< NANFAF 4 TREESEAE 59-11
(1993 1. 29)

53817 FTREE Noah (Network oriented applications harmony) D%
AR R BRI EE R M AR
ZEEEME (BR) TEWRETWIERT

Noah(Network oriented applications harmony) ¥, %A L7 @BESE LCHER 70 b aVRY, 7
T r—avE VAT AOBERELZER HIBTABBERET A LT o T, SHAEREETHE
BOTT)r—2 a VHOBHBEEXBET L0V I I T - TV 74— TH b,

Noah TiX. “H§# (applications harmony)” L\) B¥ERkD L) ICEHT .

HERRICEET AMBOT7 T r—2adbdVRTTUS—2 3 - OBBERMY . »5EF
THE () 2R L THEEBT 32 LI L-> T, BICERI MM ERRT IHFEICACOR
fEedliTasce, -

%tm%&%%wbou%ﬂ&%%ﬁOﬁéﬁﬁ%ﬁ&Ta:tu;b\m%mﬁﬂ‘&%\ﬁﬁéiﬂ
POBBIRET B LMNTED,

An Architecture of Distributed Computing Environment
— Noah: Network Oriented Applications Harmony

Hiroshi KOZUKA, Fumiaki SATO, Kazuya MIYAZAKI, Hisao FUKUOKA

- Computer & Information Systems Laboiatory
- Mitsubishi Electric Corporation ,
5-1-1, Ofuna, Kamakura, Kanagawa 247, Japan

Noah (Network oriented applications harmony) is a software platform to support distributed appli-
cations cooperation, and provides communication mechanisms based on cooperation field, cooperation
protocols, agents and system management / control procedures.

In the Noah architecture, we define the term “applications harmony” as the following.

“Applications harmony” means an application control mechanism to solve
some constraints defined in the “field” (operational environment) at which ap-
plications or functional units work and imteract autonomously.

By having the inheritance mechanism in the communication field and cooperation function, Noah
is able to configure the method and the scope of the applications harmony flexibly.

1 Background and Objectives

Distributed computing system, where several net-
worked computers work cooperatively, has been
widely spreading under the wave of down-sizing.
In such environments, high cost performance and
reliable services are expected. On the other hand,
the distributed computing system brings several
new problems that a conventional centralized sys-
tem does not have.

o System administration :
In distributed environment, management
tasks of addresses, names, peripheral devices,
and networks are much more complex than in
centralized systems.

e End user’s operation :
As resources and services are distributed, end
users have to be conscious of their physical
locations. Furthermore, it is necessary to
change the commands or sequences of opera-
tion on the resources and the services accord-
ing to their locations.

o Application development :
In order to describe applications that effec-
tively use the distributed environment, it is
necessary to distribute functions of the appli-
cations and to program some complex pro-
cesses such as communications among dis-
tributed modules, synchronization of them,

and access control of resources. Besides, to-

add more values such as concurrency of the
modules- and multiplicity of the functions for
improvement of the reliability, programming
tasks are extremely complicated.

To cope with these problems, some counter-
measures are taken. On the system management
of distributed environment, systems that concen-
trately manage resources using management in-
formation sent by system management processes
stationed at each computer are constructed. But
such systems are very weak for a damage of the
central management system.

On the distributed application development,
the development environments such as distributed
object-oriented languages succeed in giving some
transparency of an access to networks and re-
sources to the users. But in conventional envi-
ronments, relations between objects are fixed, so
it is impossible to add new services flexibly. Also

it is impossible to change the way to provide the
services.

Based on the background described above,
we proposed Noah, the cooperation mechanism
among applications in distributed computing en-
vironments. The major objectives of Noah are to
provide followings:

e Programming environment for autonomous
program modules, agents.

Cooperative mechanism for multiple agents.

¢ Communication mechanism for distributed
agents.

e Management mechanism to control agents.

These features improve fault tolerance of sys-
tems and availability of services, and make it easy
to develop reliable and efficient softwares using po-
tentiality of services of distributed environment.

Section 2 shows the concept of Noah, section
3 describes the Noah architecture in detail, sec-
tion 4 explains the services that Noah can provide
and the outline of some applications’ behavior on
Noah, and section 5 presents the summary and
future works.

