TAF AT 4 THIEESHLE 8214
(1997. 4. 24)

~ Extended Upgrading Protocol for Flexible Networks
" Hiroaki Higaki, Motoki Sakai,aﬂ;d Makoto Takizawa
 Department of Computers and Systems Engineering
Tokyo Denki University

The network systems are required to be so flezible that the system adapts to the changeable user-
requirements. and environments. Hence, the method for upgrading the application processes in the op-
erational hetworks is one of the most important and critit:a.lg technologies. The authors have proposed a
novel upgrading method named dynamic upgrading and designed a group communication protocol. .By
using the protocol, even while the application processes are béing upgraded, the network system is kept
" highly available.” However, the protocol cannot be applied to large-scale network systems. This paper
“proposes an‘extended protocol for achieving flexible large-scale network systems.

PLHOLPVRRER Y M7 — 7 BRODOIREINSR 7o k av
. RE R M EM BR®
{hig, sake, taki}@takilab.k.dendai.ac.jp

: FUR BRI T 20 T#R : o ;

et BT 2 VAT AREPL—FERIZNET 3 /2HIC. RhbMRY N7 —2 Y AT ABRE
WARRINTVE, BIBINEI T, FLUEREBET IRV M= 7T r—=va vk Vv RAFAR
BATLHIRIC, TOBAFREZC LD I-FIINT 34— DS IERBIEY B/NRICT 2 T L LTHNK
RFEERRL, ENERET B DO N—TBET0baVBIVFzvIRI L /YRS~ b TO
INVEBELTEZ, L2258, 2070 baERWige, DEOONEEREIRT T2 T CHONRKR

FREEMET S EHNTERVED, KRBREAUV AT ANOBEASEBTH S L\ 5 HEND 5, KB
TR, EBOBIRTREEWTICRITT 5 EHTREE RS L5 KHNKR 7D b IV OERETRS, I

BrO bl EROWREESICY,
eI HRIRI-NT: 3,

1 Introduction

The distributed systems are including a large
number of computers interconnected by commu-
nication networks. Since it is expensive to newly
design and implement the system each time the
s%stem environments and the requirements. are
changed in the system, the system is required to
be flexible [12]. That is, the system has to absorb
the changes of the requirements and the system
environments. One way to make the system flex-
ible is to change the application processes in the
system so that the new requirements are satisfied
in the new environments, i.e. upgrading the sys-
tem. The system can be typically upgraded by re-
placing the old-version application processes with
the new-version ones. However, the system has to
be suspended in the qugrading procedure. There-
fore, we discuss a mechanism to make the system
so flexible that'the system could continue to sup-
port the services for the users while the component
application processes are being upgraded. i

Even if the new-version application processes
are sufficiently verified and tested, the upgrading
procedure should be carefully designed in order
not to cause such protocol errors as the unspeci-

- fied receptions and the communication deadlocks.
The protocol efrors can be obviously avoided by
temporarily suspending the whole system because
there are ‘only single versions of processes and
there is no conflict between multiple versions of
processes. However, the system ‘becomes less
available because the system is suspended. More-
over, if an application requires responsiveness [10],
the system cannot be suspended. Therefore, the

—T75—

7nbnw:?—&&ﬁwv25—$f6§t%®¢—ﬁ«7Fﬁﬁ$t&

application processes are required to be upgraded
without suspending the system. This paper dis-
cusses a highly available method for upgrading the
system where multiple versions of processes can
exist simultaneously. If both old and new ver-
sions of processes are simultaneously operational,
the processes may receive unacceptable messages
or the communication deadlocks may occur. In or-

- der to resolve such protocol errors, group commu-

nication protocol for taking checkpoints and de-
tecting the protocol errors is proposed [4]. That
is, if the protocol errors are detected, the new-
version processes aré removed and the old-version
ones are restarted from the checkpoints. However,
in the proposed group communication protocol,at
most two versions of the application processes are
simultaneously operational.” Hence, multiple u
grading procedures cannot bé done concurrentg;.
Therefore, it is difficult to aj i)ly the protocol for
realizing the large-scale flexible network systems.
In this paper, we discuss a group communication
protocol extended for solving this problem.

