2T AT 4 THEEESBLE T9-5
(1996. 11. 14)

Livelock-Free Asynchronous Recovery in Distributed Systems
Hiroaki Higaki,Katsuya Tanaka,Kenji Shima, Takayuki Tachikawa and Makoto Takizawa

Dept. of Computers and Systems Engineering
Tokyo Denki University

This paper proposes a novel protocol for taking checkpoints and asynchronously rolling back the
processes for recovery in asynchronous distributed systems. In the protocol, only the minimum number
of processes take checkpoints. The amount of execution of application program wasted by the recovery
is also the minimum. Moreover, each process can be rolled back and restarted asynchronously. Here,
the livelocks might occur if the processes are asynchronously restarted. In the protocol proposed in this
paper, each process is rolled back at most once to recover from a failure of process. Hence, the livelocks
can be avoided. Only O(l) messages are transmitted where [is the number of channels in the system.
Therefore, the protocol makes the system highly available.

AW AT LIBITB T4 7Ty 7 DRGIERTY A8
BiE mE H Bt 5 e BT BRW
{hig, katsu, sima, tachi, taki}@takilab.k.dendai.ac.jp
SHETRM AP T 8 TH# R

#ﬁ%ﬁﬂVZ?Ausﬁé;ﬁbw%zvﬁﬁ4>bmﬁ%&x;d#ﬁﬁuwﬂu%&uowfﬁN
5°Kﬁiﬁﬁ$?6%177ﬁ4>b7nb:w%mwét‘%:77ﬁ4>b%mﬁ?67ntzuﬁ¢
&T%U‘UﬁNUKi?T%bn677U7—93VfUﬁiA@%ﬁ%ﬁbﬁ¢t&6°%7Ut1u@
ofutxtﬁbf#ﬁﬁwﬁﬁb\77U7—937®%ﬁ&@%16ﬁ\anl91547077ﬁ%
ibfbiw\mﬁinh:wﬁ%Tbawﬁéﬁ%6o%:?K%I?u\utvwfutx&@tﬁbf
&TOv 2 —EEFLra—u Ry sShwnro b ave L. 470 I DREEEVTWS. T

DY ANV CHKELERA y—VR3F v FVBUIHLTO() THS.

1 Introduction

Information systems become distributed and
are getting larger by including various kinds of
component systems and interconnecting with var-
jous systems, e.g. by the Internet. The dis-
tributed systems are designed and developed by
using widely available products including free soft-
wares rather than specially designed ones. These
products are not always guaranteed to support
enough reliability and availability for the appli-
cations. It is important to discuss the mecha-
nism in the system softwares to make and keep the
systems so reliable and available that even fault-
tolerant applications could be implemented in the
systems.

Distributed applications are realized by coop-
eration of multiple processes executed in multiple
processors. Checkpointing and rollback recovery
are well-known time-redundant techniques to al-
low processes to make progress even if some pro-
cesses fail. The processes take local checkpoints by
recording their state information in the local logs
while executing the applications. If the processes
fail in the system, the processes are rolled back to
the checkpoints by restoring the saved state infor-
mation and then restarted from the checkpoints.
Hence, the system can tolerate transient failures,

e.g. hardware errors, process crashes, transaction
aborts, and communication deadlocks. These fail-
ures are unlikely to recur after the processes are
restarted.

The system has to be kept consistent even if
the processes are rolled back to the checkpoints.
A global checkpoint is a set of local checkpoints
taken by all the processes in the system. Many
papers [1,6,7,9,10] have proposed so far protocols
for taking a consistent global checkpoint among
processes and ones for restarting the processes if
one or more processes fail.