2 Concept of Noah

Here describes the basic concept of Noah - Net-
work oriented applications harmony. Noah is

. a software platform for cooperation mechanism

of applications in distributed computing environ-
ment.

2.1 Applications harmony

“Applications. harmony” means an application
control mechanism to solve some constraints de-
fined in the “field” (operational environment) at
which applications or functional units work and
interact autonomously.

“Cooperation field” consists of a goal, an evalu-
ation criteria to measure a distance to the goal,
and agents that achieve the goal cooperatively.
The cooperation field specifies a cooperation pro-
cess for agents to achieve the goal. According
to the specified process, agents work coopera-
tively. In addition,the cooperation field specifies
the members of agents joining some cooperational

tasks, qualifications for the membership, and the
process for the participation.

The term “agent” or “cooperation” has different
meanings since it has been used in many different
contexts. Nakajima et al.[1] defines these terms as
follows:

Agent: An agent is a program unit which has a
certain capability. Although it is similar to
the concept of a module, it does not imply in-
formation hiding. An agent is not necessarily
intelligent. Contrary to the traditional con-
cept of a program unit that performs a pre-
defined task upon invocation, an agent works
autonomously to some extent.

Cooperation: Cooperation means consistent be-
havior of agents. It includes cooperation, ne-
gotiation, compromise and so on.

2.2 Conceptual Model of Noah —
Lake/Canal Model

The fundamental concept of Noah computing ar-
chitecture is based on the Lake/Canal model
shown in Fig.1. In this model, a distributed appli-
cation consists of several active processing units,
i.e. agents, and each agent takes actions to its en-
vironment to proceed on its task. Basically, the
Lake/Canal model improves the Linda model[2]
developed at Yale University. ;

Figure 1: Lake/Canal Model

The Lake/Canal model consists of the following
abstract entities.

Lake: A Lake is the field where the communica-
tion among agents takes place. A set of com-
puters of the same architecture forms a Lake.

Canal: A Canal is the gateway which inter-
connects two Lakes. It performs the

data/message transformation to connect
Lakes of different architecture.

Ark: An Ark is a function unit of an application
and can be regarded as being on a Lake. It
is an active agent, which performs its task
sensing the status change of the Lake and let
the Lake transit to the other state by giving
the processing results to it.

Applications in Noah can cooperate by commu-
nicating via the Lake, the communication field.
Since agents, which make up an application, can
perform their own tasks autonomously to some ex-
tent, the cooperation can be achieved in a rela-
tively easy manner.

Fig.2 shows the place of Noah in a layered soft-
ware architecture as a vertical section of “Lake
Noah.”

Cooperation Environment -~—/| Noah
Distributed
Computing - OSF/DCE, etc.
__platiorm

\ Network /L- TCP/IP, OSI, etc.
Operating
System

Figure 2: Vertical section of Lake Noah

UNIX

3 Noah environment
3.1 Architecture

The Noah architecture has the following features.

e Hierarchical cooperation fields are pfovided
for the communication among agents.

e Each cooperation field supports inheritance
of the cooperation mechanism. .

Having the inheritance mechanism in the com-

munication field and cooperation function, Noah
is able to configure the method and the scope of

the applications harmony flexibly.
To realize this features, Noah architecture has
the following components (see Fig. 3).

I Applications
& [Cooporen Applioat 5 Noah
Protocal Block Monitor & Control Block E“V"°"'“°"‘
(1)‘

Tuple Space Communicatioﬁ Layer

Message .
) | Commurication || Message Messags |
(ORB,DCE,RPC...) || ™™ Comm. | Distriuted

Syn;ms
r 0s lEnvivonmenl

Figure 3: Noah architecture

(5) | Operating System |r 0s J

(1) Tuple Space Communication Layer:
Tuple space communication layer provides
synchronization, data sharing and communi-
cation among agents.

(2) Cooperation Protocol Block:
Cooperation protocol block provides some
common facilities to perform various types of

cooperation among agents.

Application Monitor & Control Block:
Application monitor & control block moni-
tors and controls agents. The control means
invocation and termination of applications,
management of replication, modification of
attributes, and so on.

