1). The
protocol designer interactively inputs the messages to be sent
at a new process state and the entry state of an occurring action
(we call sending a message or receiving a message as an
action). According to inputs from the protocol designer, the
synthesis algorithm constructs GSTG by using the rules for
constructing GSTG, the rules for eliminating logical errors and
providing advices. The advices are interactively given as the
feedback to the protocol designer. This GSTG is then
decomposed into process P, and process P, Finally, these
process Py and process Py are given as an output of the
synthesis algorithm.

The interactive synthesis algorithm implemented in the
proposed environment is a revision of the synthesis method [3]
proposed earlier. We omit the detail descriptions of these
components here and report them in another paper [1].

Rules for
construclion

of ASTA Output
An
* An algorith algorithm
> for for Protocot
- > consliuction id production >
ol ofn
protocol
Rules for
oliminaling

logleal
errore

Fig1 Outline of the interactive synthesis method
3. OVERVIEW OF THE SOFTWARE
ENVIRONMENT
This programming environment mainly consists of two
modules- a synthesis algorithm and an interactive graphical
user interface. The synthesis algorithm implemented in our
system has been outlined in Section 2. The functions provided

by the synthesis algorithm are all utilized through the
interactive graphical user interface. The software
environment has a modular structure. Its construction and
the relations of the modules are shown in Fig.2.

The multiwindow mechanism and the colors utility of SUN
have been used in the developed interactive graphical user
interface. Five windows and four kinds of colors have been
used. One of the windows, named GSTG window, has been
used to express the GSTG. Two of the windows, named
protocol window, have been used to express the two processes.
The other two windows named questionnaire window have been
used to express the system information and the interactions
between the system and the protocol designer. The colors
have been used to express the advices and the current synthesis
status.

A set of functions which constitute the graphical interface
translate the internal code into the labeled directed graphs,
colors and texts expressed on the five windows.

: = fork
GSTG Questlonnalre Protocol
window window window

! ! !

Graphical user interface
GSTG System Protocol
expression | .q— control —p | expression
functions functions functions
Inglut / \ Advice
edit expression
functions functions
Y
Synthesis algorithm
Rules for Rules for
production of elimination of
GSTG logical errors
Algorithm for Algorithm for
production of prod%clsxion of
's

Fig.2 Construction of the software environment for

synthesizing communication protocols

In the current version of the programming environment,

five groups of functions have been developed:
1) The functions for system control provide thei nformation
such as how to use the software environment, and the

_or other description forms.

phase, receiving phase and end phase.

interface between the protocol designer and the other

functions. After starting the suntools window

environment, these functions are invoked by typing

“sctool” in an shelltool window, and then the programming

A stop button has
been used to interrupt or halt synthesis activities.

2) The functions for treating the inputs manipulate the inputs
from the protocol designer and express them on the
questionnaire window.

environment enters working status.

3) The functions for showing advices manage the advices
from the synthesis algorithm and express these
advices by using colors and texts utility of SUN.

4) The functions for expressing processes provide the
expressions of the labeled directed graphs. One process
has been positioned into one subwindow of the protocol

window by these functions.

5) The functions for expressing GSTG locate GSTG to the
GSTG window and express it in the labeled directed graph

forms.

4. APPLICATION OF THE SOFTWARE ENVIRONENT
Our motivation of developing the programming
environment is that we want to obtain a support system which
not only synthesizes FSM’s without logical errors, but also has
a user-friendly interactive graphical interface which
enormously facilitates the synthesis activities. The user (a
protocol designer) has been considered as one who may have
not the experience of protocol synthesis. Therefore, it is very
helpful to express the labeled directed graphs of processes
being produced, the advices for the protocol designer, the proofs
of no logical errors and the current synthesizing status for the
protocol designer in forms which are easy to be understood.
With this idea in mind, we built the graphical interface for the
protocol designer to create and manipulate the system
informations, the advices, the designer’s input, the reachability
graphs, i.e., GSTG (which is the preof of no logical errors), and
the FSM’s represented in the labeled directed graphs. - In the
following we first describe the features of synthesis provided by
the proposed programming environment and then show how to
use the system through synthesizing call-establish phase of
X.25.
A. Features of using the software environment
Preparation for using the system: It is necessary to informally
specify the protocol to be synthesized in’ the natural language
The informal descriptions should
include the functions provided by the protocol to be
synthesized. Moreover, the messages and states of the
protocol should be expressed in integers. The software
environment does not accept an input which is not given as an
integer except for the protocol’s name.
Operations for system information, advice, synthesizing status
and input: The system information has been positioned in the
subwindow of the questionnaire window (See the left-lower
part of Fig.3). The system information is changed with
progress of synthesis in four phases- initial phase, sending
They can be found in