The conventional checkpointing protocols re-
quire all the processes in the system to take local
checkpoints synchronously. However, each process
rather communicates with only a subset of the
processes than all the processes. Hence, a check-
pointing protocol that allows the subset of the pro-
cesses to take the local checkpoints is necessary.
On the other hand, the processes are required to
be synchronized to be rolled back and restarted
during the recovery procedure. However, the re-
covery procedure may be slow down since it takes
longer to synchronize the processes. If the check-
pointing procedure is executed in a subset of the

processes to take a consistent checkpoint and the
recovery procedure is asynchronously executed to
restart the processes, the rollback recovery may
continue forever, i.e. a livelock may occur. In this
paper, we propose a protocol for a livelock-free
asynchronous recovery where only a subset of the
processes are restarted in the distributed system.

2 Checkpoint and Rollback
2.1 Consistent state

A distributed system is composed of multiple
processes interconnected by channels, ie. S =
(V, L) where V = {p1,...,pa} is a set of processes
and L C V2 is a set of channels. (pi, pj) is a chan-
nel from p; to p;. In each process, three kinds of
events occur: message-sending, message-receiving
and local events. Among the events, the happens
before relation is defined [8]. A local state of p; is
changed each time an event occurs in p;. That is,
alocal state of p; is determined by the initial state
and the sequence of events occurring in p;. Mes-
sages are transmitted from p; to p; via a channel
(pi,p;) € L. Here, {p;, p;) is named a channel of
pi. If there is a channel (p;, p;), p; is referred to
as a neighbor process of p;. A global state of S is
a collection of states of the processes in V.

A local checkpoint ¢ taken by p; is the state of
pi recorded in the local log. A global checkpoint
C is a set of local checkpoints taken by all the pro-
cessesin V, ie. C = {c!,...,c"}. If the processes
take the local checkpoints and are restarted from
the local checkpoints independently of the other
processes, there may exist inconsistent messages
named orphan messages [1]. Hence, the global
state of the system is defined consistent iff there
is no orphan message [3].

Theorem 1 A global checkpoint C is consistent
iffVe', e € Cei Hcj. O
2.2 Checkpointing

In the conventional synchronous checkpointing
protocol (1,5, 7,9, 10], additional messages are
transmitted to take a consistent global checkpoint
and the processes are blocked while the check-
pointing procedure is executed. Moreover, if some
process takes a local checkpoint, all the other pro-
cesses In the system are required to take the local
checkpoints. However, each process rather com-
municates with only a subset of the processes than
all the processes. Hence, all the processes are not
always required to take the local checkpoints si-
multaneously. Here, we would like to define a
regional checkpoint C' and a consistent regional
checkpoint in the system S = (V, L).

Definition (regional checkpoint) Let W be
a subset of the processes in S, i.e. W C V. Let
¢ be the local checkpoint of p; where p; € W. A
regional checkpoint C(W) of W is defined as a set
{¢|pi € W} of local checkpoints. O

Definition (consistent regional checkpoint)
A regional checkpoint C(W) is consistent for a

my -
py c? 2 '——/ £5¢
P my R
g / \ fail
p3 ‘\ Mo N

m m
Dy 1 3

Figure 1: Consistent regional checkpoint.

subset W of the processes in S iff there is no or-
phan message in every channel of every p; € W.
a

Theorem 2 A regional checkpoint C(W) is con-
sistent for a subset W of the system iff V¢, o/ €
CW)e Ad o

Theorem 3 Let s* be a state of an operational
process p; € V — W, i.e. p; is executing the ap-
plication. A global state denoted by C‘(W) and
{s'lpi € V — W} is consistent if C(W) is consis-
tent. O

Figure 1 shows an example. If each p; is at time
marked P> and p, fails, only p; and ps have to
be restarted from c? and c®, respectively. Here,
C(W) ={c? A3} {s!,c?, 3, s*} denotes a consis-
tent global state because there is no orphan mes-
sage. That is, S can be recovered when a process
in W fails iff C(W) is consistent for a subset W
of the processes and only and all the processes in
W are restarted from the local checkpoints. Here,
suppose that ¢' is taken by p; € W. If m is the
first message transmitted from p; to p; after tak-
ing ¢', m is referred to as a checkpoint message of
¢ to p;. If p; receives m, p; has to take ¢/ and
has to be included in W. Hence, the following
checkpointing method is introduced:
[Checkpointing method] If a message-
receiving event e for a checkpoint message m oc-
curs in p;, p; takes ¢/ just before e. O

Here, since m can carry the information on
whether m is a checkpoint message or not, no ad-
ditional message is transmitted for taking a con-
sistent regional checkpoint.