(3)

(4) Message Communication:
Message communication (RPC, ORB, socket
and so on.) provides the basic communication

mechanism for tuple space communication.

(5) Operating System:
Operating system such as UNIX.

(1) ~ (3) are provided by Noah environment.
(4) and (5) will be available as de facto stan-
dard distributed computing system environment,
for example, OSF/DCE, UNIX operatmg system
and so on.

One of the main features of the Noah architec-
ture is that the communication mechanism (com-
putational model), cooperation protocols and ap-
plication control mechanisms are fully integrated.
In the traditional research, each module has been
considered separately. In addition the communi-
cation models are based on peer to peer commu-
nication. On the contrary, agents of the Noah ar-
chitecture cooperate with eachi other watching the
cooperation field. :

Noah’s computational model using hierarchical
fields makes it easier to set the scope of the coop-
eration and the unplementa,tmn on the distributed
computing system.

3.2 Components
3.2.1 Tuple space communication layer

This layer prowdes transparent tuple space using
lower message communication layer. This layer
supports transparency for remote node access and
remote tuple space management.

Tuple space was originally developed as the
communication medium of Linda. The process
uses very simple interaction mechanism with tuple
space and it can communicate with other multiple
processes simultaneously. Tuple space of Linda
can be regarded as a shared memory among pro-
cesses. It is very useful communication mecha-
nism, but it also has some problems, such as the
dead lock or conflict caused by errors and colli-
sions of tuple identifiers. Therefore, the layering

and structuring of the tuple space is under further
research(3].

In Noah’s tuple space communxcatlon, any
data exchanged among agents is treated as tu-
ple. Agents communicate with each other by
putting/getting tuples to/from the tuple space.
Unlike RPC or object oriented message passing
mechanisms, tuple space communication does not
specify the receiver of the message. So it is very
useful for broadcast, multicast and asynchronous
communications.

The communication mechanism with tuple
space is suitable the concept of Noah — appli-
cations harmony, because agents in the Noah en-
vironment take part in the cooperation field au-
tonomously: - "

Noah uses an extended Linda model, which we
call “LAKE” model. The LAKE model has a
computational entity called “Ark” and a small
tuple space. Both the Ark and the tuple space
compose a “Lake.” Applications are composed
by multiple Lakes. The Lake may create another
Lake and purge it. The Ark can interact with the
tuple space identified by the argument Lake. The
feature of our LAKE computational model is a
shared tuple space between a parent Ark and its
child Ark. The communication from the outside
of the application to the parent Lake influences
the child Lake implicitly. Therefore, the applica-

tion can cooperate with others tightly. Of course,
LAKE also has a facility to create the Lake iso-
lated with parent Lake. Fig.4 indicates the rela-
tion of tuple space of the parent and child Lake.

Lake
Tuple Space

...........

Application \\
_______________________ .

| Ak

1
: | :
‘| Lake(Child) Lake (Child) |1
'
' :

Tup|e Space

Figure 4: LAKE model

3.2,2 Cooperation protocol block -

To perform the cooperation among applications,
many functions should be executed — choice of
the application to cooperate, selection of the co-
operation protocol, data exchange among applica-
tions, estimation of the result caused from applica-
tions’ cooperation, and so on. If we provide these
procedures to each application packages, efficiency
of the software development is low, and expansion
or configuration of the system will not be achieved
easily. So we concentrate the common functions to
be used in cooperative communication in a single
cooperation protocol block. This approach will re-
sult in an efficient software development and easy
customizing of applications.

For example, Contract net[4] is one of the basic
cooperation protocols. It is a procedure to invite
servers by sending a request specification to them.
User can select the most suitable server by receiv-
ing response specifications from the servers and
can ask the server to do the request.

In Noah, many other cooperation proto-
cols will be available, for example, Multistage
negotiation[5], Hierarchical protocol[6] and so on.
In addition, time dependent constraint, scope of

cooperation field are usable as optional specifica-
tion. Furthermore, the cooperation protocol block
provides some mechanisms to establish a cooper-
ation field which can creates hierarchical cooper-
ation fields for each applications.