The rest of this paper is organized as follows.
Section 2 reviews briefly the methods for upgrad-
ing and overviews the dynamic upgrading, ?n sec-’
tion'3, a checkpointing irotoc:ol is presented. In
section 4, we evaluate the extended protocol by

comparing with the original protocol. "

2 Dynamic Upgrading.

" .'The system is upgraded by reblaci‘ng the

“old-version processes with the new-version ores:

. NeW-Version process
old-version process

Figure 1: Overview of dynamic upgrading.

While the upgrading procedure is executed, there
may exist some problems. First, each upgrading
process, which is being replaced, is suspended dur-
ing the process replacement. Thus, the services
cannot be supported for the users. The shorter
the suspension time is, the more highly available
the system is. In addition, there may occur two
kinds of the protocol errors in the inter-process
communication; the unspecified receptions and the
communication deadlock’;. The unspecified recep-
tion occurs if a process receives a message which
cannot be accepted. For example, suppose that a
process dp, waits for receiving one of the messages
included in a set of messages M = {a,b,c}. If p;
receives ¢ € M, the unspecified reception occurs.
On the other hand, the communication deadlock
occurs if multiple processes wait for receiving mes-
sages from each other. Suppose that p; waits for
a message from p;. If p; also waits for a message
from p;, the communication deadlock occurs.

Several methods [8,11] have been proposed so
far for avoiding the unspecified receptions and the
communication deadlocks. In these methods, the
system is upgraded in a stable state where a cer-
tain subset of processes are suspended simulta-
neously. Hence, these methods can be applied to
only the restricted agplications where a set of pro-
cesses to be suspended can be easily determined
and is small. ‘On the other hand, significant dis-
tributed applications as computer networks, mul-
timedia communication systems, distributed con-
trol systems and multi-agent systems are classified
as pariner iype [14]. Here, each process does au-
tonomously the computation and communication.
Thus, it is difficult to obtain a stable state where
multiple processes are suspended simultaneously.
Therefore, it is intrinsically difficult to apply these
methods to the partner type applications [1}.

A novel dynamic upgrading method is proposed
[3,6,7]. Here, the system is allowed to temporar-
ily include multiple versions of processes. That
is, an old-version process p; and a new-version
process p: co-exist. A process group F; is com-
posed of p; and p}. The protocol errors are de-
tected and resolved instead of being avoided com-
pletely. In order to conceal the effects of the pro-
tocol errors from the execution of the applica-
tion programs, the group communication proto-
col and the checkpoint-restart protocol are com-
bined [4]. If the protocol error is detected, the
system restarts the old-version processes from the
checkpoints taken in the execution. After that,

the upgrading procedure is restarted. Since mul-
tiple processes are not required to be suspended si-
multaneously in this method, the system is highly
available even while the upgrading procedure is
executed. Figure 1 depicts an overview of the
d}/namic upgrading procedure. Here, a collection
of process groups P,..., P, cooperate to execute
the application programs.

¢ Initial state: Each process group P; con-
tains only an old-version process p;. Appli-
cation messages are transmitted among the
old-version processes.

e Transient state: If p; would be upgraded, a
new-version process p) of p; is invoked in the
process group P; independently of the other
process groups. Here, the system is in a tran-
sient state. There are two kinds of process
groups, i.e. upgrading process groups which
contain multiple versions of processes, and
stable process groups which contain only one
process. p; starts to execute the application
program while p; still continues to execute
the apglication program passively. That is,
p. sends and receives application messages
with the other process ﬁroups and p; receives
the messages forwarded by p! but does not
send the messages. Moreover, p; takes a local
checkpoint from which p; is restarted for the
recovery from the protocol error.

e Upgraded state: If all the new-version pro-
cesses are invoked, the old-version processes
are removed. Here, the system consists of
only the new-version processes. The upgrad-
ing procedure is finished.

o Recovered state: If the protocol error is de-
tected in the transient state, the new-version
processes are stopped and the old-version
processes are restarted from the local check-
points taken in the transient state.