2.3 Rollback recovery

By using synchronous recovery protocols [1, 5,
7,9-12], all the processes are blocked and the addi-
tional messages are transmitted to synchronize all
the processes in the system for the consistent re-
covery. Thus, the recovery procedure is slow down
due to the synchronization overhead, i.e. the sys-
tem becomes less available. Here, ¢, represents
the sth checkpoint taken by p; and Ty ¢ Tepresents
the possible recovery event occurring in p; after c:
is taken by p; where p; is restarted from ¢! (s < t).
¢t is active if ¢! is taken but i, wheret < s <u

has not yet occurred. p; may have multiple active
checkpoints.
_ If pi fails, the system has to be restarted from
C(D;) where D; is a subset of the processes in-
cluding p;. That is, only the processes in D; are
restarted. We name such a subset D; a rollback
domain of p;.
Definition (checkpoint precedence) Let ¢
and ¢ be active checkpoints taken by p; and p;,
respectively ci precedes] (c' = c}) if there exist
¢ in p; and €/ in p; where ¢ — ¢, ¢] = ¢/, and
e —el. 0
Definition (rollback domain) A rollback do-
main D; of p; is defined to be a following subset
of the processes in the system:
1) p; € D; if there is an active checkpoint in p;.
2) pj € D; if ¢ = ¢} where ¢} is the most recent
active checkpoint in p; and ¢ is an active
checkpoint in p;.
3) Ouly the processes satisfying 1) and 2) are
included in D;. O
From the definition of the rollback domain and
Theorem 2, the following theorem is induced.
Theorem 4 A regional checkpoint C(D;) is con-
sistent for every rollback domain D;. O
That is, a rollback domain is a region for the
rollback recovery. Suppose that p; fails and is
restarted from the most recent checkpoint ¢j. If
every p; € D; is restarted from ¢/ where =
the system is kept consistent after the recovery.
However, each process cannot know. completely
which processes are included in D;. Though each
process cannot know D; completely, the process
knows of a subset of the processes in D;. That is,
if p; sends a message to px after taking ¢l where
¢\ is the most recent local checkpoint in p; and
¢t = ¢l, p; knows that pi is included in D;.

Definition (rollback view) A rollback view Wf
is a subset {px|p; knows px € D;} of the processes.
]

Based on the rollback views, if p; fails, the system
can be restarted asynchronously from C(D;) by
applying the message diffusion protocol [2].
[Recovery method]

1) If p; fails, p; sends a restart request message
Myestart tO €VEIy p; € W} and is restarted
from the most recent local checkpoint cj.

2) On receipt of Mmreseare from py, each p; also
sends Myestart tO every process included in
W,J except px and is restarted from ¢/ where
d=d.

2.4 Livelock

By taking the regional checkpointing and
restarting the processes asynchronously, livelocks
might occur in the system [4]. Thus, the pro-
posed checkpointing method has to be modified
to avoid the occurrence of the livelocks in the re-

covery. Here, we introduce a generation concept.

Definition (generation of process) A gener-
ation g(p;) of p; is assigned to s, i.e. g(p;) = s if
the local checkpoint most recently taken by p; is
!