ql: ProcessPi's state
92: ProcessP2's state

c21: Channel from P2 to P.
(a1, a2):

alor a2 « *,mor m

al: P1's action

a2: P2's action

*: do nothing

M Information to user: System is in INITIAL PHASE
lease read the following message before using the system.

1) This is a support system for synthesizing a protocol
consisting of two processes which exchange the messages over
two uni_directional, bounded, FIFQ, lossiess and error
freeness channels. The message transmissions are assumed

to be instantaneous.

il (2) A process is identified by a directed graph which is shown

in the protocol window. The nodes and the arcs of the di-

rected graph represent the process states and the transit-

o ions between the process states, respectively.

{%3) The protoco) synthesized will be free from logical err-

ors, unspecified receptions, state deadlocks and overspe-

cifications, and f buffer overflows occur, they can be
detected.

c12: Channe! from P1 to P2IE

PROTOCOL_MAME: x.25 call_es
Input the initial state of ProcessPl in an integer form : 1
Input the initial state of ProcessP2 in an integer form : 1
Input the buffer size of the channel C(1,2) : 2

Input the buffer size of the channel C(2,1) : 2

Input the final state of ProcessPl in an integer forw : 4
Input the final state of ProcessP2 in an integer form : 4

Fig.3
the left-lower parts of Fig.3-Fig.8.
information for how to use the system under the current

In each phase, the

synthesizing stage is shown for the protocol designer. As
sending or receiving a message is proceeded repeatedly, the
sending phase and the receiving phase are also repeatedly
shown to the protocol designer. For a designer who have used
the environment, these information may not be necessary.

Adbvices for the designer are expressed in two forms. One
is the color form. The produced process states which can not be
assigned as the entry state of an occurring action are all colored
red, and the process state where a message must be sent is
colored green. The other one is the text form. The produced
process states are divided into two groups- the candidates and
the rejections of the eritry state of an occurring action. These
two groups of the states are bath expressed on the
questionnaire window in the text form. The advices on how to
specify sending a message are also expressed on the same
window in the text form. Fig.4-Fig.7 contain the example of
the text expression of the advices which follow the expression of
the synthesizing status in the right part of the questionnaire
window. However, the hardcopy with colors can not be taken
because of the limitation of our printer.

Expression of the current synthesizing status has been
treated as the same as the expression of the advices.
Progressing global state (or current global state) is colored
blue. The number of the progressing global state, the first
~ message in the incoming channel and the current state of each

Application to the synthesis of call-establish phase of X.25 - (1)

process are all expressed in the questionnaire window in a text
form. Fig.4-Fig.7 contain the example of the text expression
of the current synthesizing status which follow the requisitions
from the system.

The needed input is asked by the system. The protocol
designer answers the questions followed the prepared informal
description of the protocol and the advices from the system.
For example, Fig.3 shows the answers to the questions about
the protocol name, initial process states, buffer sizes and final
process states which follows every colon in the right part of the
questionnaire window.

Expressions of labeled directed graphs: Two kinds of labeled
directed graphs can be automatically produced when the input
has been given. One of both is FSM’s, i.e., the processes.
Examples about the expressions of the processes are shown in
the right-upper parts of Fig.4-Fig.8. While the other one is the
GSTG. the examples of expressions of the GSTG are shown in
the left-upper parts of Fig.4-Fig.8. The states, the arcs and the
labels of these directed graphs are all positioned by the
functions used for expressing processes and GSTG. We found
that it is more difficult to position them in the synthesis case
than in the analysis case because the position of the
progressing global state and the inputs from the designer can
not be predicated.

For these two kinds of directed graph, the FSM’s are what
theprotocol designer want to obtain, but the GSTG is the one
which only plays in the proofs that there is no logical errors in

ol z
[=]PROTOCOL NaE : x .