3.2.3 Application monitor & control block

Sometimes dynamic invocation and termination
of a particular agent (application), or the mod-
ification of the agent’s (application’s) behavior
and monitor are required to reuse the software
developed in other environment. Noah can sup-
port those requirements using the function of ap-
plication monitor & control block. This block
provides the invocation, termination, dynamic at-
tribute modification of agents, and monitor of the
state of agents and systems. =

Noah provides “Probe” and “Activator”
which are extensions of sensor and actuator in
Meta[7] developed at Cornell University respec-
tively. Probe and activator are the door to mon-
itor and control interface of agent. Monitor and
control request are processed through probe and
activator. The relation (external structure) of
agents is shown in Fig.5.

Control VF

B Monitor VF

Bl Activator 25y Probe

Figure 5: External structure of agent

The probe and activator can be constructed or
attached to the agent. Prove get the state of agent
internal data from shared memory space (tuple
space) and send it to monitor interface periodi-
cally. Activator receive the messages from control
interface and put it into tuple space. If agents

in Noah environment have hierarchy, parent agent
can monitor and control it’s children with probe
and activator.

4 Applications

Noah cooperative environment allows applications
to cooperate in different styles. This section de-
scribes example of typical cooperation styles to
show the advantages of Noah.

4.1 System administration

Here is an example of a printer installation into
distributed computing environment. This is a typ-
ical system administration issue.

In a traditional distributed computing environ-
ment such as UNIX based network environment,
a system manager needs the following operations
to install a new printer into that environment.

o TFor printer installed network node.

— Add the new network node into host
name database.

— Add the new printer information into
printer capability database.

~ Set up the printer spool directory.
— Create printer access control file.

— Modify the equipment database.
o For other network node.

— Add new printer information into
printer capability data base.

— Notificationi of new printer. information
t0 users. » ’

These operations are very complicated and
should be consistent. So the system manager is
apt to mistake the operations.

While using Noah environment, what the sys-
tem manager have to do is just a putting “new
printer agent” into Noah distributed environment.
It works autonomously in the Lake, and does the
above operations concurrently and consistently as
shown in Fig.6.

Because new printer agent will modify the Lake
status, all agents related to printer installation —
such as printcap-db agent, hosts_db agents, mes-
saging-agents — are works by themselves.

out
relation

Figure 6: Installation of new printer

4.2 Personal information management

Conventionally, each CSCW (Computer Sup-
ported Cooperative Works) application manages
groups and its members information individually,
and supports communications among the mem-
bers (Fig.7).

[CSCW Application J

Figure 7: Conventional CSCW Application .

‘We propose that the same functionality can be
attained by using cooperating personal applica-
tions in conjunction with the open CSCW envi-
ronment on top of the Noah technology (Fig.8).
Using the open CSCW environment, it is possible
to centralize the group management functions and
use them for several CSCW services.

The open CSCW environment-can be realized
as ’a field’ of Noah. 'Groups’ in the open CSCW
environment can also be mapped to a Noah field.
Other OA (Office’ Automation) applications such
as a meeting room reservation system or a meeting
calling system, can cooperate with CSCW appli-
cations through another 'field’.

The open CSCW environment allows these
fields to construct CSCW services adaptable to or-
ganizational changes and to cooperate with many
other services easily. Fig.9 shows the CSCW sys-
tem structure.

Personal
cscw
Application

Personal
cscw
A, _App ication

Personal g
cscw]

Application g
Personal
cscw
pplication 4

Figure 8: Open CSCW environment

Noah cooperation mechanism

CSCW manager — The CSCW manager cre-
ates a CSCW field and manages it. In this
field, the CSCW manager realizes CSCW
specific cooperation. The main functions of
this field include organization management
(management of group structures, locations
of members, and roles of members in the
groups), data sharing, access control, and
work flow supports.

OA manager — The OA manager creates an
OA field and manages it. In this field, OA ap-
plications and personal information systems
work together harmoniously.

Personal Information System — The Per-
sonal information system maintains a per-
sonal profile and personal schedules for an
individual. This system includes an access
interface to the Noah environment.

Other Applications — OA services, such as the
meeting calling system and the meeting room
reservation system, are provided.

When personal information system is connected
to the Noah environment, the personal profile key
by personal information system is broadcasted in
the Noah environment. Then the CSCW man-
ager accepts the profile and keeps it. The profile
includes the location of the personal information
system and attributes of the user (group names
the user belongs to and the role of the user in the

groups).