Definition (generation of event) A generation
g(e) of e in p; is assigned to s, 1.e. g(e) = s if
g(pi) = s when e occursin p;. O

We assume that each p; takes ci at the initial
state. Each time p; takes ¢}, g(p;) is incremented
by one. If ri, occurs in p;, p; takes ciy, just
before p; is restarted to execute the apphcatlon
Each time a message sending event s(m) occurs in
Pi, 9(s(m)) is piggied back by m. Suppose that €’
occurs in p; and p; recewes m sent by pj at s(m)
where €' — s(m). If ri , where s < g(¢') <t oc-
curs in p;, pi has to dlscard m. If p; accepts m,
the livelock occurs. This is realized by using the
generations of events. If g(e) is piggied back by m
and there has occurred r} , where s < g(e) <t in
pi, pi has to discard m for the livelock-free recov-
ery. In order to implement the livelock-free asyn-
chronous recovery, generation vectors have to be
piggied back by the messages transmitted among
the processes. In the succeeding section, we would
like to present the detailed protocol using the gen-
eration vectors.

3 Protocol
3.1 Assumptions

A distributed system S = (V, L) consists of a
finite set V = {p1,...,pn} of processes and a set
L C V2 of channels. We make the following as-
sumptions on S.

Al Every channel in L is reliable.

A2 In each channel (p;,p;) € L, messages are
transmitted in the first-in-first-out order from
pi to p;.

A3 Sis asynchronous i.e. the maximum message
transmission delay is unbounded.

A4 Each process has a stable storage.

¢l is active unless there occurs ri ; Where s <
u < tin p;. cl, becomes inactive if there occurs

;, where s < u < tin p;. ¢, is obsolete if ¢,

inactive or p; will never be restarted from c If
p; knows that ¢}, is obsolete, p; can remove c
An application message m contains the
data m.data and a generation vector m.G =
(m.g1,...,Mgn). A rollback request mes-
sage m, contains a generation vector m,.G =
(me.gi,. .., Mr.gn).
Pi mampulates the following variables. Here,
let Neighbor® be a set of neighbor processes of p;.
e A generation vector G* = {4}, ... ,g.) named
a checkpoint generation vector in p;. Every e’
that will occur in p; causally depends on el
that has occurred in p; where g(e’) = g}, Le.
el — €. Initially, g! =1 and g} = 0(j # i).

e A set of generation Inactive’. u € Inactive®
iff c, is inactive, ie. rf, occurs in p;, where
s<u<t.

o A subset Flow' C Neighbor' of the neighbor
processes of p;. p; € Flow' iff p; sends an ap-
plication message to p; after taking the most
recent checkpoint. Each time p; takes a local
checkpoint, Flow' = §.

® A sequence Receive' of messages received
after taking the most recent checkpoint in
pi: Each time p; takes a local checkpoint,
Receive = 0.

Each time p; takes ¢!, Flow' and Receive’ are
recorded in the log with the state information as
Flow; and Receive!, respectively.

3.2 Failure-free execution

The protocol for taking consistent regional
checkpoints is invoked each time a message-
sending or message-receiving event occurs in a
process. Here, the generation vector is manipu-
lated as follows:

1) Each time a message-sending event occurs in
pi» G = (gi,...,4.) is piggied back by m as
m.G, ie m.g; « g; for every j.

2) Each time a message receiving event for m
occurs in p;, G* is updated to maz(G*, m.G).
Here, G' = maz(G’, G¥) is defined as g, =
maz(g}, gi) for every k.

If 7(m) occurs in p; where g(p;) = s and m
is a checkpoint message transmitted from Py Pi
takes ¢; ,; just before 7(m). Suppose that ¢ is the
most recent local checkpoint in p;. If m.gx < gL
for every px, pi is not required to take a local
checkpoint. p; is also restarted from ¢ if p; is
restarted from c/. On the other hand, if g <
m.gx for some pg, p; has to take cf;“. Unless p;
takes c;,,, m becomes an orphan message if p; is
restarted from cJ.

In order to assure that no message be lost after
the recovery, if p; receives m from pj, m is added
to Receive’. Each time p; takes ci_H, the messages
in Receive’ are moved to Receive’ and Receive!
becomes empty. That is, each m € Receivel is
received while g(p;) = s. If 7} , occurs in p;, every
m satisfying the following conditions is received
by pi: . .