Here, a collection of the local checkpoints taken
by a subset of processes has to denote a semi-
consistent global state [7].

Definition Let B be a subset of the processes
in the system. A global state is semi-consisient
for B iff there is no orphan message [2] for every
communication channe!l of each process in B. O

Then, the upgrading procedure is restarted from
the initial state after some intervall.

3 Extended Protoéol

3.1 System model

A process is assumed to consist of three lay-
ers as shown in Figure 2. The top layer is the

_application layer where an application program is

executed by ex::h:m_girigl the application messages.
The bottom layer is the process communication

‘layer which supports a pair of two processes p; and

P; at the group communication layer with the reli-

“able point-to-point system message transmission.

A unit of data exchanged among the group com-
munication processes is a system message. Each
system message is assigned one of the following

-type attributes; intergroup, event-inform, detec-

tion and restart. At the group communication
layer, the group communication protocol and the

1The procedure for transition from the transient state
to the upgraded state is discussed in [5].

P P R
Application _ L Send(S) _Receive(R)
Group
communication
Process

communication

Figure 2: Three-layer system.

checkpoint-restart protocol are implemented. The

‘following primitives in the process p; are defined

for the application layer:

e A message sending event send(S) where S =
Uj{(pj, m;)}: This means that p; sends a
message m; to p;.

e A message receiving event receive(R) where
R = U;{(pj,m;)}: This means that p; can
accept a message m; from p;.

Here, we make the following assumptions:

A1l The process communication layer supports
reliabge FIFO (first-in first-out) communica-
tion channels. Thus, any system message is
neither lost, duplicated nor contaminated.

A2 State transitions in the application layer are
caused by the communication events, i.e.
message sending and receiving events.

A3 No protocol error occurs in a system consist-
ing of only single-version processes.

A4 In every process groups, new version pro-
cesses are created in the same order.

Suppose that p} and p[* are lth and mth versions

of p;-and p} and p]* are ith and mth versions of p;.

A4 means that if | < m, p} is created before p*

and p} is created before p[*. On the other hand,

suppose that p! and p[* are Ith and mth versions
of p;, pj* and p} are mth and nth versions of p;,

and pl and p} are Ith and nth version of p;. If p}
is created before p[* and p]* is created p}, P}, has
to be created before pf.

3.2 Requirement

The protocol for the dynamic upgrading is re-
quired to satisfy the following requirements. Here,

a process group P; consists of processes 7.

R1 While multiple versions of processes pl are
executing the application programs concur-
rently in P;, the same events occur in the
same order in every .

R2 The protocol errors, 1.e. the unspecified re-
ceptions and the communication deadlocks

" are detected and resolved in finite time.

R3 A global state denoted by a set of local check-

points taken are consistent.

3.3 Checkpointing protocol

In this subsection, we discuss the group com-
munication protocol that satisfies the require-
ments in the previous subsection. The happened
before relation “—” among the events is defined
as follows [9]: '

Definition An event e; happens before an event
ej (e; —.¢;) iff.one of the following conditions is
satisfied:

¢ ¢; happens before e; in the same process.

® ¢; is an event for sending a message m and e;

is one for receiving m. '

e e; — e, — e; for some event e,. O
In order to reduce the overhead for the recovery
from' the protocol errors, each local checkpoint
should be taken as late as possible. Here, sup-
pose that a process group P; consists of processes
{pl,...,p"} where p[" is the newest version in P;.
Our strategy is that each old-version process p}
(# p™) takes a local checkpoint ¢} immediately
before the first event e™* that satisfies one of the
following conditions: :

CP1 e # e and e}t ’=J.e:“".(r < 8)
where event sequences (eg”, e, ep”,...) and
(eg*, e7", ea”, ...} occur in each process p
and p[*, respectively.