O--------------------.I
. OA Field '
[]
: Meeting :
] Field
L Manager OA Room | &
s Manager Reservation| &
[System | s
& 1
] a
] Meeting | &
ling |
" | Personal Personal Cal .
csew : Information | | Information System H
Manager ' System System :
]
Mf’il%‘r ‘--.-------.--V ------..
CSCW Field

Figure 9: Noah CSCW system structure

Now let us assume the case of holding a meeting
with members of certain groups. The following is
an example of a service for this case.

1. The organizer of the meeting requests the
confirmation of members schedules and the
reservation of the meeting room. For this, at-
tending groups, date, time interval, and char-
acteristics of the meeting room are specified
through the user access environment of the
personal information system.

2. The request is sent to the CSCW manager
and the OA manager through the Noah envi-
ronment.

3. CSCW Manager:

(a) After accepting the request, the CSCW
manager inquires the personal -infor-
mation system of the specified groups’
members about their unoccupied hours
in the corresponding of time interval and
date.

The personal information systems that
accept the request return the informa-
tion about the unoccupied hours accord-
ing to their own schedules.

(b)

{c) Then the CSCW manager arranges the
information in order and send it back to

the organizer.
4. OA Manager:

(a) After accepting the request, the OA
manager requires the meeting room
reservation system to inform of the

unoccupied hours of the appropriate
rooms.

(b) The meeting room reservation system
returns the information to the OA man-
ager and the manager sends it to the or-
ganizer.

5 The organizer decides the date, the time and
the room based on the information and sends
the CSCW manager and the OA manager the
final decision to hold the meeting.

6. After accepting the request, the CSCW man-
ager informs the members of the meeting and
the OA manager requests the meeting room
reservation system to reserve the specified
room at the specified time.

Since the information about organizations can
be centralized and can be collected automati-
cally, the system can be adapted to organizations
changes.

5 Summary and Future Works

This paper proposed Noah: Network oriented
applications harmony as an architecture of dis-
tributed environment. Noah is suitable for re-
source allocation, fault-tolerant applications, sys-
tem management, and applications for coopera-
tive works. Noah provides following functions.

e Programming environment for autonomous
agents.

e Cooperating mechanism for multiple agents.

e Communication mechanism for distributed
agents.

e Control and management mechanism for
agents.

Noah makes it easy to develop reliable and ef-
ficient softwares using potentiality of services of
distributed environment.

Design of programming interface, language and
development environment are future work. Design
and development of a “shell” to manage interac-
tions between users and the environment are also
future works.

—-88—

References

(1]

2

—

3l

4]

5]

(6]

(7

Nakajima et al.- “Current Status of Re-
searches on Cooperative Architecture,” (in
Japanese), Electorotechnical Laboratory Re-
search Report No.221, 1991.

Sudhir Ahuja, Nicholas Carriero, David Gel-
ernter, “Linda and Friends,” IEEE COM-
PUTER, Vol.19, No.8, Aug.1986..

Yoshida,N., Narazaki,S., “A Parallel Cooper-
ation Model ‘Cellula’ Composed of ‘Process
+ Field’ Amalgams”(in Japanese), J. IPSJ
31:7(1990)1071-1079.

R. G. Smith, “The contract net" protocol:
high level communication and control in a
distributed problem solver”, IEEE Trans. on
Comput., vol. C-29, no. 12, pp. 1104-1113,
1980.

K. Kuwabara and V. R. Lesser, “Extended
protocol for' multistage negotiation™, Proc.
9th Workshop on Distributed Artlﬁmal Intel-
ligence, 1989.

E. H. Durfee and T. A. Montgomery, “A hier-
archical protocol for coordinating multiagent
behaviors”, Proc. AAAI-90(1990). -

Keith Marzullo, Robert Cooper, Mark D.
Wood, Kenneth P. Birman, “Tools for Dis-
tributed Application Management,” IEEE
COMPUTER, Vol.24, No.8, Aug.1991.

UNIX is a registered trademark of UNIX System
Laboratories.

OSF/DCE is a trademark of the Open Software
Foundation, Inc.