1) m € Receive, (s < u < t) or m € Receive’

2) m.g; < (9;)s for some p; where the genera-
tion vector G% = ((g)s,...,{g}),) is assigned
to ct.

Moreover, if p; sends an application message
to p;, pj is added to Flow'. Each time p; takes
¢t 41, the processes in Flow' are moved to Flow;
and Flow' becomes empty. If Ty,¢ OCCUIsS in p;, p;
sends a recovery request message m, to every p;
where p; € Uscuct Flow!, or p; € Flow'.

The system has to prevent from the livelocks
caused by the asynchronous recovery. By using

the generation vector, p; never accepts phantom
checkpoint messages. Each time ":,c occurs in p;,
Inactive’ is updated to Inactive’ U {uls < u <
t}. Let m be a message taken out of the channel
(pj, pi) where m.G = (m.g1,...,m.g,) is piggied
back.

[Livelock-free message receipt] On receipt of
m from p;, p; discards m if m.g; € Inactive’.
Otherwise, p; accepts m. O

If mg; € Inactive', there exists €' such that
g(€') € Inactive’ and €' — s(m) where s(m) is
the message-sending event. Since e is canceled
by one of the recovery events which occurred in
pi, 5(m) also has to be canceled, i.e. m is a phan-
tom checkpoint message. Thus, m is discarded,
i.e. the recovery becomes livelock-free.

The following procedures Send(m) and Re-
ceive() are executed when a message-sending
event and a message-receiving event occur in p;,
respectively:

Send(m)

m.G « G)

Flow' « Flow' U{m.receiver};

send m to m.receiver;

Receive()
take m out of (m.sender, p;);
if m.g; € Inactive’
then
discard m;
else)
if M gm sender > I sender
then))]
Receive , < Receive’; Receive' + {m};
Flow;, ~ Flow'; Flow* « {;
G maz(G, m.G); ¢ « gl +1;
G;, « G
take ¢ ,;
9i
else) i
Receive' < Receive' U {m};
fi

accept m from m.sender;

3.3 Recovery

If p; fails, the recovery procedure is initiated.
p; is restarted from the most recent local check-
point ¢! where s = 9(p:). In order to keep the sys-
tem consistent, every p; which includes ¢/ where
¢ — ¢l also has to be restarted. This is realized
by using Flow' and the message diffusion proto-
col [2]. p; has to send recovery request messages to
every p; to which p; sends m after taking ¢f. Here,
p; has to be restarted from the local checkpoint
taken before the message-receiving event for m.
In our protocol, only and all the processes to be
restarted are recorded in Flow'. Thus, p; sends
a recovery request message to each p; € Flow'.
Moreover, every m received after taking ¢! has

to be accepted by the application again. Since
s(m) satisfies ¢} /4 s(m), m becomes a lost mes-
sage unless p; accepts m again after the recovery.
Thus, all the messages in Receive’ are put into
the buffer in p;. p; accepts the messages again
in the procedure Receive(). Here, the failed pro-
cess p; is restarted asynchronously with the other
processes.

On the other hand, if an operational process p;
receives a recovery request message, p; also has to
be rolled back. At first, p; finds the most recent lo-
cal checkpoint c} to keep the system consistent af-
ter the recovery. This is realized by piggying back
a generation vector m,.G = (m;.g1,..., My.gn)
named a recovery vector by each recovery request
message m,. If p; is restarted from ¢, the value
t is assigned to m,.g; and p; sends m, to all the
processes in Flow’. Now, p; finds the oldest local
checkpoint ¢} such that m,.g; < (g;), for every p;.
After that, p; sends the recovery request messages
and puts the received application messages to be
accepted again after the recovery into the buffer
as the failed process. Here, p; that does not fail
is also restarted from ¢\ asynchronously with the
other processes.

Each p; in which r{, occurs adds a collection
{s,...,t} to Imactive’. If p; receives m where
m.g; € {s,...,t}, p; discards m. By using the
procedure, no livelock occurs in the asynchronous
recovery procedure.