CP2 ¢} — € where ¢ is a local checkpoint of

pj in a process group F; and 0 > n.

CP3 ¢! — e where ¢! is a local checkpoint of
P} which is newer version process than p?* in
P, ie g>n.

CP1 means that each old-version process p? takes
a local checkpoint ¢ just before the first event
that does not occur in the newest version process
p* in F;. By applying CP2, there is no incon-
sistent message in the global checkpoint denoted
by a set of the local checkpoints. If CP3 is not
applied, the system cannot be restarted consis-
tently. In Figure 3, three versions of processes
P}, p} and p{ is in a process group P;. Suppose
that eg’ = ep® = ep®, e} = e} # e} and
e’ # e # eb*. According to CP1 and CP2,
p; and p] take local checkpoints ¢} and cf just
before e} and ey, respectively. If some proto-
1

col error is detected and p} is restarted from cf,

20 has to take a local checkpoint c? just before
e* for CP1. However, p? has already taken ¢
just before eg"'. Hence, if another ‘protocol er-
ror is detected and p{ is restarted, the system be-
comes inconsistent. By using CP3, since p? takes

¢? just before eg", the system is kept consistent

even in the above restart scenario. In order to re-

alize the minimum overhead recovery, if p} takes

c? according to CP3 and pl**?! is restarted, p is

also restarted and executes the application pro-

gram passively. The modified recovery protocol is
iscussed in the following subsection.

When p? takes a local checkpoint ¢ in an up-
grading process group P;, p? is suspended until
the protocol error is detected and p? is restarted
from ¢?. On the other hand, if pf* is in a sta-
ble process group, i.e. P; consists of only p7,
p¢ records the current state information in a sta-
ble log and continues to execute the application

2,1 2,1 2,1
2 eO * e‘I eZ
pi o ® *—>
. 1
1 ; @l 1,1
1 et C'l et el
P d . -—>
0 . 0 .
e)t Cj; 0t (C))ed*
pg ® Yo v e
Figure 3: Checkpoint by CP3.
- -
g \\Pr 17 \
lf,z \ 7 \
i \ ! !
1]
N A i \
event-inform [H 1
Poq 1 X 1]
RS L~ @r} |
event-inform N ! event-inform
I ! '
\ 1 ;
Y &l
N S \ 7
T N

Figure 4: Group communication protocol.

program. The group communication protocol for

transmitting an application message m from F;

and to P; is as follows (Figure 4). Here, P; and F;

consist of {p{,...,p"} and {p?, e ,p?"}, respec-

tively. Each system message m,(Py, m, flag, ver)
carries a process group identifier P, an applica-
tion message m, a binary flag flag and a version

information ver which is used for checking CP2 2.

On receiving a system message m, from another

process through the process communication layer,

a process p; enqueues m, to the system message

queue.

[Communication protocol]

1) When a message sending event Send(S)
where S = {(P;,m)} occurs in the newest
version process p;* in P;, p}* sends an event-
inform type system message m,(P;, m, F, 1)

to p?""l in P;.

On receiving an event-inform type system

message m,(P;, m, flag, ver), pf(0 < k < n;)

in P; enqueues it to the system message queue

in FIFO order.

2-1) If p¥ has a local checkpoint cf, pf
dequeues m,(F;, m, flag,ver) from the
message queue in FIFO order and sends
an event-inform type system message

- my(P;,m, T, maz(ver, k)) to pf'”l.

2-2) Otherwise, i.e. if pf does not have
a local checkpoint cf and a message

sending event Send(S) where S

{P;,m} occurs in p¥, p¥ dequeues

an event-inform type system message

m,(P;, m, flag,ver) from the system

2)

2The value of v is an integer or L. We define L < 0.

message queue in FIFO order.