= (<a1,q2>,¢c12,c21>) B4

ql: ProcessPl's state
92: ProcessP2's state
€12: Channel from P1 to P2J;

ProcessP1 ProcessP2

(a1, a2):
al or a2 = *,~m or m
al: P1's action
a2: P2's action
*: do nothing

This 1s a support system for protocol synthesis

Bl information to user: System is in SENDING PHASE
i Please read the following message before giving your input.

% (1) A message is asked to input in an integer form.

§ (2) Please specify sending of the messages at the current
states, if you do not, please type one space followad by the
5; characheters no, i.e., ' no'

[(3) The sign'-" is used to identify the message transmission,

[ews2% s:rsendun\ | lpr -v

c21: Channel from P2 to P1FR

PROTOCDL_NAME: x.25 call_es

® ®

Input the messages sent at the state of process P1 :
Input the messages sent at the state of process P2 :

Current Global State is 8

P1's current state is 1 P2's current state is 1

ADVICE: You can freely specify your sending at this state of P1.

ADVICE: You can freely specify your sending at this state af P2.

Fig.4
the synthesized FSM’s. Therefore, the protocol designer does
not need to care this graph very much. A protocol designer
who doubts the correctness of the obtained FSM’s may look at
the GSTG and get his proofs.

B. Example

Here is an example using the proposed programming
environment to synthesize the call-establish phase of X.25[7].
The application of this example will further help the readers
understand the software environment.

First, we assume that the informal description of this
protocol has been given, and integers and messages have the
following relations: 1, call request; 2, incoming call; 3, call
connected; and 4, call accepted.

Then, we type “sctool” in a shelltool window of SUN, the
computer screen shows the five windows described Section 3.

The system first inquires the protocol name, the initial
process states, the final process states and the buffer size of
each incoming channel. Fig.3 displays the screen view just
after we gave the inputs. Here, we has answered “1” and “1”
as the initial states, “4” and “4” as the final states of process P;
and process Py, respectively.

Once the answers have been given, the corresponding
nodes are produced in the protocol window and the GSTG
window (See Fig.4). At the same time, the questionnaire
window enters the sending phase, and the synthesis algorithm
selects the progressing global state underlying the rule 1 given
in Section 2. In Fig.4, global state numbered “0” is selected as
the progressing global state (current global state). Moreover,

Application to the synthesis of call-establish phase of X.25 - (2)

the number of the selected global state, the current states and
the first messages in the incoming channel of each process,
included in the progressing global state, are all displayed on
the questionnaire window following the requisitions from the
system.

In the sending phase, if a current process state is the new
state, then the system inquires the messages to be sent at the
current process state. At the same time, the synthesis
algorithm provides .the advices on how to specify sending
messages at the current process states. There two kinds of
advices- send messages arbitrarily, or must send messages at
the current process states. In Fig.4, the system advises that
sending messages at the current states of process P, and
process P, can be specified arbitrarily. With the advices from
the system, we give the messages to be sent at the current
process states according to the functions of the protocol. The
messages “1” and “2” are input as the messages sent at the
initial states of processes Py and Py, respectively.

When the messages sent at the current process states have
been given, the questionnaire window enters the state phase
and the protocol designer is asked to assign the entry
process states of the occurring actions following the advices
from the system. The system provides three kinds of advices-
assign the entry state arbitrarily, do not assign the given
process states as the entry state or assign a final state as the
entry state. In this time, the advices from the system are that
the entry states of the two occurring actions can be assigned
arbitrarily. Hence, we assign the entry state of the occurring

Fratoco] Window

@ = {<q1,q2>,¢c12,c21> 4

91: ProcessPl's state

a

PROTOCOL NAME: x.25 call_ss

=: Send
+: Receive

%.25 call_es

q2: ProcessP2's state ProcessPl ProcessP2
€12; Channel from P1 to P

c21: Channel from P2 to P

(at, a2): N

al or a2 = *,-mor m -2

al: P1's action
a2: P2's action
*: do nathing

Thys 15 a support Stem TCr protocol synthes:s naire Window

nformation to user: System is in STARE PHASE .
lease read the following message before giving your input. PROTOCOL_WAKE: x.25 call_es
1) The process states colored blue are being processed. Input the entry state of the recaiving action of process Pi:
2) The process states colored red can not be assignad as the entry
states becouse of deadlocks.