The
following procedures Recovery-from-failure() and
Recovery-for-consistency() are executed when p;
is recovered from the failure and p; receives a re-
covery request message m,, respectively:
Recovery-from-failure()

my.g; ¢ g}; my.g; < 0 where j #1;

foreach p € Flow' do

send m, to p;

Od . . .

Inactive’ « Inactive' U {g;};

put every m € Recewe to buffer,

Receive' + 0 Flow' «

G‘(—G'.,gt —gi+1, G' «~ G

take cg!; restart pi;

Recovery-for-consistency()
take m, out of (m,.sender,p;);
ﬁnd the oldest G where m,.g; < (gJ), or ev-
ery JY
my.gi & 5,
Flow « {plp € Flowi(s < u < gi) or
p € Flouw'};
foreach p; € Flow do
if me.g; = 0
then
send m, to p;;
fi
Od . .
Inactive’ « Inactive' U {s,...,g}};

time

Figure 2: Garbage collection.

put every m € Receivel,(s < u < gi) to buffer;
put every m € Receive® to buffer;

Receive' « B; Flouw' «

g,(—g,+1 g+ (g)where]#zG « G

take cg!; restart,;

3.4 Garbage collection

In order to reduce the storage used for the in-
formation on the local checkpoints, a garbage col-
lection procedure has to be executed to remove
the obsolete chgckpoints. If p; would never be
restarted from ¢ both for recovering from the fail-
ure of p; and for keeping the system consistent
even in the failure of any p; # pi, c, has to be
discarded. Here, we also use the generatxon vec-
tor. Let G\ = ((g})s,-.-, (g.)s) be the checkpoint
generation vector of ¢} ‘and G' = (gl, .., 9%) be
the generation vector mampulated inp;. fs<t
for every t where (gj)t =g} #0 for some J, piis

restarted from ¢} when p; fails, i.e. ¢! is an active
checkpomt Otherw1se p;i will never ’be restarted
from ¢}. ¢} is obsolete and pi discards ¢,

Flgure 2 shows an example The checkpoint
generatlon vectors for each ¢! are as follows: ¢ =
(100) (201),01_010) c3 =(1,2,0),
=1 3(]) ez =1(2,4,1), ¢ =(0,0,1). If p
fails, p; and po are restarted from ¢} and cZ, re-
spectively. If py fails, py is restarted from c4. P1,
p2 and pg are restarted from cl, ¢2 and ¢3, respec-
tively, if ps fails. Thus, since c{, ¢ and % are
obsolete, they have to be discarded.

By using the garbage collection procedure, p;
has only one checkpoint from which p; is restarted
if p; fails and p; and p; are the same rollback
domain.

Theorem 5 There are at most n active local
checkpoints in each p;. O

4 Evaluation

In the proposed protocol, since p; discards any
phantom checkpoint messages, p; is restarted from
the local checkpoint at most once for a failure of
process. Hence, the protocol realizes the asyn-
chronous livelock-free recovery. Here, O(l) recov-
ery request messages are transmitted for the re-
covery from the failure of p; where [is the number

Table 1: Overhead.

(2]

Checkpointing Recovery
Message T Time | Message | Iime
Koo & Toueg | O(N) [O(D) | ON) oD
Ours 0 0 O(n) O(d)

of processes included in D;.

Now, we would like to evaluate the overhead
for the checkpointing procedure and the recovery
procedure in the proposed protocol and the con-
ventional synchronous protocol [7]. Table 1 shows
the results. The conventional protocol is based on
the two-phase commitment protocol both in the
checkpointing procedure and the recovery proce-
dure. Thus, the number of the additional mes-
sages is O(N) where N is the number of processes
in the system and the required time is O(D) where
D is the diameter of the system. In our proto-
col, no additional message is transmitted in the
checkpointing procedure. In the asynchronous re-
covery procedure, only O(n) additional messages
are transmitted where n is the number of processes
included in a rollback domain of a failed process.
The required time is O(d) where d is the diameter
of the rollback domain. Since n « N and d « D
especially in a large-scale distributed system, our
protocol reduces the overhead.