2-2-1) ¥ flag = T, p} takes a local
checkpoint cf just before Send(S)
according to CP3 and sends an
event-inform type system message
m,(P;, m, T, ver) to pf‘.

2-2-2) If flag = F and (Pj,m) € S, p}
sends an event-inform type system
message m,(P;, m, F,ver) to pf~?.

2-2-3) Otherwise, ie. if flag = F
and (Pj,m) ¢ S, pt takes a local
checkpoint cf just before Send(S)

according to CP1 and sends an
event-inform type system message
m,(Pj, m, T, k) to p,-"l.

3) On receiving an event-inform type system
message m,(P;, m, flag, ver), p§ in P; en-
queues it to the system message queue in
FIFO order.

3-1) If p{ has a local checkpoint ¢, p?
dequeues m,(P;, m, flag,ver) from the

message queue in FIFO order and
sends an intergroup type system mes-

sage m,(Pi, m, T, maz(ver,0)) to p;‘j in

'3
3-2) Otherwise, if p? does not have a
local checkpoint ¢} and a message
sending event Send(S) where S
{P,m} occurs in 2f, p? dequeues
an event-inform type system message
m,(Pj,m, flag,ver) from the system
message queue in FIFO order.
3-2-1) If flag = T, p{ takes a local
checkpoint ¢ just before Send(S)

according to CP3 and sends an
intergroup type system message

my(P;,m, T, ver) to p;-" in P;.
3-2-2) If flag = F and (P;,m) € S,

p? sends an intergroup type system

message m,(FP;, m, F, ver) to p;-"' in

P
3-2-3) Otherwise, i.e. if flag = F
and (P;,m) ¢ S, p? takes a local
checkpoint ¢ just before Send(S)
according to CP1 and sends an
intergroup type system message

m,(F;, m, T, 0) to p;” in P;.
4) When a message receiving event Receive(R)
where R Ui{(P1,mu)} occurs in the

0 ﬂ,‘ . ",'

newest version process. p;’ in Fj, p; de-
queues -an ‘intergroup type system message

m,(P;, m,Ff lag, ver) from the system message

queue in FIFO order. If flag = T, ver 2> n;

and p;-”' does not have a local checkpoint c;:"' .

p;’ takes c;” just before Receive(R) accord-

ing to CP2.

4-1) If (P;, m) € R, m s delivered to the ap-
plication layer. At the same time, p;’
sends an event-inform type system mes-
sage m,(P;, m, F, ver) to p;""l in P;.

4-2) Otherwise, the unspecified reception is
detected in P;.

5) On receiving an event-inform type system
message m,(P;, m, flag, ver), p;-‘(O <k<nj)
in P; enqueues it to the system message queue
in FIFO order.

5-1) If p} has a local checkpoint cf, pf
dequeues m,(P;, m, flag,ver) from the
message queue in FIFO order. If k #
0, p}‘ sends an event-inform type sys-
tem message m,(F;, m, T, maz(ver,k))
to pf'l.

5-2) Otherwise, ie. if p;-‘ does not have a

local checkpoint cf and a message re-

ceiving event Receive(R) where R =

Ui{P, m} occurs in pf, pf dequeues

an event-inform type system message

m,(P;, m, flag,ver) from the system

message queue in FIFO order.

5-2-1) p} takes a local checkpoint cf
just before Receive(R) according to
CP3 if flag = T. H k # 0, pf
sends an event-inform type system
message m,(F;, m, T, ver) to p;f'l.

5-2-2) If flag = F and (P;,m) € R, p;?
sends an event-inform type system
message m,(F;, m, F,ver) to p;'l
where k # 0

5-2-3) Otherwise, i.e. if flag = F and
(Piym) ¢ R, p} takes a local check-
point c}’ just before Receive(R) ac-
cording to CP1. If k # 0, p sends
an event-inform type system mes-
sage m,(P;, m, T, k) to p;"l.