(3) Please input the entry states of actions

in an integer form. .

Current Global State is 2
P1's current state is 1 P2's current state is 3
The message received at Pt is 2

ADVICE: The following states can be assigned as P1l's entry state
1,2,

Fig.5 Application to the synthesis of call-establish phase of X.25 - (3)

g
@ = ({q1,92>,<c12,c21> :

ql: ProcessPl's state

L ZST i i
[ZIPROTOCOL NAME : x.25 call_es

-: Send
+: Receive

x.25 call_es

on
+: Receive

q2: ProcessP2's state £ ProcessP1 ProcessP2
c12: Channel from P1 to PJ
c21: Channel from P2 to P
(a1, a2):
-2

alor a2 = *,-m or m
al: P1's action

: P2's action

*: do nothing

YRR B T U TR TO

g

protocol syrtrec:s

naire window

Information to user: System is in SENDING PHASE

4 PROTOCOL_NAME: x.25 call_es
Please read the following message before giving your input. - -

Input the messages sent at the state of process P1 :

(1) A message is asked to input in an integer form.

(2) Please specify sending of the messages at the current
states, if you do not, please type one spaca followed by the
characheters na, {.2., ' no'

(3) The sign’-' is used to identify the message tran-iuion.‘

Current Global Stats is 4
Pl's current state is 3 P2's current state is 3

AVICE: Sending message please, otherwise deadlock!!!

<< CONSGLE >>
3| ewsZh
] ews2% screendump | lpr -v

Fig.6 Application to the synthesis of call-establish phase of X.25 - (4)

Protocol Window

oy -
<] PROTOCOL NamE

: x.25 call_es ‘S PROTOCOL NAME: x.25 call_es ¥ .25 call_es
= (€q1,62>,<c12,c21>)} -: Send M -: Send
a +: Receive +: Raceive
8
ql: ProcessPl's state ProcessP1 ProcessP2

q2: ProcessP2's state s
c12: Channel from P1 to P
c21: Channel from P2 to PX
(a1, a2):

al or a2 = *,m or m
at: P1's action

a2: P2's action

*: do nothing

" 3ndow

protoco} synthesis Questionnaire

B Information to user: System is in STATE PHASE PROTOCOL_NAME: x.25 call es
g Prease read the following message before giving your input. - -

(1) The process states colored blus are being processed. Input the entry state of the recaiving action of process P1:
4 (2) The process states colored red can not be assigned as the entry
A states becouse of deadlocks.

B (3) Please input the entry states of actions

I in an integer form. .

Current Globa) State is 7

P1's current state is 2 P2’s current state is 4
The message received at P1 is 4

ADVICE: P2 is in fimal state, the entry state should be final state

R

Fig.7 Application to the synthesis of call-establish phase of X.25 - (5)

Protocol Window

ql: ProcessPl's state
q2: ProcessP2's state
©12: Channel from P1 to P!
€21: Channel from P2 to PYj
(a1, a2):

alor a2 = *,-m or m
at: P1's action

a2: P2's action

*: do nothing

(',43x:4/4 (o A%+2]")

A4 v

8, 1

i)+
4

upport System far protocol synthesis

=: Send
+: Receive

ProcessP2

o

Window

PROTOCOL_MAME: x.25 call_es

The synthesis processing has snded.
Please take a hard copy to get your protocol graph.

Please press the left mouse button over the STOP button to halt.

Goodbye!! Welcome you use the system again!

Fig.8 Application to the synthesis of call-establish phase of X.25 - (6)

action of process P, as “2” and the entry state of the occurring
action of process P, as “3”.

When the entry states of the occurring actions have been
input, the corresponding GSTG and processes are displayed on
the GSTG window and the protocol window, respectively. In
this time, the two incoming channel are both empty so that no
message can be received at the two current process states.