5 Concluding remarks

This paper has proposed the protocol for tak-
ing consistent regional checkpoints and recovering
the processes asynchronously in distributed sys-
tems. For taking a consistent regional checkpoint,
no additional messages are transmitted and no
process is blocked. The number of processes re-
quired to take a local checkpoint is the minimum.
Each process keeps at most n local checkpoints
where n is the number of processes in the sys-
tem. If some process fails, the minimum number
of processes are restarted from the local check-
points asynchronously with the other processes.
The amount of execution of the application pro-
gram wasted by the recovery is the minimum.
Since the process is restarted at most once for a
failure of process by discarding phantom check-
point messages, the recovery protocol is livelock-
free. To realize the recovery, each message con-
tains a n-size vector of generation and only O(l)
messages are transmitted where ! is the number
of channels. Therefore, the reliable and available
large-scale distributed systems can be easily and
effectively developed and operated by using the
protocol proposed in this paper.

References

{1] Chandy, K. M. and Lamport L., “Distributed
Snapshots: Determining Global States of
Distributed Systems,” ACM Trans. on Com-
puter Systems, Vol. 3, No. 1, pp. 63-75
(1985).

[6

[

[7

[8

[9

(10]

[11

—

[12]

Dijkstra, E. W. and Scholten, C. S., “Ter-
mination Detection for Diffusing Computa-
tion,” Information Processing Letters, Vol.
11, No. 1, pp. 1-4 (1980).

Higaki, H. and Takizawa, M., “Group Com-
munication Protocol for Flexible Distributed
Systems,” Proc. of the 3rd International Con-
ference on Network Protocols, (1996).

Higaki, H., Shima, K., Tachikawa, T. and
Takizawa, M., “Checkpoint and Rollback in
Asynchronous Distributed Systems,” IPSJ
Technical Reports, Vol. 96, No. 40, pp. 43—
48 (1996).

Juang, T. T. Y. and Venkatesan, S., “Effi-
cient Algorithms for Crash Recovery in Dis-
tributed Systems,” Proc. of the 10th Confer-
ence on Foundations of Software Technology
and Theoretical Computer Science (LNCS),
pp. 349-361 (1990).

Kim, J.L. and Park, T., “An Efficient Pro-
tocol for Checkpointing Recovery in Dis-
tributed Systems,” IEEE Trans. on Parallel
and Distributed Systems, Vol. 4, No. 8, pp.
955-960 (1993).

Koo, R. and Toueg, S., “Checkpointing and
Rollback-Recovery for Distributed Systems,”
IEEE Trans. on Software Engineering, Vol.
SE-13, No. 1, pp. 23-31 (1987).

Lamport, L., “Time, Clocks, and the Order-
ing of Events in a Distributed System,” Com-
munications of the ACM, Vol. 21, No. 7, pp.
558-565 (1978).

Randell, B., “System Structure for Software
Fault Tolerance,” IEEE Trans. on Software
Engineering, Vol. SE-1, No. 2, pp. 220-232
(1975).

Tong, Z., Kain, R. Y., and Tsai, W. T., “Roll-
back Recovery in Distributed Systems Using
Loosely Synchronized Clocks,” IEEE Trans.
on Parallel and Distributed Systems, Vol. 3,
No. 2, pp. 246-251 (1992).

Venkatesh, K., Radhakrishnan, T., and Li,
H. F., “Optimal Checkpointing and Local
Recording for Domino-Free Rollback Recov-
ery,” Information Processing Letters, Vol. 25,
pp. 295-303 (1987).

Wood, W. G., “A Decentralized Recovery
Protocol,” Proc. of the 11th International
Symposium on Fault Tolerant Computing
Systems, pp. 159-164 (1981).