3.4 Protocol error detection

The unspecified reception is detected in step 4—
2 in the group communication protocol discussed
in the previous subsection. On detecting the un-
specified reception in the communication between
process groups F; and P;, it is required to nego-
tiate which version of the processes are restarted
according the following rule:
E1 If the newest version of the processes in

P; and P; are p and p;"' , respectively,
min(p}“',p;-")th version of the processes are

restarted from the local checkpoints. That
is, kth version of the processes in P, where

min(p, p;7) < k < p'ny)s are removed.

On the other hand, the communication dead-
lock is detected by using the timeout mechanism
as the original protocol. In the extended proto-
col, more than two versions of the processes are
concurrently operational, it is required to deter-
mine which version of the processes are restarted.
In order to realize the optimal recovery, we apply
the following rule:

E2 The newest version of the processes in the
deadlock cycle is restarted from the check-
point.

The protocol for detecting the communication
deadlock and invoking the recovery is as follows:
1) If a message receiving event Receive(R)
where R = Uj{(pr, mu)} occurs in the newest
version process p;* in B;, p;* start the timer.
2) If the timer expires without receiving an in-
tergroup type system message, p;* sends a
detection type system message to each p'.
3) When p;-'j in P; receives the message sent
in 2), p;” sends back an acknowledgment if
n; > n;. Otherwise, p;" sends back a nega-
tive acknowledgment.
4) If p;* receives acknowledgments from all pJ**
and has not yet received any intergroup type
system message, p]* is removed and the re-

covery procedure is invoked. That is, the

recovery protocol is executed and p:"‘_l is

restarted from the local checkpoint ci,. ;.

3.5 Restarting protocol

For resolving the protocol errors, i.e. the un-
specified receptions and the communication dead-
locks, detected in the previous subsection, the re-
covery protocol is executed in a collection of pro-
cess groups. This is because the system has to
be restarted consistently. Based on the message
diffusion protocol, we have designed the recovery
protocol which is applied to the process group con-
taining two versions of processes [6]. In order to
apply to the process groups containing more than
two versions, a version information ver is included
in the restart type system message where the re-
covery is invoked in a process group P; and p{*" is
restarted. On receiving the system message in P;
, the newest version of the process whose version
18 less or equal to ver is restarted from the local
checkpoint. Here, in order to realize the recovery
with the minimum overhead, i.e. the local check-
point is taken as late as possible for reducing the
amount of the wasted computation time caused
by the recovery, we add the following restart rule:

E3 If a process pf in a process group P; takes
a local checkpoint cf by CP3 and pft! is
restarted, p} is also restarted from c¥

x.

In Figure 3, p? takes ¢ by CP3. If p} is
restarted from c}, p{ is also restarted simultane-
ously. After that, 1Y newly takes local checkpoint
) just before e’,’o by CP1. Thus, if the proto-
col error is detected in a process group B, p? is

restarted from ei’o not e;®. Therefore, the over-
head is reduced by E3.

4 Evaluation

‘The extended upgrading protocol proposed in
the previous.section has the following properties:
P1 The set of local checkpoints from which the

processes are restarted denotes the most re-
cent semi-consistent global state. ,
P2 The number of the restarted processes is the
minimum,)
P3 In each cluster, the minimum number of pro-
cesses are removed for restarting the system,
i.e. the newest-version process is restarted.

N s L ")
02 04 o8 oe 1

0p

Figure 5: Time overhead. -

Next, we evaluate the extended protocol with
the original protocol by comparing the time-
overhead for n time upgrading. Suppose the fol-
lowing conditions are satisfied:

1) The system is upgraded from Oth version to
nth version.

2) For each upgrading procedure, it takes § time
units from the initial state to the upgraded

. state.

3) The probability that the protocol error occurs
and the system is restarted from the check-

' point in the A time units is r.