When the activities of sending messages and receiving
messages has been finished, the system repeatedly selects the
progressing global state, and the questionnaire window returns
to the sending phase. The selected progressing global state is
one numbered “2” and the current process states of two
processes are “1” and “3”, respectively. Since the current state
“3” of process P, is a new state, the system asks us to specify
sending messages at the current state “3”. However, the
advice given by the system tells us that sending messages at
this state can be done arbitrarily, so that we type a space
To tell the system that we do not specify
sending messages at this state. Consequently, the system
enters state phase and asks us to input the entry state of the
occurring action of process P, (See Fig.5). As shown in the
right part of the questionnaire window of Fig.5, the message
can be received at state “1” of process P, is “2”, and the entry
state can be assigned as the produced states “1”, “2” or any new
process state (we assume that in any case a new state is
suitable to be assigned as an entry state). Following these
advices and the informal description of the protocol, we assigna
new state “3” as the entry state. Continuously, the
corresponding GSTG and processes are displayed on the GSTG
window and the protocol window as shown in the upper part of
Fig.6. Repeatedly, the synthesis activities progress as above
until the conditions for ending the synthesis have been
satisfied. An example about the second of advice on how to
specify sending a message is given in Fig.6, where the system
warns that if no message to be sent then deadlocks will occur.
Another example about the third kind of advice on how to
assign the entry state of an occurring action is given in Fig.7.
In Fig.7, the system advises us that the entry state of the
receiving action of process P, should be the final state because
the process P, has reached the final state. Finally, the results
of this example are shown in Fig.8. In Fig.8, the right-upper
part displays the synthesized processes, the left-upper part
shows the GSTG which is the proof of no logical errors in the
synthesized protocol, and the beneath is the end messages for
the protocol designer. GSTG window, protocol window and
questionnaire window can be individually opened or closed.

5. CONCLUSIONS
We have developed a software environment for protocol

followed by “no”.

synthesis. The purpose of developing this software
environment is to increase the productivity of protocol design.
Using this software environment, the protocol designer without
experience in the protocol synthesis can design protocols
without logical errors. The proposed software environment for
protocol synthesis has been implemented in SUN 3
workstation running on UNIX.

The advantages of the developed software environment

are as follows. First, it automatically provides the advices on

how to give the input for the protocol designer. These advices
protect the protocol designer from designing a protocol
containing the logical errors. Second, the software
environment has a user-friendly graphical interface which
provides the functions of expressions of two kinds of labeled
directed graphs and the interactions between the protocol
designer and the system by using the multiwindow mechanism,
colors and texts utility of SUN workstation. Accordingly, the
developed software environment facilitates the synthesis
activities of FSM’s.

The further research directions can be summarized as
tollows:
1) Extend the software environment to treat the problem for
synthesizing protocols which consists of more than two
processes.
2) Extend the software environment to support the design of
protocols which are not medeled in CFSM.
'3) Extend the software environment to synthesize protocols
without the logical errors which have not been introduced in
this paper. R
ACKNOWLEDGMENT

The authors are thankful to N. Miyake, U. Fyjita and
Z.X.Cheng for their great help while implementing this
version, and to A. Hamid for his useful discussion, which
improved this paper.

REFERENCES
[1] N.Shiratori, Y-X. Zhang, K. Takahashi and S. Noguchi, “
A Software Environment for Synthesizing Communication
Protocols," in contributing.
[2] P. Zafiropulo et al., “Towards analyzing and synthesizing
protocols, ” IEEE Trans. Commun., vol. COM-28, no.4, pp.
651-661, Apr. 1980.
[3] Y-X. Zhang, K. Takahashi, N. Shiratori and S. Noguchi, “
An interactive protocol synthesis algorithm using global
transition graph,” IEEE Tans. Software. Eng., vol.14, no. 3,pp.
394-404, Mar. 1988.
[4] — ,“ A knowledge -based system for protocol synthesis
(KSPS), ” IEEE Journal on Slected Areas in Communi., June
1988.
[5] N.Shiratori et al., “ EXPA: Validation method of a
communication protocol based on the perturbation analysis”,
Trans. IPS of Japan, Vol.26, No.3, pp.446-453, 1985 (in
Japanese) .
[6] N.Shiratori et al., “* NESDEL : protocol oriented
specification and description language and its applications
”, Trans. IPS of Japan, Vol. 26, No.6, pp.1136-1144, Nov.
1985 (in Japanese).
[7]1 A. Tannenbaum, “Computer networks”, Prentice-hall,
1981.