By using the original upgrading protocol and the
extended one, it takes T,(n,r) and T.(n,r) time
units, respectively.

ko i q2n4i—1 ;
To(n,) = 2(1 - r)"r"l-—-—i——— moltiA
i=1
1
haid i1 .
T.(n,r) = 2(1 —ryritl——anTita

5(1—1__—’_—)(’111' - 2r + 2)A

Figure 5 shows f(n,r) = T.(n,r)/T,(n,r). For
any r € [0,1], 0 < f(n,7) <1, i.e. the time over-
head is reduced by applying the extended group
communication protocol. : ‘

5 Concluding Remarks

This paper proposes a group communication
protocol for upgrading the application processes
that is extendeg for applying to large-scale dis-
tributed systems. The protocol realizes the lowest
overhead Tecovery, i.e. ' the minimum number of
processes are restarted from the most recent local
checkpoints that denote a semi-consistent global
state, if the protocol error is detected. ore-
over, we evaluate the extended protocol by com-
paring with the original one. In the future work,
we will combine this protocol with another ex-
tended upgrading protocol for dynamic configura-
tion changes [13f : o :

References

(1]

(6]

(7]

(8]

(9

[10]

(11]

Barbacci, M. R., Doubleday, D. L. and Wein-
stock, C. B., “Application Level Programming,”
Proc. of the 9th IEEE ICDCS, pp. 458-465
(1990). "

Chandy, K. M. and Lamport, L., “Distributed
Snapshots: Determining Global States of Dis-
tributed Systems,” ACM Trans. on Computer
Systems, Vol. 3, 1985, pp. 63-75.

Higaki, H., “Dynamically Updating in Dis-
tributed Systems,” Proc. of the {6th Annual
Conventions IPS Japan (1), pp. 195-196 (1993).

Higaki, H., “Group Communications Algorithm
for Dynamically Updating in Distributed Sys-
tems,” Proc. of ICPADS, pp. 56-62 (1994).

Higaki, H. and Hirakawa, Y., “Dynamically Up-
dating Technique in Distributed Systems,” Proc.
of the 49th Annual Conventions IPS Japan (1),
pp. 289-290 (1994).

Higaki, H. and Hirakaws, Y., “Group Commu-
nication for Upgrading Distributed Programs,”
Proc. of the 16th IEEE ICDCS, pp. 420-427
(1996).

Higaki, H. and Takizawa, M., “Group Commu-
nication Protocol for Flexible Distributed Sys-
tems,” Proc. of the 4th IEEE ICNP, pp. 48-55
(1996).

Kramer, J. and Magee, J., “The Evolving
Philosophers Problem: Dynamic Change Man-
agement,” IEEE Trans. Software Engineering,
Vol. 16, No. 11, pp. 1293-1306 (1990).

Lamport, L., “Time, clocks, and the ordering of
events in 2 distributed system,” Comm. ACM,
Vel. 21, No. 7, pp. 558-565 (1978).

Malek, M., “Responsive Systems,” Microprocess-
ing and Microprogramming, Vol. 30, pp. 9-16
(1990). -

Segal, M. E. and Frieder, O., “Dynamically Up-
dating Distributed Software: Supporting Change

in Uncertain and Mistrustful Environments,”
Proc. of IEEE Conf. on Software Maintenance,

" pp. 254-261 (1989).

12]

[13]

(14]

Shiratori, N., Sugawara, K., Kinoshita, T. and
Chakraborty, G., “Flexible Networks: Basic
Concepts and Architecture,” JIEICE Trans. on
Commaunication, Vol ET7-B, No. 11, pp. 1287-
1294 (1994).

Yasuda, M., Shima, K., Higaki, H. and Takizawa,
M., “Flexible Inter-Cluster Communication Pro-
tocol to Absorb Configuration Changes,” IPSJ
Technical Report, vol. 97, No. 20, pp. 117-122
(1997). ' ‘

Yoshida, N., “Towards Next-Geéneration Paral-
lel/Distributed System Development,” Journal
of Computer Science, Vol. 2, No. 4, pp. 300-305
(1992)." ' o

